
Page 1 of 22

Crowd Simulation for Emergency Response Planning
By Daniel Flower
Supervised by Dr Burkhard Wünsche and Assoc-Prof Hans Werner Guesgen

Table of contents

Executive Summary .. 2
Introduction... 3

Motivation... 3
Goals of the Project... 3

Literature Review.. 5
Empirical Data .. 5
Particle Systems .. 5
Matrix Systems ... 5
Behavioural Systems... 6

Design of the System .. 7
World Objects ... 7

Walls ... 8
People.. 8

Groups... 9
Implementation ... 11

Path Planning .. 11
Creating Points in the Itinerary ... 12
Creating the “finish lines”... 13

The Grid .. 14
Moving Around... 15

Avoiding People.. 16
Avoiding Walls ... 16
Avoiding Nothing ... 16

Results... 17
Realism ... 17
User Interface.. 18
Efficiency.. 18
Extendibility.. 18
Overall... 19

Future Work .. 20
Force ... 20
Artificial Intelligence Improvements.. 20

Planning .. 20
Knowledge .. 21

Senses.. 21
References... 22

Page 2 of 22

Executive Summary

Realistically simulating crowd behaviour is an important goal because the behaviour of
crowds can often be unpredictable, and can lead to injury and loss of life when a
panicking crowd is not managed in an acceptable manner. If designers were about to
simulate a crowds, then they could better design buildings, stadiums, and events to
minimise the dangers that can occur.

However, to simulate human beings is not an easy task. Therefore, the goal of this
project was to make a simple simulation of a crowd trying to escape from a room with a
single door. This was achieved by trying to simulate individuals, and giving them the
ability to plan which route to take and how to avoid other agents. The “crowd behaviour”
emerged from the individual agents’ behaviours, much as it does in real crowds.

The result was a programme that reasonably simulated a crowd trying to escape a room.
This included the ability for the individuals to decide which route to take to the door
based on the length the route and the number of others taking the same route, and the way
that bottlenecks such as doorways cause crowds to bunch together, and spread out.

This report will go over the motivation in more detail, existing crowd simulations, the
design and implementation of this simulation, along with results and future improvements
to be made.

Page 3 of 22

Introduction

The goal of this project is to create a realistic crowd simulation. The people (herein
referred to as “agents”) in the crowd would need to plan where to go, avoid other agents,
and act as human-like as possible.

Motivation

The motivation behind this project comes from the continuing disasters occurring in
crowded situations. Commonly a real threat such as a fire breaks out which induces
panic in the crowd, where people are in danger of getting crushed to death. It is this
panic or poor management, rather than the original threat, which often claims the vast
majority of injuries and deaths. For example, on December 31st, 2004, 169 people died
when a fire started in a night club in Buenos Aires. In this case, the high number of
deaths was blamed on fire exits being locked. On 25th January, 2005, between 150 and
300 people died during a religious procession in western India when a small fire caused a
stampede1.

These unnecessary dangers could be better prevented if the creators of buildings and
events could test their designs under emergency situations. To hire a crowd for this
purpose would not only be expensive, but dangerous. Therefore, a computer simulation
of a realistic crowd, where the designer can test different designs (e.g. placing emergency
exists, adding or removing walls etc), would enable the creation of crowd-safe events and
buildings.

Aside from the safety aspect, a realistic crowd simulation could be useful in areas such as
computer games, movies, virtual reality heritage simulations, urban planning etc.

Goals of the Project

The goal of this particular project is to make a simple scenario and begin to investigate
effective techniques for producing realistic movements of individuals within a crowd.
Specifically, the program will be a single room with a couple of obstacles, populated with
a crowd. The crowd will try to run to the door, requiring them to plan their path around
the obstacles, and to avoid other agents.

Furthermore, the simulation should include some aspects not explored much in existing
simulations, such as having groups of people (such as families and partners) where the
group tries to stick together.

The agents in the simulation should have characteristics which can change over time. The
most important characteristic in this simulation is panic level, which would affect the

Page 4 of 22

speed that people try to move at, how much space to give to other agents, and should
affect their decision to either help a fallen person up, or whether to trample them.

Finally, it is very important that the project is extendable. The agents should be able to
be ported to other simulations without too much trouble.

Page 5 of 22

Literature Review

Empirical Data

Real life studies of crowds have shown that the following are common in crowds:

• As panic increases, the speed people try to move at increases. This increase in
desired speed can actually decrease the overall time it takes for egress.

• Panic also affects things such as the amount of space people try to keep free
around them, whether to act selfishly or in an altruistic way, and whether to act as
an individual or to just follow the crowd.

• Any bottleneck – such as a door or a thinning walkway – results in slow-downs of
the crowd. The crowd bunch around the bottleneck in a circular shape.

Any good crowd simulation ought to reproduce these empirical observations.

Particle Systems

In these simulations, individuals are treated as particles, and physical laws based on ideas
of fluid motion are used. For example, a person will tend to flow in the same direction of
nearby people. There are also repulsive forces between individual agents to make sure
they don’t come too close to each other.

An example of such a system is “Panic: A Quantitative Measure” by Helbing, Farkas and
Vicsek2. Their system portrayed agents in a very simplistic way: physically they were
circles; they used repulsion laws to avoid other agents; they either followed the crowd or
looked for an exit themselves; and they tried to go faster when panicking. This lead to
good results which agreed with empirical studies: the faster people tried to go, the slower
on average they could leave; small openings became clogged; and that escape routes were
better to stay uniformly thin than thin with some widenings.

Although particle systems can give realistic results, they treat the agents as physical
objects rather than free-thinking individuals. People will often stop abruptly, head in
opposite directions to the rest of the crowd, and act in ways cannot be simulated unless
there is some sort of simulation of the way people think.

Matrix Systems

Path planning, avoidance, and decision making can become difficult when dealing with
real numbers because there are an infinite1 number of possibilities (for example, should
you head 34.1112 or 34.1113 degrees east?). When trying to implement large crowds in

1 Strictly speaking, it is not infinite on a computer because real numbers are only approximations.
Nevertheless, it is still an extremely large number.

Page 6 of 22

real-time, the computational cost can become too great, and hence matrix systems are
used.

These systems greatly simplify decision making by splitting up the environment into
cells, with one person per cell. When deciding whether an agent can move forward one
unit, they just check if the adjacent cell is free or not, and path-planning is just a matter of
finding a number of cells that are joined together and aren’t occupied by static obstacles
(such as walls).

Obviously, the real world is not partitioned into cells, and therefore matrix-based systems
suffer from a lack of realism.

Behavioural Systems

In these systems, crowd behaviour emerges from the individual agents within the crowd.
Each agent has attributes (such as whether or not they are in a hurry) and goals (such as
“Exit the room”) and they try to achieve their goals. Interactions (such as collisions)
occur with other agents, which each of the agents must deal with individually.

In these systems, the main concentration is on creating individuals that can react
realistically. Despite the fact that the crowd isn’t directly controlled by the program, the
behaviour of the crowd emerges from the individuals, much like it does in real life.

The implicitly created crowd behaviour can then have an influence on the individuals.
For example, if most of the crowd is moving in a certain direction, then the individual
may decide to move that way too. Importantly, they may decide not to move in that
direction.

This type of crowd simulation is now the dominant system in use as it can produce the
most realistic results. This is the system used in the simulation created for this project.

Page 7 of 22

Design of the System

In this section, we will explore the design in fairly abstract terms. In the next section,
“Implementation”, we will go into detail about how specifically the design was
implemented in the computer language.

The main goal of the design was to keep the simulation relatively simple while allowing
room for later expansion. For this reason, it was decided that spatial calculations would
be done in 2D. This greatly simplifies calculations to do with path planning and collision
detection, however situations such as multi-level buildings are impossible to simulate due
to the fact that if two agents were in the same location but on different floors, they would
be seen by the program to collide. Graphically, it can still be displayed in 3 dimensions
to make it look more realistic.

The system also had to be designed to be easy to use. The mouse was to be used to do
things like adding people in real-time to the simulation and clicking on people would give
statistics. This requirement to have real-time changes in the simulation therefore requires
the simulation to be rendered in real time, rather than pre-computing everything and then
displaying the result as an animation. Therefore, performance was an issue that had to be
considered throughout the design of the simulation, and many simplifications were made
for this reason.

Although this simulation takes place in a room, the goal was to make the agents and
environment as generic as possible to allow changes to be made easily, and the possibility
to port them into other simulation systems.

World Objects

Every object in the world is
referred to as a “World Object”.
The space every object takes up
is represented as a 3D box. The
drawing of an object and its
physical representation are
completely separate, so it is still
possible to have things appear to
be rounded or triangular etc.
Another imposed limitation is
that these bounding boxes cannot
be rotated, so therefore you
cannot have things like walls that
are on angles. While this is a
huge restriction on what can be
created in the world, it simplifies

Page 8 of 22

everything tremendously, and is something that can be changed in the future.

There are currently two types of world objects: walls and people.

Walls

Walls are simply obstacles to block the agents. As mentioned above, they can only be
placed horizontally or vertically. The floor is also a wall, which is stretched to be short
and wide, rather than tall and thin, and is also (internally) marked as a floor. When
adding a new agent to the simulation, they can only be added to where a floor is.

People

The people are obviously
the main focus of this
project. Being a “world
object”, they share the
properties of other world
objects, such as being
represented by a bounding
box. However, they have
extra properties to help
them move around the
world. Specifically, they
need to have a destination
in mind, along with current
velocity. They also need
decision making abilities,
such as deciding which way to go, whether to speed up or slow down, etc. Each person
will also be given a set of attributes that affect how they act in the world. An example is
the ‘panic’ attribute, which causes the person to act with less caution and be in a bigger
hurry.

When people are added to
the world, currently their
one goal is to try to leave
the room through the
door. To do that, they
need to construct a path
around any obstacles. To
do this, they see if there
is anything blocking them
between their current
location and the door. If

Page 9 of 22

there is, they check whether they can travel to the side of the object blocking them, and
from there try to get to the door. This is repeated recursively until a path is built up. The
created path is called an ‘itinerary’. An itinerary is a list of locations in the world that the
agent must pass through to reach their final destination.

When the agent has to decide between two paths, it takes into account the length of each
path, and also the relative density of agents in the area. If there are many other agents in
one path, then the agent is less likely to choose that direction.

In the path-finding step, although the relative density of the crowd is taken into
consideration, the other individual agents are ignored. This is because people move
around so if they are blocking the path now, by the time the agent gets there they have
probably moved away. However, once they are moving they need a strategy whereby
they can keep to their
itinerary while avoiding other
agents. The avoidance
algorithm is very simple in
this simulation. When an
agent detects that it is about
to walk into another agent
(say, 1 meter before they
collide), the agent will
change direction slightly.
From the agent’s point of
view, they can either go to
the left or to the right of the
other agent. Currently, the
choice is made by
determining the direction that
requires a smaller change in
angle.

Groups

A group is just a group of agents that want to stay together, and represent families,
partners, and groups of friends that appear in real-life crowds. Including groups was an
important part of this project because while they are very common in real life, they are
not commonly implemented in crowd simulations.

Each group is made up of a group leader and a small number of followers. A leader
follows their itinerary as explained above, however the followers in the group just try to
move closer to the group leader. In fact, this is achieved by having the followers create
an itinerary where the destination is the current position of the group leader, which
enables followers to walk around walls and other people if they need to, rather than just
blindly walking in the exact direction of where the leader is. Because recalculating the

Page 10 of 22

itinerary each time the group leader moves is computationally expensive, the itinerary is
only updated whenever the group leader moves a significant distance (say, 1 meter).

In real life though, a group leader will not just ignore the followers and trust that they will
keep up, but rather they will try to ensure that everyone stays close together. For this
reason, if a follower has got too far behind the group leader (say, 2 meters behind them)
then they will tell the group leader this and the group leader will temporarily stop. Once
all the followers are close to the group leader again, the leader will continue.

Page 11 of 22

Implementation

This section goes into detail on how the simulation was implemented, exploring the
programming techniques used. Some of it may be difficult to understand for those not
familiar with algebra and programming.

The simulation was created in C++ using OpenGL for the graphics. As stated above,
every object that is part of the world is derived from the abstract World Object class,
which contains, among other things, a bounding box to represent the location of the
object, a draw method, and a processing method.

The main simulation class therefore has a linked list of every world object, and at each
time step the processObject() method of every object is called to take care of things such
as decision making and actually moving the object, and the draw() method to display
each object.

Being inanimate objects, the walls do nothing in the processObject() method, and for the
draw method they just draw a 3D box. The people, of course, aren’t so simple to handle.

Path Planning

The first step after a person is added to the world is to plan the path they will take. This
is not calculated every step, rather it is calculated at the beginning with the possibility to
recalculate it later on if they need to. As mentioned in the previous section, the path is
represented as an Itinerary object, which is just a linked list of locations that the agent
needs to reach. The locations are always at the edges of walls because the path planner’s
job is to find a path around any obstacles (currently only walls) to get to the goal
destination. However, the location is not just a point in space, it is a line segment. This
is because in real life, when we walk from one point to another, we do not move to
specific points, we are more approximate: for example it doesn’t really matter if you
travel around a corner tightly or take it widely; it’s just important that you get around the
corner. Therefore, each destination in an Itinerary object is represented as a point with a
vector, and the line that this creates I have called a “finish line”.

The image below shows the itinerary of a person trying to walk to the door. The purple
lines show the most direct route, and the green lines are the finish lines that the person
must cross before they try to reach the following finish line. I will next talk about how the
point is decided upon, and how the vector is decided upon.

Page 12 of 22

Creating Points in the Itinerary

To create the points we use ray tracing to check for collisions. A ray going from the
person to the destination is created. The fact that every object is represented by a box
means every part of every object can be represented as a plane. Each plane is represented
by the equation ax + by + cz = d, and we can test the distance from a point to a plane by
taking the dot product of the plane normal (which is just [a,b,c] transposed) and the point
in question, then adding ‘d’. If the value of this calculation is positive, then the point is
in front of the plane (i.e. the normal points towards the point), and a negative value
indicates that the point is behind the plane.

So, to see if we’ve potentially hit something, we classify the start point and the
destination point against the planes of every object, and see if the classifications are
different. If they are different, then there might be a collision; we still need to see if the
collision point is within the bounds of the actual object, rather than the infinite plane of
one side of the object.

To do this, we need the exact point of intersection, so we start by representing the ray as a
parametric equation: ray = startPoint + t*vectorToDestination for 0 ≤ t ≤ 1 and then find
what the value of ‘t’ is when the intersection occurs. The parametric equation gives the

Page 13 of 22

intersection point for the wanted value t, and rearranging the plane equation “n·p = d” gives the
intersection point to be equal to ‘d’/planeNormal2. We now have two equations for the point, and
rearranging and simplifying finally gives us the equation we want to find the value of ‘t’: t = (-
startPoint·planeNormal + d) / (vectorToDestination·planeNormal). Plugging ‘t’ into the
parametric equation gives us the exact intersection point, and then we check if the intersection
point is within the bounding box. To do this we check if each component of the intersection point
is greater than each respective component of the back, left, bottom point of the bounding box of
the object we may have collided with, and the make sure it is less than the front, right, top point
of the bounding box (or to put it another way, we make sure that the intersection point is bigger
than the smallest point of the box, and smaller than the biggest point of a box, where the size of a
point is the sum of the components). Note that this works because bounding boxes cannot be
rotated, and that this method would need to be improved to allow rotations of world objects.

If we have detected a collision, then from the agent’s perspective, it needs to walk to the
right or to the left of the object. The collision detection method returns the face of the
box that we collided with, and using this face we can get a point which is to the left and
to the right of the box. The method for finding these points are hard coded in (e.g. if
(face == 1) return vertices[2] – where vertices is an array of the 8 vertices defining the
box). This rather ugly method only works because we do not have rotations of world
objects and because we are only concerned with 2 dimensions (depth and width – so we
do not allow the ability for agents to climb over other objects).

So, we pick one of the points, and then recursively build two itineraries: one to get from
the starting location to the intersection point, and another to get from the intersection
point to the goal destination. This will build up as many locations as are necessary. But
how do we choose which way to go around a wall?

One possibility would be to pick both ways, and then recursively check every single path
and choose the one with the least total length. However, this could become
computationally expensive, and is not the way that most humans choose their path.
Instead, I used a greedy algorithm: pick the path that that looks to be the best. A score is
given to each possible path, with points being awarded on the basis of the total length to
get to the destination, and the number of other people who are currently near the point we
are walking to. The lowest score is the winner, and specifically the score is generated by
the following formula:

Score = (1 * totalDistance) * 1.2^(number of people near point)

The numbers in this formula are have no mathematical basis; they are just numbers that
seem to work well (I’ve included the ‘1’ to show that the total distance could be
weighted, even though in practice it’s not).

Creating the “finish lines”

2 Really, it is ‘d’ divided by each component of the normal.

Page 14 of 22

The finish lines need to point “away” from the object that we are walking around,
however they do depend on where the agent is coming from and where they are going.
This is best visualised with a diagram:

1 2 3

We are looking at how the vector marked as ‘1’ is calculated (ignore the other green
line). If vector 2 is projected onto vector 3, we can simply subtract this new vector from
vector two to get a vector pointing in the direction of the vector marked as one. We can
then normalise this vector, and multiply it by whatever length we want (currently a length
of 1 meter is used). To calculate the vector marked as ‘3’, we simply get subtract the
point where the person currently is from the destination point after the next destination.
This cannot be used to calculate a finish line for the very last destination in the itinerary
as obviously there is no destination after the last destination. In this case we just use the
previous finish line, which while not being an optimal solution works pretty well in
practice.

The Grid

I have rather casually mentioned that the number of people near a point is taken into
consideration; however coming up with this value is not a trivial task. To achieve this,
the world is split up into cells which make up the grid. Each cell has a linked list of all

Page 15 of 22

the world objects that are in it (specifically, a world object is considered inside a cell if
the centre of that object is inside the cell, even though the object may span several cells).
Whenever a person moves, they check to see if they have changed cells, and the cell lists
get updated accordingly.

In the design stage, it was mentioned that the followers of a leader have itineraries with
the final destination being the group leader’s position, and to save computational time the
itineraries are updated not every time the group leader moves, but only when the group
leader moves a significant amount. Specifically, every time a group leader leaves one
cell and enters another, all the followers are told to re-compute their itineraries using the
new position of the group leader. This is because it’s not important that followers are in
the exact same place as the leader – this is indeed impossible – rather the followers just
need to be near their group leader. Therefore, having the followers trying to get to the
current cell that the group leader is in is close enough.

The grid is created in the
beginning by finding the
smallest and largest
points in the world, and
then creating cells which
span every object.

While currently the grid
is used in a rather small
way, the grid has a lot of
potential uses, including
optimisations (to only do
collision detections with
objects in nearby cells,
rather than every object
in the world) and for use
in higher level AI
decision making (for
example, if the agent
wants to follow other agents, then check the velocities of those agents in nearby cells and
go in approximately the same direction and speed as the others).

Moving Around

Each person has information on the velocity they would like to be travelling at, the
velocity they are travelling it, and the direction in which they are travelling. After their
itinerary is calculated, their direction points to the middle of the next finish line and as
they cross each line, the direction gets updated to point to the next finish line in the
itinerary. When there are no other agents around the egress goes very smoothly, but

Page 16 of 22

when there are too many other agents around the agents cannot just stick to their simple
itinerary.

The first requirement is to check to see if the agent is about to hit any other object. To do
this, we stick out a “feeler” and run the collision detection algorithm – as used to create
the itineraries – to see if it is possible to move, say, another meter in the current direction.
This is similar to the way an insect uses its antennae to navigate its way around objects.

Avoiding People

If the agent detects that it is about to collide with another agent, as described in the design
stage, it simply creates a vector that goes from the centre of the agent about to be hit (the
“hit object”) to the current location of itself. This vector will be pointing away from the
hit object, and by making this vector very small (e.g. making it 5 cm) and adding it to our
current direction, the agent will turn a small amount away from the hit object, and over a
few steps will avoid it completely. To match the observation that people slow down
when they come close to others, the current velocity of the agent doing the avoiding is
decreased slightly, and this slow-down can contribute to the whole slowdown of a crowd
if it occurs in a congested area.

Avoiding Walls

If an agent strictly follows its itinerary, they will never hit any walls, but because agents
change their direction to avoid other agents, they will sometimes collide with walls.
When this happens, their itinerary is simply recomputed, and the new itinerary will make
them head away from the wall.

Avoiding Nothing

If there will be no collisions, then, feeling confident, the agent can increase its speed a
little (until it reaches its desired velocity). The agent then checks to see if it is going in
the right direction (i.e. if it is heading towards any point on the finish line). It does this
by creating a vector from the current agent position to the middle of the finish line and
checking for the angle between that vector and the current direction vector. If this is
smaller than the angle between the edge of the finish line and the first vector calculated,
then the agent is heading for the finish line; if not, then the current direction is rotated
slightly towards an acceptable level.

Page 17 of 22

Results

Realism

The main goal was to realistically simulate the movement of a crowd by implementing
individuals. To this end, there was some success. The agents can smoothly leave the
room when there aren’t many other people, and when there is a big crowd, bunches of
people form around bottlenecks such as doorways. At a doorway, the crowd takes a
semi-circular shape, with a few agents trying to move to better locations, and some
staying patiently still, waiting to get out. This mirrors a real life crowd quite well, despite
the fact that this was not explicitly coded in (all that the agents are told to do is try to
move towards the door and step around other agents). However, there still remains an
unrealistic element to this situation.

The idea of crossing a finish line rather than trying to cross an exact point was made so
that the agents – just like people – could walk around not with pin-point accuracy, but in
a more approximate method. That is, the goal was to move away from the exact world of
computers into the more ‘fuzzy’ world of humans. While the finish line method was a
good start towards doing this, it perhaps doesn’t go far enough. When bunched around
the door, there are almost always a few agents that could walk straight out the door, but
instead try to walk backwards to cross their finish line. This creates unnecessary and
unrealistic slowdowns of the crowd. Perhaps replacing the finish line with a 2
dimensional ‘finishing area’ could help in this regard.

The implantation of groups of agents trying to stay together worked well. When a group
leader stops when someone gets too far behind, they can slow down the other agents
around them. If you’ve ever walked down a busy street in a hurry you will appreciate
that groups of people walking together normally travel the slowest, so in this regard the
addition of groups of people should be considered an important part of any crowd
simulation.

The graphics are currently very simplistic. While the concentration of this project was
not on the graphics, a much greater feeling of realism would be achieved if the people
and the environment looked more realistic, and if the agents were animated when they
walked.

The biggest failure of this project was to implement a good way to allow agents to give
themselves “personal space”, with the size of this space depending on density of the
crowd and the agent’s own panic level. While the agents were able to maintain a level of
personal space, this spaced was never compromised by another agent. This meant that
people tried to maintain large amounts of spaces around the doors and other obstacles,
which lead to deadlock situations where no one moved. I believe that to achieve a
realistic implementation of this, agents will have to cross over into other agents’ personal
spaces, and each agent will need to be less strict in enforcing their personal space. The

Page 18 of 22

current situation in the simulation is that there is no idea of personal space, however in
general when agents are moving they do stay away from each other due to the fact that
they try to avoid each other, and it is only when the crowd slows down that the agents
bunch up together.

User Interface

A major goal was to make the program easy to use. The ability to place new agents in the
world using the mouse goes a long way to achieve this goal, although moving around the
world using the keyboard is not as easy as it should be. Although not yet implemented,
the ability to place walls with mouse-clicks would not be too difficult to implement, and
would allow much greater experimentation by the user.

Efficiency

The simulation can run with a reasonable frame rate when there are fewer than 200
agents in the simulation3. While there are simulations that boast the ability to simulate
10,000 agents in real-time, they normally work on a more approximate “macro” level (for
example, by using a matrix based system), rather than the more detailed level that this
simulation works on. However, I still feel that on modern computers, 200 is too few, and
future improvements in graphics and intelligence will only slow the simulation down
further. Therefore, optimisations and perhaps more clever use of graphical techniques
will be needed. An obvious example is to either use the grid or to create an oc-tree to cut
out unnecessary collision detection with other agents.

Extendibility

The program was always written with expectation that features would be later added and
improved, and with the possibility that, for example, the agents would be ported to work
within another framework. Using object-oriented programming techniques achieves
these goals, with the further benefits of keeping code fragments small (and hence easy to
debug and tweak) and making the code easier to read for humans.

An example is the collision detection. Currently in 2D handling only rectangular shapes,
it could be extended into 3D using any type of shape by just changing the collision
detection methods. Indeed, it would be a good idea to remove the collision detection
from this simulation and use an existing collision detection library to allow for all sorts of
shapes in the world. The current collision detection methods would then just need to be
changed so that they called the library’s methods.

3 The computer used was a 3.2GHz Pentium 4 with an NVIDIA GeForce FX 5700 video card and 1
gigabyte of RAM.

Page 19 of 22

The encapsulation of code which object oriented programming brings also means that the
code controlling the agents for example is completely separate from other code, and
therefore to port it to another framework would be possible with minimal changes.

Overall

Keeping in mind that this was a relatively short project, the lack of good graphics and
some unrealistic behaviour is not a negative, rather it is something that can be easily
improved by future work. Overall then, I feel that the main goals of the project were
achieved, and it was a successful first step to creating a realistic crowd simulation.

Page 20 of 22

Future Work

As has already been explained in this report, there is much room for improvement. This
section will highlight the most important areas that need improvement, and leave out
ideas that have already been discussed in this report, such as improved graphics, better
representation of personal attributes, and personal space, etc.

Force

Much like a wave, a crowd can become a powerful force when the individual, not
necessarily strong agents all walk in one direction. To be able to simulate the force
created by a crowd is extremely important in accurately simulating injuries and death. In
a more advanced simulation, crowds may also be able to push down barriers and other
obstacles.

The idea is that when an agent is panicking, and they are unable to move forward because
another agent is blocking them, they would “push” the said agent. The force would be
calculated using Newton’s laws, with values coming from the agent’s own attributes (for
example, they could have a “strength” attribute). Further to their own calculation, they
would also add the force that they are being pushed with. In a crowd where everyone
was close together, this force would propagate from the back to the front, grower with
strength. The force on each agent could decrease the health if the force was too great,
and hence the idea of crushing could be simulated.

Without any idea of force in this simulation, the current situation is possible (and indeed,
often occurs): A group leader almost reaches the door, however some followers in the
group are too far behind, so the leader stops. The leader is then blocking the door, and
therefore a large crowd is stuck behind them. This idea of the leader stopping at the door
is realistic, however with the idea of force included, the leader would try to wait for his
followers, but be pushed out by the force of the crowd anyway.

Artificial Intelligence Improvements

The artificial intelligence of the simulation is currently very basic, and there is still much
work to improve even the low level areas of intelligence, such as moving around in the
world, and trying to avoid and predict what other agents are doing. However, this section
will give a brief overview on just 2 areas: planning and knowledge.

Planning

Page 21 of 22

Currently, the agents have only one goal in mind, which is to leave the room. It would be
desirable to be able to have different goals, perhaps implemented with something like a
priority queue, which the agents could keep in mind simultaneously. For example, if
while walking towards the door the agent encountered another agent in need of help, they
could create a plan to help them, and when complete they could continue their original
plan.

Knowledge

It is assumed in this simulation that the agents know where the door is. However, as was
discussed earlier, much of the death and injury in buildings arises from the fact that the
people are unaware of emergency exits. Therefore, each agent should have its own
knowledge of the world, which could be added to by exploration. When wanting to leave
a room, they would search their knowledge for all the doors that they know about in
addition to trying to look for other doors and taking into account the movement of others
in the crowd.

An interesting extension to this is the ability for agents to share knowledge. A possible
way to implement this would be for an agent to make its intentions public (for example,
“I want to find a door”) and any agents near to that one could make available the list of
locations of doors that they know about.

Senses

The agents currently have direct access to information on every object in the world,
which they use to decide where and how to move around. This is unrealistic: for example
people cannot plan their way through a building if they do not know it well; instead they
take into account that which they are able to see, move around, and then revise their plan
when they find more information. Therefore, to make it more realistic, the agent should
learn about the world by rendering the world from their perspective, and then analysing
the objects that the agent can “see” from their position.

The aural sensory input is also extremely important to humans. Therefore, certain objects
must be able to make noise, and agents must be given the ability to “hear” these noises,
and then react to the situation accordingly. This could be implemented using and event-
driven system. When an object makes a noise (eg. when a bomb goes off), the type of
noise and volume could be broadcast to agents (the volume, of course, depending on the
distance from the source to the agent). The “type” of noise could be something like
“danger noise”, which the agent would want to perhaps have a look at, or simply run
away.

Page 22 of 22

References

1 http://www.crowddynamics.com/Main/Crowddisasters.html
2 Helbing, D., Farkas, I., and Vicsek, T. (2000). Panic: a Quantitative Analysis. Available at
http://angel.elte.hu/~panic/ (Sept. 2003).

