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Abstract. Diffusion-Tensor Magnetic Resonance Imaging is a popular imaging 
modality for reconstructing the nerve fiber structure in the brain. In recent years many 
fiber tracking algorithms have been proposed, but little research has been done 
comparing them and evaluating their suitability for pathological neuroanatomy. We 
present a modeling tool for designing normal and abnormal neuroanatomical features 
and for synthesizing diffusion tensor imaging data from it in order to compare fiber 
tractography algorithms. Initial results indicate that our modeling techniques make it 
easy to simulate DTI data sets for healthy and pathological brain anatomy. We 
compared three simple fiber tractography algorithms using our synthesized data and we 
obtained similar results as reported in the literature for more basic artificial DTI data 
sets. 
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1. Introduction 
Diffusion-Tensor Magnetic Resonance Imaging (DTI) is used to measure the intrinsic 
properties of water diffusion in the brain by an orientation invariant quantity, the 
diffusion tensor [1,2]. DTI has been successfully applied to research various 
neurological diseases such as Multiple Sclerosis [3], Fragile X Syndrome, a common 
form of hereditary mental retardation [4], and periventricular leukomalacia (PVL), the 
principal form of brain injury in the premature infant [5]. Researchers from the Human 
Motor Control Laboratory of the University of Auckland, with whom we collaborate, 
currently examine the neural control of movement and in particular the recovery of hand 
function following a stroke. This involves the development and validation of techniques 
for reconstructing the nerve fibre tracts in the brain from DTI data.  
The reconstruction of fibre tracts is achieved by using the fact that water diffusion 
within fibre tracts is high in the fibre direction and low transverse to it. Due to errors 
(noise) in the DTI data and because of its low resolution advanced mathematical models 
must be employed in order to find the fibre tract with the highest probability of being 
correct. Previously suggested solutions include statistical models [6], which make use of 
the assumption that sudden changes in fibre tract direction are most likely due to errors 
(noise) in the data, curvature minimising schemes [7], which are based on the 
observation that the fibre tracts in a healthy brain usually follow a path with a minimum 
curvature, physically-based models [2,8], and general ordinary differential equation 
solvers incorporating empirical data [9]. However, no mathematical model exists which 
takes into account the degradation of nerve fibres (axons) after a subcortical stroke. We 
are currently in the process of developing novel fiber tractography algorithms which are 
capable for tracking nerve fibre tracts through stroke affected brain regions where 
diffusion anisotropy information is often misleading due to Wallerian Degeneration 
[10,11]. 



While many different techniques have been suggested for tracking nerve fiber tracts, 
few researchers have evaluated the quality and error sensitivity of these methods and 
their suitability for pathological brain DTI data. Lazar and Alexander have compared 
fibre tracking algorithms for tensor fields with linear, radial and circular major 
eigenvector fields [12]. 
In this paper we introduce a novel framework for modelling arbitrarily shaped virtual 
nerve fiber tracts and the surrounding anatomical structures and for synthesizing DTI 
data sets from them. The framework makes it possible to quantitatively compare nerve 
fiber tracking algorithms and to evaluate their sensitivity to noise and other 
measurement errors introduced during the imaging process. The modeling technique 
used in our framework can also be used to model abnormal brain anatomy and 
consequently will make it possible to compare the suitability of different nerve tracking 
algorithms for pathological brain DTI data sets.  

 

2. A Framework for Simulating DTI Data 
In order to quantitatively compare fiber tracking algorithms synthetic tensor fields are 
required. We reconstruct synthetic tensor fields by modeling nerve fiber tracts using B-
Splines and other anatomical structures using a soft object modeling technique. Using 
typical diffusion values for these tissue types obtained from the literature we are then 
able to reconstruct a DTI data set to which noise can be added in order to simulate the 
errors introduced during the magnetic resonance imaging process. 
 
2.1 Modeling of Virtual Nerve Fiber Tracts 
We have developed an interactive user interface which allows the modeling of fiber 
tract trajectories by B-Spline curves [13]. Virtual nerve fiber tracts are created by fitting 
a cylindrical surface around the curve as illustrated in figure 1. The water diffusion 
within a fiber tract is characterized by a high diffusion in the direction of the fiber tract 
and a low diffusion transverse to it. In order to incorporate these directional differences 
during the synthesis of the tensor field we require a reference frame for the B-Spline 
curve trajectory. We follow the approach by Bloomenthal which in contrast to Frenet 
frames is also defined for straight curve segments [14]. In addition Bloomenthal’s 
approach results in a reference frame with a low torsion which corresponds to our 
observation that nerve fiber tracts do not twist. Our observations are obtained from 
visualizing nerve fiber tracts from DTI data sets of a healthy volunteer. Unfortunately 
we are not aware of any study which investigates the changes in the spatial arrangement 
of individual nerve fibers over an entire fiber tract.  
The three axes of the reference frame define the principal diffusion directions. The 
tangent vector is associated with the maximum diffusion value and indicates the 
direction of the pathway. Since different types of fiber tracts have different ranges of 
typical diffusivities [15] the user can specify the principal diffusivities accordingly. 
 

 
                  

Fig. 1. The trajectory of a virtual nerve fiber tract is a cubic B-Spline curve (left). Using a low torsion 
reference frame we can fit a cylinder around it which defines the thickness of the fiber tract (right).  



 
2.2 Modeling of Anatomical Structures Using Soft Objects 
Fluid filled compartments and pathological structures, such as tumors and stroke 
affected regions, are defined using a soft object modeling (implicit surface modeling) 
technique originally proposed by Wyvill et al. [16]. Objects are represented by skeletal 
primitives and a density field, which equals one on the primitive and smoothly 
decreases to zero at a distance of R (the radius of influence) from the primitive. The soft 
object is then defined as the field’s 0.5-isosurface, which is efficiently computed using a 
surface tracking algorithm similar to that proposed by Wyvill et al. [16]. More complex 
objects can be assembled by summing up the field functions of all primitives  
We have implemented four simple primitives: “Soft Balls” are defined by a centre point 
and a constant radius of influence. “Soft Cylinders” are defined by a line segment, 
represented by its endpoints, and a constant radius of influence. A “Soft Cone” is 
defined similarly, but has one radius for each endpoint. Finally “Soft Tubes” are 
described by Catmull-Rom splines defined by n control points. The user can define 
different radii for the control points of the spline which makes it possible to represent 
various tubular structures. In order to compute the distance function and radius of 
influence we approximate the spline by a polyline and then use similar computations as 
for the “Soft Cone”. A fiber tract can also be converted to a soft object by interpreting 
its B-Spline trajectory as a skeleton. 
Primitives can be combined by adding and subtracting density fields. The gradient of 
the density field of a soft object can be used as a force field in order to modify the 
structure of a fiber tract (e.g. for simulating a growing tumor). While soft objects are 
easy to use it is usually challenging to model a particular shape exactly. The reason for 
this is that when adding or subtracting fields it is difficult to predict where the 
isosurface of the resulting field will be. However, this drawback is not a disadvantage 
for our project since we are interested in modeling the topology of neuroanatomical 
structures rather than their exact shape. More control over the precise object boundary 
can be achieved by scaling the density field of a primitive [17]. 
 
2.3 Computation of Synthetic DTI Data  
In order to create a simulated DTI data set the user has to specify the number and 
spacing of sample points. For each sample point inside a fiber tract the closest curve 
point to it is computed. We then determine the reference frame at that point and the 
tract's principal diffusivities as described in subsection 2.1 and compute the diffusion 
tensor at that point. If a point is inside several tracts the corresponding tensors are 
summed up. If a point is inside a soft object we use the diffusion tensor values 
characterizing the structure represented by the soft object. For example, if the soft 
object represents a fluid filled compartment a high isotropic diffusion for all sample 
points inside of it is used. A sample point not included in any structure is deemed to lie 
in a gray matter region and an isotropic diffusion tensor with a low mean diffusivity as 
reported in the literature is defined. 
To make the synthetic diffusion tensor data more realistic, complex Gaussian normal 
noise with zero mean and the standard deviation corresponding to the desired signal-to-
noise ratio (SNR) is added to the real and imaginary channels of the ideal signal for 
every sample point. The procedure of adding noise to a synthetic tensor field is the 
reverse of the process for DTI data acquisition as suggested by Skare et al. [18]. 



In order to evaluate the tracking results for a user defined set of seed points it is 
necessary to define what constitutes a correct solution. We choose as correct solution 
the B-Spline curve defining the trajectory of the nerve fiber tract and translate it linearly 
with respect to its reference frame such that it passes through the given seed point. The 
results are quantified using three error metrics [19]. 

3. Results 
The simulation framework was implemented in C/C++ using the OpenGL, GLU and 
GLUT libraries in order to gain platform independence. An object-oriented design 
makes it easy to add new fiber tracking methods or different types of tensor fields such 
as real DTI data or fields obtained using different simulation techniques. Using the B-
Spline and soft object modeling technique we found that it is easy to rapidly synthesize 
DTI data sets corresponding to simulated healthy and pathological brain anatomy. 
We have implemented three simple fiber tracking methods, streamlines, tensor lines 
[20] and tensor deflection [21], and compared them using simulated DTI data sets for 
different scenarios. An example with two crossing fiber tracts and a large fluid filled 
compartment is shown in figure 2. We found that overall the tensor deflection method 
gives the best tracking results for both low and high signal-to-noise ratios.  
 

 
 

Fig. 2. Two fiber tracts and a fluid filled compartment (left) and the resulting DTI data sets with signal-to-
noise ratios of 32 (middle) and 100000 (right). Nerve fiber tracts computed using the tensor deflection 

method are shown in red. 
 

4. Conclusion 
We have introduced a framework for simulating DTI data and for testing and analyzing 
fiber tractography algorithms. Our tool allows the user to define virtual nerve fiber 
tracts by B-Spline curves, which specify the direction of the pathway, and a radius 
which specifies the thickness of the tract. Other healthy and pathological anatomical 
structures can be designed using a soft object modeling technique. 
A DTI data set is synthesized by computing for each sample point typical diffusion 
values according to the tissue properties at that point. Complex Gaussian normal noise 
with zero mean and the standard deviation corresponding to a user-defined SNR is 
added.  
We have used our framework to analyze and compare three fiber tracking techniques 
and we found that overall the tensor deflection methods performs best, whereas the 
streamline method fails completely for crossing fiber tract topologies. In future work we 
want to investigate more advanced fiber tracking algorithms and evaluate them for 
simulated neurodegenerative diseases and pathological DTI data.  
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