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Heart diseases cause considerable morbidity and the prognosis after heart failure is poor.
An improved understanding of cardiac mechanics is necessary to advance the diagnosis
and treatment of heart diseases. This article explains techniques for visualizing and eval-
uating biomedical finite element models and demonstrates their application to biomedical
data sets by using as an example two models of a healthy and a diseased human left ven-
tricle. The following contributions are made: we apply techniques traditionally used in
solid mechanics and computational fluid dynamics to biomedical data and suggest some
improvements and modifications. We obtain new insight into the mechanics of the healthy
and diseased left ventricle and we facilitate the understanding of the complex deformation
of the heart muscle by novel visualizations. Finally we also introduce in this process a
toolkit designed for visualizing biomedical data sets.

1. Introduction

Heart diseases remain the biggest killer in the western world [1]. One or multiple heart
diseases can result in heart failure, which is a clinical syndrome that arises when the heart
is unable to pump sufficient blood to meet the metabolic needs of the body at normal
filling pressures [2]. The goal of recording and visualizing cardiac data sets is to recognize
and predict heart diseases.

The cardiac data set used in this work is a finite element model of the human left
ventricle developed by Young et al. [3,4]. The deformation of the myocardium (heart
muscle) is represented by the strain tensor. We use a visualization toolkit specifically
designed for biomedical models [5,6] to visualize the strain tensor field and to evaluate
the performance of a healthy and a diseased human left ventricle. The visualization
techniques novel to this field are explained and the results are discussed and interpreted.

The first section of this paper explains notations and introduces the strain tensor and
some of its properties. The next section gives an overview of cardiac diseases and explains
why visualizing myocardial strain is important in their diagnosis and understanding. It
follows an introduction of the FE model and the computation of cardiac performace
measures from it. The subsequent sections explain the visualization toolkit and the visu-



alization of the left ventricular models. We conclude with a discussion of our results and
mention avenues for future research.

1.1. Notations

As shown in figure 1 (a) the heart consists of two main chambers, the left and the right
ventricle. When discussing the heart it is convenient to introduce names for the different
regions of the myocardium (heart muscle). Figure 1 (b) illustrates that the myocardium
of the left ventricle is divided in circumferential direction into a septal, anterior, lateral,
and inferior (or posterior) region. The anterior side of the left ventricle faces the chest,
the inferior (posterior) side faces the back, and the septal region represents the inter-
ventricular septum which separates the two ventricles. In longitudinal direction the left
ventricle is divided into an apical, a mid-ventricular or equatorial, and a basal region [7].
Finally in radial direction the myocardium is divided into a subepicardial, subendocardial,
and midmyocardial region. The terms refer to the parts of the myocardium neighbouring
the epicardial surface (the outer layer of the heart muscle), the endocardial surface (the
layer lining the ventricular cavity), and the region between them, respectively.

Other segmentations and nomenclatures have been suggested for different imaging
modalities based on the practical clinical applications and the strengths and weaknesses
of each imaging technique [8].
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Figure 1. (a) Schematic drawing of the heart with the left (LV) and the right (RV) ventricle
being indicated. (b) Illustration of the regions of the left-ventricular myocardium.

The contraction of the heart is called systole and the expansion diastole. The moment
of maximum contraction of the left ventricle is called (left-ventricular) end-systole and
the moment of maximum expansion is called (left-ventricular) end-diastole [4].

1.2. Displacement and Strain
The deformation of the heart can be described by a strain tensor field. In order to
derive this measure first consider how an elastic body under an applied load deforms into



a new shape.

The theory of elasticity provides a mathematical description for the displacement the
body undergoes. Figure 2 indicates a three-dimensional body before and after defor-
mation. Under deformation the points P and () move to position x' = x + u(x) and
x' + dx' = x + dx + u(x + dx), respectively, where u is called the displacement field.

Figure 2. A body before and after deformation

If the points are only an infinitesimal distance apart the distance between the deformed
points

dx' = dx + u(x + dx) — u(x) (1)
can be written as [9]
dx' = dx + (Vu)dx (2)

where the second-order tensor
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is known as the displacement gradient.

It can be seen that if Vu = 0 then dx’ = dx and the motion in the neighborhood of point
P is that of a rigid body translation. The information about the material deformation
around P is contained in Vu. It is desirable to define an entity which contains only
information about deformation, but not about rotation. To do this consider two material
vectors dx; and dx, issuing from point P. Their dot product after transformation is [9]

dxTdx}, = dxT dx, + 2dxT Edx, (4)



where the symmetric second-order tensor
1
E= ((Vu) + (Vu)" + (Vu)" (Vu)) (5)

is the Lagrangian strain tensor. Note that if E = 0 the lengths and angles between the
material vectors dx; and dxs remain unchanged, i.e., the deformation Vu around point
P is an infinitesimal rigid body rotation.

Since the strain tensor E is symmetric there always exist 3 eigenvalues A; and 3 mutually
perpendicular eigenvectors v; such that [9]

EV,; = )\ivi 1= 1, 2, 3 (6)

The eigenvectors vy, vy, and v3 of E are the principal directions of the strain, i.e., the
directions in which there is no shear strain. The eigenvalues \;, Ao, and A3 are the principal
strains and give the unit elongations in the principal directions. The maximum, medium,
and minimum eigenvalue are called the mazimum, medium, and minimum principal strain,
respectively.

2. Heart Failure

Causes of heart failure are differentiated into mechanical, myocardial, and rhythmic
abnormalities [2]. Mechanical abnormalities include increased pressure or volume load
(e.g., due to a dysfunctional valve) and bulging of the heart wall (ventricular aneurysm).
Myocardial abnormalities include metabolic disorders (e.g., diabetes), inflammation, and
ischemia (blockage of the coronary artery). Abnormalities of the cardiac rhythm or con-
duction disturbances include standstill, irregular heart beat (fibrillation), and abnormally
rapid heart beat (tachycardia).

The most common fatal heart disease is myocardial infarction (heart attack), which
occurs when a coronary artery is completely blocked (stenosis) and an area of the heart
muscle dies because it is completely deprived of oxygen for an extended period of time.
Acute myocardial infarction starts in the subendocardium and spreads to the subepi-
cardium within 20-40 minutes after occlusion of the coronary artery [10]. Permanently
damaged muscle is replaced by scar tissue, which does not contract like healthy heart
tissue, and sometimes becomes very thin and bulges during each heart beat (aneurysm)
[11,2].

The analysis of myocardial function is important for the diagnosis of heart diseases, the
planning of therapy [10] and the understanding of the effect of cardiac drugs on regional
function [12].

Many cardiac disorders result in regionally altered myocardial mechanics. Traditionally
an abnormal contractile function of the ventricles has been determined by measuring the
wall thickening using cine MRI images, Echocardiography [13,2,14,15] and SPECT [2].
Reported wall thickening rates during systole for a healthy heart vary from 40% [16] to 80%
[17]. Detectable abnormalities include reduced wall thickening after myocardial infarction
[17], regional wall thinning of an infarcted area and compensatory wall thickening and
hypertrophy, and left ventricular enlargement (remodelling) [2, pp.648].

Wall thickening, however, is only one indicator of impending heart failure and other
motion dependent indicators have been reported in the literature [18-20,11]. A full de-
scription of the deformation behaviour of the myocardium is therefore desirable. The



previous section demonstrated that such a description is given by the strain tensor field
E which is mathematical represented by a 3 x 3 matrix.

2.1. Myocardial Strain as an Indicator of Heart Failure

The concept of myocardial strain and stress estimation was originally introduced by
Mirsky and Parmley [21]. Strain is defined as the pure deformation (without translation
and rotation). Scalar strain values can be derived from the strain tensor to quantify the
length change of an infinitesimal material volume in a given direction (e.g., the circum-
ferential or radial direction of the ventricle). Negative strain values are interpreted as a
local shortening of the myocardium and positive strain values as a local elongation.

Although it is possible to directly measure regional myocardial strain (see subsec-
tion 3.2), there is no method for directly measuring myocardial stress. Given the com-
plex geometry, non-linear material properties, large deformations and complex tissue mi-
crostructure of the heart, regional stress can only be estimated by solving the equations of
finite elasticity using the finite element method [22]. Note that the finite element model
used in this paper to reconstruct motion and strain from the MR images can be directly
used in the finite element method to solve for stress, motion and material properties. This
computational analysis is outside the scope of the current paper.

Abnormalities in the myocardial strain are detectable before first symptoms of a heart
attack occur [11] so that measuring and visualizing the strain might represent a useful
diagnosis tool. Heimdal et al. report that the stress-strain relationship more selectively
describes the overall tissue characteristics than the pressure-volume relationship [23]. Mc-
Culloch and Mazhari [22] suggest several possible roles of strain and stress measurement
in clinical diagnosis.

3. A Left-Ventricular Finite Element Model

A model for reconstructing the 3D motion and strain of the left ventricle from tagged
Magnetic Resonance Imaging images has been developed by Young et al. [24,25] based on
a finite element model of the left ventricle.

The following two subsections describe the definition of the finite element geometry and
introduce the left-ventricular model and the myocardial strain field used in this work.

3.1. Finite-Element Geometry

The geometry of a finite element model is described by a set of nodes and a set of
elements, which have these nodes as vertices. The nodal coordinates are interpolated
over an element using interpolation functions. Curvilinear elements can be defined by
specifying nodal derivatives.

As an example of a finite element consider the cubic Hermite-linear Lagrange element
in two dimensions shown in figure 3 (b). We first specify a parent element, shown in part
(a) of the figure, which is a square in -parameter space. The coordinates &; (0 < &; <1,
j=1,2) are called the element or material coordinates. The value of some variable u (e.g.,
temperature) at the material coordinates & is then specified by interpolating the variables
u; linearly in the given parameter direction. In our example we assume that additionally

ou

derivatives in & -direction (8—&) (¢ =1,...,4) are specified at the element nodes. In this
13

case a cubic Hermite interpolation is performed in that direction.
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Figure 3. A cubic Hermite-linear Lagrange finite element with vertices v; and vertex
tangents in &; direction indicated by arrows.

The cubic Hermite-linear interpolation of u over the entire 2D parameter space is then
defined by the tensor products of the interpolation functions in each parameter direction:

(fl,fz) = (7)
HY (&)L (&)ur + HY (&)L (&) us
+ HY(&)La(&)us + HY (&) Lo (E2)us

b OHNEL(E >(—) + HYE) (&) (a—)

0§ 0§
0 0
+HNE) L) (g) T HME) La(8) (g)
where
Li(§) =1—-¢, and Ly(§) =¢ (8)

are the one-dimensional linear Lagrange basis functions, and

HY(€) = 1 -3¢+ 26 H{(§) = €€~ 1)°
H)(§) =& (3-2¢), Hy(&) =¢€*(¢~1) (9)

are the one-dimensional cubic Hermite basis functions.

The geometry of an element in world coordinates (figure 3 (b)) is obtained by specifying
the world-coordinates v; and the & -tangents (g—g’l)i (i =1,...,4) of the element vertices
and interpolating them as above.

3.2. The Model of the Left Ventricle

The model geometry has been computed by tracking myocardial contours on tagged
MRI slices and by fitting a surface through them using a prolate spheroidal coordinate
system aligned to the central axis of the left ventricle [24,25]. The FE model is then
created by placing nodes at equal angular intervals in the circumferential and longitudinal



direction and by fitting the radial coordinate to the inner and the outer surface. The
model is subsequently converted into a rectangular Cartesian coordinate system with the
long axis of the ventricle oriented along the x-axis and the y-axis directed toward the
centre of the right ventricle. The resulting model consists of 16 finite elements with its
geometry being interpolated in radial direction using linear Lagrange basis functions and
in circumferential and longitudinal direction using cubic Hermite basis functions.

Figure 4. The finite element model of the left ventricle at end-diastole (a) and end-systole

(b).

Model geometries were generated for 9 time steps equally spaced over half a heart cycle
from end-diastole to end-systole. End-diastole is determined by the rising R wave of the
ECG, whereas end-systole is defined as the instant of least cavity area in the midventricle
[4]. Determining the correct moment of end-systole is difficult because there is a period
of isovolumic relaxation in which both aortic and mitral valves are shut and the volume
is constant. This period lasts 50-100 milliseconds.

Since the strain field is computed from the deformation between end-diastole and end-
systole we only consider the model at these two moments. Images of the model at maxi-
mum expansion and maximum contraction are shown in figure 4.

Strain information was obtained from tagged MRI images as shown in figure 5. MR
tissue tagging is a useful imaging tool for the non-invasive quantification of heart wall
motion [12]. Typically, multiple parallel tagging planes of magnetic saturation are created
orthogonal to the imaging plane in a short time interval (~10 msec) after detection of
the R wave. The intersection of these tagging planes with the image plane gives rise to
dark stripes ~1 mm in width and spaced ~6 mm apart. The image stripes deform with



the underlying tissue and fade according to the longitudinal relaxation time constant T1
(~800 msec for myocardium). Techniques for image stripe tracking and reconstruction of
the 3D displacement field using a finite element model have been developed and validated
[24,25]. From the model, kinematic parameters such as strain can be calculated at any
point.

The strain field is represented by 10x10x6 sample points per element with 10 sample
points each in circumferential and longitudinal direction and 6 sample points in radial
direction. No strain values are defined along the longitudinal axis where the four apical
finite elements meet. This is the case because the elements have a singularity along that
line (the derivative in circumferential direction is undefined) so that the strain values at
these position are unreliable. In order to get a continuous visualization we generate strain
tensors for these points by averaging for each points its direct neighbours in longitudinal
direction. Each strain value is defined with respect to the material coordinate system, i.e.,
the normal components of a tensor represent the strains in circumferential, longitudinal
and radial direction, respectively. The computation of the strain field was validated using
a gel phantom [25].

Figure 5. Tag lines before (a) and after (b) myocardial contraction and the fitted epicardial
and endocardial surface (c).

In the following discussion we evaluate and visualize two models of the left ventricle.
The first model, shown in figures 4 and 6, represents a healthy left ventricle. The second
model, shown in figure 7, is from a heart diagnosed with non-ischemic dilated cardiomy-
opathy, which is characterized by cardiac enlargement, increased cardiac volume, reduced
ejection fraction, and congestive failure [26].

4. Computing Ventricular Performance Measures

The performance of the left ventricle is often specified using various length, surface and
volume measures such as its systolic and diastolic volume and its ejection fraction. Using



our visualization toolkit the user can specify elements, faces and parameter curves and
compute their volume, area and length, respectively.

4.1. Computing Volume Measures

The volume of a single element is obtained by integrating the identity function over the
finite element in world coordinates. The calculation is simplified by using the substitution
rule of multi-dimensional integration [27, p.478]

L FO0) du = [ Fx(€))ldet(€)] de (10)

where f is the identity function, €2 is the unit cube representing the domain of the par-
ent element, x(&) is the transformation function from &-coordinates to world coordinates
and J is its Jacobian. The resulting integral can be evaluated efficiently using Gaussian
Quadrature [28]. Determining the degree of each -coordinate in the polynomial expres-
sion inside the integral shows that 5 gauss points in &; and &, direction and 2 gauss points
in &5 direction are sufficient to achieve exact integration.

ED ES | Myocardial volume
reduction
Healthy heart | 217.5 | 159.1 26.85%
Sick heart 336.7 | 305.3 9.32%

Table 1
Myocardial volume (in ¢m?) of the healthy and the sick heart at end-diastole (ED) and
end-systole (ES).

Table 1 shows the volume of the heart muscle at end-diastole and end-systole and the
resulting volume reduction during contraction. In general the myocardium is considered
incompressible but Denney and Prince estimate that small volume changes up to 10%
occur due to myocardial perfusion [29]. Our results show considerable higher values for
the healthy heart. A possible explanation is that the wall thickening strain appears
to underestimate the actual strain. We believe this is due to the fact that thickening
increases dramatically toward the endocardium (due to the nearly incompressible nature
of the muscle) and the tag resolution of one or two stripes across the wall is inadequate
to capture this.

One of the most important measures of cardiac performance is the ventricular (blood)
volume and the fraction of blood ejected during contraction. In order to apply the vol-
ume computation introduced above the left-ventricular cavity must be modeled by finite
elements. Using our toolkit we can define centroids for any four vertices on the endo-
cardial surface with common longitudinal £&-coordinate. Connecting these vertices to the
corresponding points on the endocardial surface results in 16 finite elements for the left
ventricular cavity.

Figure 6 and 7 show the finite element models of the ventricular cavity of the healthy
and sick heart at end-diastole and end-systole.
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Figure 6. Ventricular cavity of the healthy heart at end-diastole (left) and end-systole
(right).

Figure 7. Ventricular cavity of the sick heart at end-diastole (left) and end-systole (right).
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Using equation 10 we can now compute the left ventricular volumes at end-diastole
(ED) and end-systole (ES). The difference of these values represents the stroke volume
[volume of ejected blood] (SV) and the ratio of stroke volume to the volume at end-diastole
represents the ejection fraction (EF). The results for the healthy and diseased heart are
shown in table 2.

ED ES SV EF
Healthy heart | 87.15 | 35.08 | 52.07 | 59.75%
Sick heart 314.18 | 277.94 | 36.23 | 11.53%

Table 2
Ventricular volume (in cm?) of the healthy and diseased left ventricle at end-diastole (ED)
and end-systole (ES), stroke volume (SV), and ejection fraction (EF).

The ventricular volume of the healthy heart at end-diastole is about 87e¢m? and the
stroke volume is 52cm? resulting in an ejection fraction of about 60%. These values
correspond well with data reported in the medical literature [30]. We think that the values
slightly underestimate the actual ejection fraction due to the difficulties with computing
the radial strain. The current model does not track tags at the endocardial boundary
which might give a better approximation of inner wall motion.

For the diseased heart a considerable larger end-diastolic volume is observed. However,
the stroke volume is only 36.23cm? and about 30% smaller than for the healthy heart. The
ejection fraction is only 11.5%. These values indicate a severe impairment of myocardial
function.

4.2. Computing Ventricular Surface Areas
The area of a surface ® = ®(u, v) over a parameter region K is computed by [27, p.505]

o® 0P
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We are only interested in surfaces parallel to one of the material coordinate axes. For
example, the endocardial surface is given by the coordinate planes in material space with

€3 = 0. In this case ‘I)(€1,€2) = X(f(§1,€2)) where f(gl,gg) = (61, 62, 0) and
0 _ 0x0fi | Ox0fy  OxOf _ 0x _0x "
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and similarly for the other partial derivatives. The surface area A is therefore given by
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ox;
23]
formation function x(€). The integral is again evaluated by gauss integration. Simulations

showed that even though the integrand is not polynomial the gauss integration gives five
figure accuracy [5].

where the partial derivatives are the entries of the Jacobian J of the coordinate trans-

ED ES | Area reduction

Epicardial surface healthy heart | 201.7 | 147.7 26.75 %
Endocardial surface healthy heart | 93.4 | 53.4 42.76 %
Epicardial surface sick heart 350.6 | 324.6 7.40 %
Endocardial surface sick heart 218.7 | 200.0 8.55 %

Table 3
Surface area (in cm?) of the endocardial and the epicardial surface of the healthy and sick
left ventricle at end-diastole (ED) and end-systole (ES).

Table 3 shows the areas of the endocardial and the epicardial surface. It can be seen that
the area reduction of the sick left ventricle is severely impaired. Since the muscle fibers
of the myocardium are aligned with these surfaces the measurements indicate that either
muscle fiber don’t contract (e.g., due to fibrosis) or that they contract in some regions
but expand in other regions of the surface. In order to further examine this deformation
behaviour we will visualize the strain tensor in section 6.

Using the above technique it is also possible to compute the midventricular cavity cross-
sectional area. We get as results 13.27cm? at end-diastole and 5.81em? at end-systole.
From these values we determine a mid ventricular radius of 2.06¢m at end-diastole and
1.36e¢m at end-systole.

4.3. Computing Length Measures
Similar to the volume and area computations it is also possible to compute the arc-
length of a parametric function v : [a, b] — IR [27, p.354]

pi) = [ alat = [ Vi (13)

Assume the start point and end point of a parameter curve within a finite element are
& and &. Then the curve in material coordinates is the linear line segment ~y(t) =
£ +t(g° —¢€°) with t € [0,1] = [a, b] so that

(@) = I(7)(€ - ¢) (14)

where J is again the Jacobian of the transformation function from &-coordinates to world
coordinates.

Using this measure it is possible to compute the length of a circumflex arc of a ven-
tricle by the length of a curve on the endocardial surface with a constant longitudinal
&-parameter. The length of this curve can then be used to derive a value for the ven-
tricular radius at that position. However, reliable results are only obtained if the arc is
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approximately planar and orthogonal to the long axis of the ventricle. While the technique
could also be used to approximate the wall thickness at a point it does not necessarily yield
the shortest distant between the endocardial and epicardial surface. Better computational
techniques are suggested in [31].

5. A Visualization Toolkit

The next section examines the deformation of the heart by using 3D visualizations. All
visualizations are created using a toolkit we designed for biomedical datasets and models
[5]. The toolkit, a screenshot of which is shown in figure 8, was programmed in C/C++
and uses OpenGL, GLU, GLUT and FLTK, a LGPL’d C++ graphical user interface
toolkit for X (UNIX), OpenGL, and WIN32 [32].
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Figure 8. A screen shot of the visualization toolkit. The yellow spheres indicate the septal
wall of the left ventricle.

Three features of our toolkit are worth mentioning. The first feature is a modular
object-oriented (OO) design with separate objects describing input data sets, visualization
icons, rendering parameters, and visualization windows. A visualization is achieved by
defining relationships, subject to some constraints, between these objects. The design
facilitates the definition of simultaneous visualizations of multiple models such as the
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simultaneous display of a sick and a healthy heart as shown in figure 8. Using the same
rendering parameters ensures that both models are displayed using the same view, scaling,
orientation and lighting. Similarly the same model can be displayed in multiple windows
making it possible, for example, to use simultaneously a global and a local view.

The second feature is a generalised field data structure that allows the user to mix data
sets from different sources such as finite element data, MR or PET raw data and analytical
data in the form of algebraic functions [33]. Finite element data can be represented
in material and world coordinates and new fields can be interactively derived using a
simple to use graphical user interface. Figure 9 shows the graphical user interfaces for
constructing new fields (left) and for defining macros for commonly used derived fields
(right).

The advantages of our field data structure are threefold:

e We eliminate problems with the interpolation of derived values. For example, di-
rectly interpolating the eigenvalues of a tensor over a finite element gives usually the
wrong results. Instead we rather interpolate the tensor and compute the eigenvalues
from the resulting tensor.

e We can combine arbitrary fields through arithmetic functions (e.g., the difference
between two scalar fields) even if they are defined over different grids. Similarly, we
can interactively derive new fields by choosing a parent field for a derived fields.

e No additional sample errors are introduced as would happen, for example, when
sampling an analytic field in order to create a new field over a given fixed grid
structure.

e Entities defined over a finite element grid can be represented with respect of either
the world coordinates or the material coordinates. This choice of representation
increases the power of the visualization [5].

Finally our toolkit contains a variety of visualization techniques which can be applied
to the data set using various element and point selection tools. A global colour map
control makes it possible that icons for different visualizations use the same colour maps
which facilitates the comparison of multiple models. Defining new colour maps is often
necessary to avoid colour clashes when displaying various visualization icons simultane-
ously and gives the user additional freedom when exploring the data set. A colour map
can be modified to be exponential (colour spectrum is reparameterized with an exponen-
tial function) or cyclical (colour map consists of multiple cycles of the colour spectrum).
An exponential colour map improves the perception of qualitative information when us-
ing predominantly evenly distributed fields with small extremal regions. Cyclical colour
maps have the advantage of giving gradient information without inducing visual clutter-
ing. They are therefore useful when examining symmetry patterns and discontinuities in
a scalar field [34].

6. The Visualization of Myocardial Strain

The measurements presented in section 4 indicated a severe impairment of the con-
traction of the sick heart. In order to better understand the local deformation of the
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Figure 9. Graphical user interfaces for creating new fields from arithmetic expressions
(left) and for creating macros (right).

myocardium more information is required. This section presents and explains various
visualizations of the strain tensor and of quantities derived from it. Most visualization
methods in this section visualize the strain tensor by using its principal directions and
principal strains explained in subsection 1.2.

6.1. Tensor Ellipsoids

As an initial visualization we display tensor ellipsoids at regular sample point through-
out the midmyocardium. Tensor ellipsoids encode the principal directions and strains by
the directions and lengths, respectively, of the axes of the ellipsoid. In order to encode the
sign of an eigenvalue we divide an ellipsoid into six segments using a hexagonal subdivision
of the unit sphere. A red segment indicates expansion and a blue segment indicates con-
traction. Note that the 3D geometry is difficult to perceive from a static image. Rotating
the model enables the brain to differentiate ellipsoids in the foreground and background.
Consequently our toolkit incorporates a function to animate the trackball which is used
to rotate the model.

Figure 10 shows that for the healthy ventricle the myocardium expands in the radial
direction (wall thickening) and contracts in the longitudinal and circumferential direction
with the circumferential contraction being in general larger. The contraction is smallest
in the septum and largest in the free wall. The results correspond well with measurements
reported in the literature [35,11,4,36].

The deformation of the sick ventricle is highly abnormal. Whereas the anterior-lateral
wall of the ventricle displays an almost normal deformation behaviour, albeit with smaller
strain values, the situation is the exact opposite in the septal wall of the ventricle. Here the
myocardium is contracting in the radial direction and is expanding in the circumferential
and longitudinal direction.
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Figure 10. The strain field in the midwall of the healthy (left) and diseased (right) left
ventricle visualized using tensor ellipsoids. The septal wall is indicated by a yellow sphere.

6.2. Streamlines

While tensor ellipsoids contain the complete tensor information the resulting visualiza-
tion suffers from visual cluttering. Furthermore information is only displayed at selected
sample points. A continuous representation of a vector field (e.g., an eigenvector field)
along a line is obtained by using streamlines which are at each point tangential to the
underlying vector field. Mathematically a streamline can be described as an integral curve
x(s) which satisfies

XV x0)=x (15)
s

where v(x) is a vector field and the initial condition x(0) defines the starting point xy of
the streamline.

In general the above system of equations has no analytic solution and is solved by nu-
merical integration. Standard techniques for streamline integration include fixed step size
integrators such as the Euler, Midpoint or Runge-Kutta method. A faster computation
can be achieved by adaptive step size integration [37,38]. If the step size is too large or
the curvature is too high a dense sampling of the streamline might be required in order
to obtain a good visual approximation of it. The sampling can be performed as a post-
integration interpolation step [39] or by using a specialised integrator which produces an
interpolation from the integration information [38, pp.176].

Figure 11 uses colour mapped streamlines to visualize the direction and magnitude of
the major principle strain. Note that an eigenvector field is unsigned (i.e., eigenvectors
have a direction but not an orientation) and that therefore streamlines must be integrated
in both the positive and the negative direction of the eigenvector field.



17

9 (=] 3l M viswindow 1 - LY - Dilated Cardiom:

Maximurm Principal Strain

- ]

-1.5500e-00 6.6000e-001

Figure 11. The strain field in the midwall of the healthy (left) and the diseased (right)
left ventricle visualized using streamlines in the direction of the major principal strain.
The septal wall is indicated by a yellow sphere.

Streamlines are rendered as thin tubes with a constant diameter rather than as lines.
[lluminating these tube-like structures gives important shape and depth cues which aid
their 3D perception [40]. We also render the endocardial wall (in gray) in order to re-
duce visual cluttering caused by the overlap of streamlines in the foreground and the
background.

The image on the left of figure 11 shows clearly that for the healthy heart the major
principal strain is oriented in radial direction throughout the myocardial wall and that it
is positive and increases toward the endocardium. This observation is consistent with an
increased wall thickening towards the endocardium.

The image on the right of figure 11 confirms the previously identified abnormal contrac-
tion of the diseased left ventricle. The direction of the major principal strain is normal
in the anterior-lateral and the inferior-lateral wall. However, the magnitude of the major
principal strain in the inferior-lateral wall is considerably smaller than for the healthy
heart and is negative in some regions (indicating a wall thinning instead of a wall thick-
ening). In the septal wall of the diseased heart the maximum principal strain is oriented
in longitudinal and circumferential direction rather than in radial direction.

6.3. Hyperstreamlines

Streamlines encode only one eigenvector. A continuous representation of the complete
strain tensor along a line is achieved by using hyperstreamlines [41].

The trajectory of a hyperstreamline is a streamline in an eigenvector field as described
in the previous subsection. The other two eigenvectors and corresponding eigenvalues
of the strain tensor define the axes and lengths of the ellipsoidal cross section of the
hyperstreamline. The remaining eigenvalue is colour mapped onto the hyperstreamline.
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Figure 12. The strain field in the midwall of the healthy (left) and the diseased (right) left
ventricle visualized using hyperstreamlines in the direction of the major principal strain.
The septal wall is indicated by a yellow sphere.
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Figure 13. The strain field in the midwall of the healthy (left) and the diseased (right) left
ventricle visualized using hyperstreamlines in the direction of the minor principal strain.
The septal wall is indicated by a yellow sphere.
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Figure 12 and 13 show hyperstreamlines in the direction of the major and minor prin-
cipal strain, respectively.

The image on the left of figure 12 shows again that for the healthy heart the major
principal strain is oriented in radial direction throughout the myocardial wall and that
it is positive and increases toward the endocardium. Furthermore it can be seen from
the diameter of the cross section of the hyperstreamline that with the exception of the
septal wall the magnitude of the transverse strains increases from the epicardial to the
endocardial surface. We are not aware of any previous work showing all these properties
with a single image.

The minimum principal strain of the healthy left ventricle is compressive throughout
most of the myocardium and its direction resembles over most of the myocardium a spiral
moving toward the apex. This strain direction corresponds well with the motion of the
heart described in the medical literature: The septum performs initially an anticlockwise
rotation (apex-base view) but later a more radial movement. The apex rotates overall
anticlockwise whereas the base rotates clockwise. The anterioseptal regions of the mid
and apical levels and the posterioseptal region of the base perform a hook-like motion
because of a reversal of rotation [4]. Note that we have in the inferior-septal region an
interesting feature where the hyperstreamlines change suddenly their direction.

6.4. Line Integral Convolution

The above described feature where hyperstreamlines change direction can be examined
in more detail using a line integral convolution texture.

Line Integral Convolution (LIC) is an effective method to visualize vector fields by
using curvilinear filters to locally blur an input noise texture I along a vector field v. The
steps of the algorithm, as originally proposed by Cabral and Leedom [42], are indicated
in figure 14.
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Figure 14. Vector field with a streamline through the pixel with the centre py (left), white
noise input texture (middle), and the output texture of the pixel (right).

For any pixel I(gq,r) of the input texture the centre py of it is used as the centre of a
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streamline which is advected forwards and backwards by a length L. The pixels covered
by the streamline are hence in forward direction

v(pi 1)

Pi=Pi1t 1, Asi1 (16)
[v(pi-1)l

where As;_; is the distance to the pixel boundary and s;.1 = s; + As;. Pixels covered

in backward direction are defined similarly and are indicated by negative indices. For

each line segment [s;, s;11] of the streamline covering pixel p; an exact integral of the

convolution kernel k(w) is computed and used as weight in the LIC

si+As;
hy = / k(w)dw (17)

i

The output pixel O(q,r) is then given by

ﬁ:—z I(pi)hi

El‘:fl hi
where [ is chosen such that the 3>!__, s; = 2L. Vector magnitude is represented either by
using colour mapping or by varying the length L of the filter kernel.

Parameters influencing the quality of the output texture are the input texture, the
filter kernel, and the length of the convolution length. Most authors employ an input
texture based on white noise which has a constant power spectrum and is completely
random. Aliasing effects due to high frequency components in the white noise texture can
be reduced by low-pass filtering the input texture [42].

We use the direction of the minor principal strain as a vector field and use its magnitude
to colour map the texture. Additional details are found in [5].

Figure 15 shows that the maximum compressive strain in the midmyocardium is pre-
dominantly oriented in circumferential direction with a slight downward tilt. Several
interesting points exist where the strain suddenly changes direction. Results from tensor
analysis show that these points are degenerate points for which at least two eigenvalue are
equal [43]. An example of such a point is indicated by the white rectangle and is shown
enlarged on the right hand side of the image. We found that most of the degenerate points
occur on or near the septal wall. The unusual variations in strain orientation might be
caused by the right ventricular wall which is connected to the left ventricular wall at both
sides of the septum. In contrast the strain field of the sick heart contains considerable
more degenerate points distributed throughout the myocardium.

O(q,r) = (18)
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Figure 15. The minor principal strain (maximum contracting strain) of the healthy (top)
and sick (middle) heart visualized using Line Integral Convolution. The bottom images
show the lateral wall of the healthy (left) and sick (right) heart.
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6.5. Colour Mapped Surfaces and Isosurfaces

We conclude this section with an examination of the distribution of the strains in
the material directions. Since the strain tensor is defined with respect to the material
coordinates the strains in circumferential, longitudinal and radial direction are given by
the normal components Fj;, F9 and FEjs3, respectively, of the strain tensor E.

Figure 16 visualizes the normal strains on the endocardial surface using colour map-
ping and shows additionally the O-isosurface, which separates contracting and expanding
regions. The isosurface was computed with a modified Marching Cubes algorithm in
material space [5].

The images on the left of the figures show clearly that the healthy left ventricle contracts
in circumferential and longitudinal direction and expands in radial direction. The only
exceptions are some parts of the model boundary and, for the radial strain, three small
cylindrical regions at the apex and the septal and lateral wall. All three normal strain
components are distributed relatively evenly over the endocardial surface.

For the diseased heart the lateral wall and part of the anterior and inferior wall contract
in circumferential and longitudinal direction. Wall thickening is observed in the basal-
lateral wall, the basal-septal wall and in parts of the anterior and inferior wall. The rest
of the myocardium shows an abnormal deformation. As a result of the strain distribution
the ventricle does not contract evenly but rather performs a shape change.

We are also interested in the shear components of the strain tensor. It is known that
during contraction the heart changes predominantly in diameter. LeGrice et al. [44]
reports 8% lateral expansion but 40% wall thickening. This indicates reorganization of
the myocytes during systole. Because of the sheet structure of the myocardium it has
been proposed that the sheets can slide over another restricted mainly by the length of
the interconnecting collagen fibers [44]. The shear properties of the myocardium resulting
from this sliding motion are characterized in [45,46]. The shear is most restricted in the
direction of the sheet normals and the maximum shear is possible in the fiber direction.
Wall shear is thought to be an important mechanism of wall thickening during systole
and therefore may play a substantial role in the ejection of blood from the ventricle.

Figure 17 shows the shear in the circumferential-longitudinal plane. For the healthy
heart the shear strain is positive for most of the myocardium with the exception of some
subepicardial regions close to the merging point with the right ventricular wall. No
consistent behaviour can be found for the diseased heart. The shear in the lateral wall re-
sembles most closely the normal range of values whereas the anterior-basal region exhibits
extremely high negative strains, which might indicate impending tissue damage.
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Figure 16. The normal strain in circumferential (top), longitudinal (middle) and radial
(bottom) direction on the endocardial surface of the healthy (left) and sick (right) heart.
The images show also the 0-isosurface which separates region of contractile and expanding
strain. The septal wall is indicated by a yellow sphere.
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Figure 17. The circumferential-longitudinal shear strain component in the healthy (left)
and sick (right) heart visualized using a colour map and the O-isosurface. The septal wall
is indicated by a yellow sphere.
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7. Conclusion

Visualizing the strain field improves the understanding of the complex deformation of
the heart muscle. Using techniques new to the biomedical field offers additional insight.
The visual information can be supplemented by computing ventricular performance mea-
sures which are easily obtained from the finite element model using numerical integration.

The visualization of the healthy heart confirms observations previously reported in the
literature. Using tensor ellipsoids, streamlines and hyperstreamlines makes it possible
to visualize complex deformation behaviour in a single image. Line integral convolution
uncovers the presence of degenerate points at which the principal strains suddenly change
direction. Further investigations are necessary to find the relationship between degenerate
points, fiber structure, and the ventricular anatomy. Furthermore we want to explore their
significance (if any) for diagnosing heart diseases.

Visualizing a ventricle with dilated cardiomyopathy showed that the deformation of the
lateral wall resembles most closely the expected motion whereas the septal wall behaved
almost contrary to the expected deformation. Very large negative shear strains were
recorded in the anterior-basal wall of the ventricle. The combined effect of these defor-
mations seems to be a pumping action by shape deformation (from circular to ellipsoidal
cross section) rather then by contraction.

The visualizations and measurement performed in this paper demonstrated the useful-
ness of our visualization toolkit for exploring biomedical models. Using the unique field
data structure enables the interactive definition of new measures and facilitates the ex-
ploration of the data set. The modular OO-design allows comparison of multiple models,
which is further enhanced by the user interface for colour map design and control. The
toolkit provides many standard visualization techniques in use today with some improve-
ments being implemented by us.

8. Future Research

We are interested in visualizing other data sets of diseased hearts, in particularly models
of ischemic myocardium. It is known that small changes in the deformation behaviour
of the myocardium occur before first symptoms of a cardiac infarct develop and we hope
that visualizing myocardial strain supports the detection of regions of low blood perfusion.
Non-traditional visualization methods such as hyperstreamlines, LIC and tensor topology
[43,47] seem to be particularly promising for this purpose.

Of particular interest is the relationship between myocardial strain and fiber structure.
Recent research suggests that measurement of the fiber structure is possible using diffusion
tensor imaging [48-50]. Further information could be provided by fusing our data with
functional data obtained by PET and SPECT [51].
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