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ABSTRACT

Desktop virtual reality has traditionally been the dominant display technology for consumer-level 3D computer graphics. Re-

cently more sophisticated technologies such as stereoscopy and head-mounted displays have become more widely available.

However, most 3D software is still only designed to support desktop VR, and must be modified to both technically support these

displays and also to follow the best practises for their use. In this paper we evaluate modern 3D game/graphics engines and

identify the degree to which they accommodate output to different types of affordable VR displays. We show that stereoscopy

is widely supported, either natively or through existing adaptions. Other VR technologies such as head-mounted displays,

head-coupled perspective (and consequentially fish-tank VR) are rarely natively supported. However, we identify and describe

some methods, such as re-engineering, by which support for these display technologies can be added.

Keywords: virtual reality, graphics engine, head-coupled perspective, head-mounted display, stereoscopy

1 INTRODUCTION

A wide range of computer applications employ virtual

reality (VR) concepts, including the general consumer

applications that involve some sort of 3D virtual envi-

ronment. Common examples of such applications are

3D modelling, computer aided design (CAD), video

games, data visualisation, television and movies.

Recent commercial advances in consumer-level VR

have lead to certain types of VR technology becoming

cheap and of high enough quality to begin displacing

the entrenched traditional technologies. Some exam-

ples of new devices that employ these novel VR tech-

nologies include haptic input methods such as Nintendo

Wii Remote, Microsoft Kinect and Leap Motion Con-

troller; head-mounted displays such as the Sony Per-

sonal 3D Viewer and Oculus Rift; and stereoscopic tele-

vision sets, computer displays and projectors of which

there are too many to name.

While attention and interest towards these tech-

nologies is slowly growing, support for them by VR

applications is still limited. In the case of haptic

inputs this is understandable since implementing

natural user interfaces is a substantial departure from

mouse/keyboard/controller based input systems. On

the other hand, support for new VR display technolo-

gies is much less invasive and in some instances can

even be achieved with no modification to the original

software [10].
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This work presents an investigation into modern soft-

ware applications with the objective of determining

what types of new VR display (not input) technolo-

gies are supported by these applications. We specifi-

cally look at graphics engines: reusable software com-

ponents which handle output to VR displays and are

shared by many applications. This allows a large num-

ber of applications to be covered with only the need to

evaluate a few specific graphics engines. The following

research questions embodies the objective of this study.

How far do modern graphics engines support
consumer-level VR display technologies? How easily
can support be added where they do not?

In answering these questions, we also make the fol-

lowing contributions.

• To provide a resource useful for determining which

graphics engines are suitable for future application

development and research in virtual reality.

• To identify common practises, shortcuts and inter-

action methods in engine design that makes them, in

their current state, unsuitable for VR.

• To determine a general sense of how much attention

is being paid to VR issues in consumer graphics en-

gines.

In this paper we first give some background informa-

tion about graphics engines and VR display technolo-

gies in Section 2, and describe some related work in

Section 3. We then describe our methodology to evalu-

ating the graphics engines in Section 4 and discuss our

results in Section 5.

2 BACKGROUND
Graphics and Game Engines
A graphics engine is a reusable software component

designed to render a 3D virtual environment. Graph-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 39 ISBN 978-80-86943-75-6



ics engines can be distributed as standalone pieces of

software or as part of larger systems, notably, but not

limited to, game engines. This involves taking the cur-

rent state of the simulated environment as input and

rendering an image based on the lighting and shading

model of the simulation. Real-time graphics engines

are those that are capable of performing this process

quickly enough to appear seamless to a user (typically

around 30–60 rendered frames per second). real-time

engines allow the simulation to be interactive and re-

act to inputs from human users; a requirement of VR

systems. In order to achieve real-time speeds, graphics

engines normally delegate rendering to dedicated hard-

ware and use algorithms and models that favour fast

computation over physical accuracy.

VR Display Technologies

Virtual reality display technologies (also known as 3D

displays) are the VR technologies that specifically deal

with visually presenting a virtual environment to its

user. These are used in addition to other VR technolo-

gies such as input systems and audio output, as well

as the software that simulates the virtual environment.

Within the context of this research, we do not consider

the graphical rendering algorithms (such as raserising

polygons, lighting, shading and post-processing) to be

part of a VR display technology, but rather part of the

simulation logic. In this sense a VR display technology

is only the hardware and software that requests graphi-

cal views from the environment simulation and presents
them to the user.

Over time many different display technologies have

been developed to satisfy this role. Nearly all of these

operate on some variant of a camera metaphor; i.e. a

virtual pinhole camera exists in the environment and

regularly takes 2D snapshots which are then displayed

on a physical display surface (such as a computer moni-

tor). The components that make up such a display tech-

nology are the software that models the virtual camera,

the hardware that displays images taken by the virtual

camera, and the software interface that passes these im-

ages in the correct format to the display hardware.

There are several systems [4, 11] for classifying dif-

ferent VR display technologies based on different prop-

erties and generalisations. We utilise an alternative sys-

tem that is based on software implementation require-

ments. In this paper we focus on consumer-level VR

display technologies; specifically desktop VR, stere-
oscopy, head-coupled perspective and head-mounted
displays.

The display properties most important to this study

are how they are interfaced with from software, and

how the rendering pipeline must be adapted to correctly

reflect their perception model. What follows is a brief

description of each of these display technologies, the

(a) Desktop VR

(b) Stereoscopy

(c) Head-coupled perspective

(d) Head-mounted display

Figure 1: Depictions of differences between the VR dis-

play technologies in their simulation models and user’s

perception.

intent of which is to define the specific implementation

requirements we use for this study.

Desktop VR has been the dominant form of present-

ing 3D virtual environments to their users since the ad-

vent of computer graphics. Desktop VR operates on

a pinhole camera model, with a virtual camera con-

trolled entirely by the simulation and a display capable

of showing only a single image from this camera at a

time. As the simplest form of VR it avoids many is-

sues such as eye strain, increased computation cost and

poor image quality that have hampered the use of more

sophisticated technologies.

Because desktop VR is ubiquitously supported as the

default output mode of virtually every graphics engine

available today, we don’t discuss it any further in this

paper.
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Stereoscopy is an extension of the desktop VR

paradigm adapted for binocular vision. Stereoscopy

achieves this by rendering the scene twice, once for

each eye, then encoding and filtering the images in such

a way that each image is seen by only one of the users’

eyes. This filtering is most easily achieved through

special eye glasses, the lenses of which are designed

to selectively pass one of the two encodings produced

by the matching display. Current methods of encoding

are by colour spectrum, polarisation, temporally or

spatially. These encoding methods are frequently

categorised as passive, active or autostereoscopic. The

difference between passive and active encoding is de-

termined by whether or not the glasses are electrically

actively or not: passive encoding systems are therefore

colour and polarisation while the only active encoding

is temporal. Autostereoscopic displays are those that

do not require glasses because they encode spatially,

meaning that the physical distance between the eyes is

sufficient to filter the images.

Consumer stereoscopic displays interface with comput-

ers in the same way as desktop VR displays (via video

interfaces such as VGA or DVI). Since most of these in-

terfaces do not have special modes for stereoscopy, the

two stereo images are packed into a single image in a

format recognised by the display hardware. Such frame
packing formats include interlaced, above-below, side-
by-side, 2D+depth and interleaved.

Because these standarised interfaces are how the soft-

ware passes rendered images to the display hardware,

software applications are not required to know or adapt

to the encoding system of the display hardware. In-

stead, all that is required for stereoscopy to be sup-

ported by a graphics engine is that it is able to render

two images of the same simulation state from different

virtual camera positions and combine them in a frame

packing format supported by the display.

Head-coupled perspective (HCP) operates on

a slightly different principle than desktop VR and

stereoscopy. A virtual window is defined instead of

a virtual camera, with the boundary of the virtual

window mapped to the edges of the user’s display.

Thus, the image on the display depends on the relative

position of the user’s head, as objects from the virtual

environment are projected onto the display in the di-

rection of the user’s eyes. This projection can be done

using a off-axis version of the projection mathematics

used in desktop VR.

In order to do this, the position of the users head relative

to the display must be tracked accurately in real-time.

Tracking systems that have been used for this purpose

include armatures [19], electromagnetic/ultrasound

trackers [18] and image-based tracking [12]. A limita-

tion of HCP is that since the displayed image depends

on the position of a user, any other users looking at the

same display will perceive a distorted image since they

will not be viewing from the correct position.

Head-mounted displays are another type of single-

user VR technology. HMDs combine the enhancements

of stereoscopy with a large field-of-view and head-

coupling similar to HCP. The perceptual model behind

HMDs is to completely override the visual input to the

users eyes and replace it with an encompassing view

of the virtual environment. This is accomplished by

mounting one or two small displays very close in front

of the user’s eyes with a lens system to allow for more

natural focus. Since the displays are so close to the

user’s eyes, any part a display is only visible to one eye,

making the system autostereoscopic.

An orientation tracker is also embedded in the head-

gear, allowing for rotation of the user’s head to be

tracked. This allows the user to look around the vir-

tual environment using natural head motion by binding

the orientation of the virtual camera to the orientation

of the user’s head. This differs from HCP where it is

the position, not orientation, that is tracked.

The software requirements to support HMDs are the

same as stereoscopy, with the additional requirements

that the orientation of the HMD must be considered by

the graphics engine, as well as any distortion caused by

the lens system to be corrected for.

In addition to these four technologies, there are nu-

merous other types of VR displays that we do not

adderess in this study. Fish-tank VR is not discussed

because it is simply a combination of head-coupled

perspective and stereoscopy. Furthermore, we do not

consider more sophisticated VR technologies such as

multi-view displays, gaze-dependent depth of field, vol-
umetric displays, and cave automatic virtual environ-
ments (CAVEs) as they do not match our image of

consumer-level. This is largely due to them being sig-

nificantly more expensive (upwards of $1000 USD),

difficult to construct from off-the-shelf components or

impractical to set up in many environments (CAVEs are

an example of this).

3 RELATED WORK
General purpose graphics/game engines and virtual re-

ality research are intrinsically linked, sharing several

common goals. Both are highly dependent on realistic

real-time 3D graphics and simulations, and both aim to

generate a high degree of immersion and engagement.

Because of this game engines provide many features

that make them useful tools in scientific VR research.

Correspondingly, advances in VR research often end

up in graphics engines when they prove to be useful

enhancements.

Lewis and Jacobson [8] explore the use of game en-

gines for scientific simulation. The networking, graph-
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ical and 3D scene management capabilities of the en-

gines are noted as factors that make them useful for the

variety of sample research applications they have been

used for. Two of the engines mentioned in this article —

the id Tech engine and the Unreal Engine — are investi-

gated in our research, albeit using more recent versions.

The authors do note however that for applications that

require more sophisticated forms of VR, the base capa-

bilities of the engines in question are not sufficient.

A more recent report by Trenholme and Smith [16]

specifically evaluated common game engines for first-

person virtual environments, building upon the work

of Lewis and Jacobson. This work provides generic

descriptions of the advantages and disadvantages of 6

reasonably modern (1–2 major versions behind what is

current now) game engines for use in simulating virtual

environments. However, this comparison does not con-

sider the engines from a VR standpoint, so it misses out

on recent trends. In addition to this, the capabilities of

game engines advance at an extremely rapid pace and

comparisons between previous generation technologies

are not accurate for the current state of the art.

Where the capabilities of an engine are not suffi-

cient for it to be used as-is for VR applications, but

close enough to make it desirable, adaptions can be

made to the engine to allow for its use. Lugrin et

al. [9] describe how the Unreal Engine 3 (again in-

cluded in our research) can be adapted to support ren-

dering in a CAVE system and accept input from a 3D

tracked wand held by the user. This adaption was im-

plemented as C++ plug-ins to incorporate the different

forms of head and wand tracking, split across 6 net-

worked clients to render the different sides of the CAVE

with NVIDIA 3D vision to provide stereoscopy. Sim-

ilar adaptions have been make to other engines to sup-

port more sophisticated VR such as with the Unity En-

gine and CryENGINE.

As well as game engines contributing to VR research,

benefits also flow in the opposite direction, I.E. some

VR technologies originally used for research have now

become available in game engines. Litwiller and LaVi-

ola [6] discuss the implications of one such technol-

ogy (stereoscopy) for gaming. They find that while

there is no actual or perceived performance difference

of the users’ game scores when using stereoscopic 3D,

the users did express a preference towards using stere-

oscopy over desktop VR. Sko and Gardner [14] inves-

tigate different technologies through implementing var-

ious uses of head tracking in games, while Andersen

et al. [1] combine stereoscopy and head-coupled per-

spective (called fish-tank VR) in a first-person shooter

game.

Despite the wealth of research into implementing VR

with game engines, there is little general information on

how well game engines support VR. This may be a re-

sult of the very specialised nature of many VR research

projects, and the tendency to focus on a single graphics

engine or VR technology. By contrast, we discuss how

far several current graphics engines can go to support

various VR display technologies.

4 METHODOLOGY

Given enough time and effort, any graphics engine can

be made to support almost any VR display technology.

Different methods are available to do this, with a differ-

ent amount of intrusiveness needed depending on how

the software is designed and constructed.

Because measuring the amount of effort required to

implement VR in a graphics engine is a difficult and

inexact task, we have instead determined the level of
suport each graphics engine has for each of the VR

display technologies. Additionally, quality factors are

considered where applicable, as well as several generic

properties of the engines that influence the implemen-

tation of these technologies.

Level of Support

With the flexibility of modern graphics engines it is

not particularly meaningful to note features (particu-

larly VR support) as supported or not-supported, since

almost any feature can be made supported with rea-

sonable effort. The addition of such non-native fea-

tures is either facilitated through extension mechanisms

built into the engine itself, built into the platform the

engine runs on, or by re-engineering either of these

two components. Some of the most common exten-

sion mechanisms built into graphics engines are node

graphs, scripting, plug-ins and source modification.

In addition to these built-in extension mechanisms, it

is also possible to add or modify functionality via re-

engineering. This is required when the built-in exten-

sion points do not provide enough flexibility to imple-

ment the desired functionality. Re-engineering involves

modifying the behaviour of a program by overriding

portions of a program’s original code or by replacing

linked code libraries with modified variants. This will

be described in detail along with the other extension

mechanisms at the end of this section.

Level of support is measured by determining which

extension mechanisms can be used to implement a de-

sired VR display technology. Extension mechanisms

with negligible differences have been combined (such

as scripting and plug-ins), with two additional levels in-

troduced for no extension needed (native support) and

no in-engine support possible (re-engineering). Exten-

sion mechanisms are ordered by the proportion of en-

gine code relative to non-engine code that implements
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the VR support. The resulting levels of support and

their ordering follows.

5. Natively supported

4. Via in-engine graphical customisation (including

node graphs)

3. Via in-engine coding (scripting or plug-ins)

2. Via engine source code modification

1. Via re-engineering

This helps to answer our major research question and

gives a sense of engine support and engine flexibility
where high values indicate good VR support or flexi-

bility, and low levels indicate poor VR support and low

flexibility. It is important to note that this ordering is

not a measure of the effort required to implement VR,

but rather a measure of how well the engine assists this

task.

We only report the highest level of support attained,

as subsequently lower levels are practically always sup-

ported as well. In addition to presenting the highest

level of support for each VR technology, we also in-

dicate where third parties have demonstrated working

implementations of the technology.

A brief description of each level of support follows.

Native In engines that natively support a VR tech-

nology, the developers of the engine have intentionally

written the rendering pipeline in such a way that mini-

mal effort is required by the user to enable VR render-

ing. All that is required is to check an option in the de-

veloper tools or set a variable in the engine’s scripting

environment. In addition to easily enabling the tech-

nology, the engines are also designed to avoid common

optimisations and shortcuts that are not noticeable with

desktop VR displays, but become noticeable with more

sophisticated technologies. A common example of this

is rendering objects with correct occlusion but at an in-

correct depth [5], which causes depth cue conflicts un-

der stereoscopy.

Graphical customisation Some engines are de-

signed in such a way that the rendering process can

be altered using custom tools with a graphical inter-

face. One approach to this is via node graphs, where

different components of the rendering pipeline can

be rearranged, modified and reconnected in multiple

configurations. Depending on what types of nodes are

supported, it is sometimes possible to configure the

nodes in such a way as to produce the effect of certain

VR technologies. An example is shown in Figure 2,

which depicts the Unreal Engine’s material editing

interface configured to render red-cyan anaglyph stereo

as a post-processing effect.

Engine coding Practically every engine can be ex-

tended with custom code, using well-defined, but re-

stricted, extension points. The two common forms of

this are scripting, where the engine runs small pro-

grams/scripts in a restricted environment, and plug-ins,

where the engine loads and runs externally compiled

code. Both forms have access to a subset of engine

features; however, plug-ins also have access to exter-

nal APIs while scripts do not. Since this is the mech-

anism through which application-specific functionality

is normally implemented, the engine features available

to the custom code may be targeted more towards ar-

tificial intelligence, game logic and event sequencing,

rather than controlling the exact rendering process.

Engine source code modification In addition to

free open-source engines, some commercial engines

make their complete source code available to users

with the appropriate licence agreement. With access

to the full source code any VR technology can be

implemented, although the amount of modification

required could be significant.

Re-engineering For engines that do not provide

any of the above entry points for customisation,

some amount of change is still possible through

re-engineering. Re-engineering is a form of reverse-

engineering where in addition to learning some of the

workings of the program, some of its functionality is

modified as well. The effort needed to fully reverse-

engineer a rendering pipeline can be significant, so

more minimally invasive forms of re-engineering

are preferable. One of these approaches is function

hooking, which is where the invocation of an internal

or library function is intercepted and replaced with cus-

tom behaviour. Since a very large fraction of real-time

graphics engines use the OpenGL or Direct3D libraries

for hardware graphics acceleration, these libraries make

reliable entry points for implementing visual-only VR

technologies through function hooking. This approach

has proved to be effective for adding stereoscopy to

3D games [10, 17]. We have also shown that it is also

possible to implement head-coupled perspective in this

manner [? ], by hooking the OpenGL functions that

load projection matrices (glFrustum and glLoadMatrix)

and replacing the fixed-perspective matrices provided

by the original program with head-coupled matrices.

Display Technology Support Criteria
For an engine to be labelled as supporting a specific

VR display technology group, it must be able to satisfy

the technical requirements of at least one actual display

technology in that group (e.g. support for anaglyph

stereoscopy indicates general stereoscopy support).

Support can be achieved at any of the levels described

previously, in which case all the technical requirements

of the display technology must be implemented at that
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Figure 2: Configuration of the Unreal Engine to support red-cyan anaglyph stereoscopy, using the Material Editor.

Adapted from [3]. Other stereo encodings can be supported in this manner, E.G. by interlacing the images for

polarised stereo displays.

level or higher. The technical requirements of each

display technology are the same as those outlined in

Section 2.

VR Quality Factors
In addition to the technical challenge of implement-

ing the VR display technologies just discussed, there

are many secondary quality factors that affect a user’s

perceived quality of the VR experience. These factors

arise because the implementations of the display tech-

nologies can not perfectly replicate the physical phe-

nomenon they model. Since the differences are usually

subtle, the user is frequently not consciously aware of

them, but may instead experience some amount of eye

strain, headaches or nausea. There can also be many

different ways to implement any particular display tech-

nology, each of which balances different quality factors

with other factors such as implementation cost. A prime

example of this is stereoscopy, where at least ten differ-

ent mechanisms to split images between the eyes have

been used recently.

While quality factors are most inherently linked to

the display hardware, appropriate software design can

mitigate these issues, while careless design can intro-

duce new issues. Because this study deals with the soft-

ware implementation of VR display technologies, these

software issue are of interest to us.

Examples of hardware quality factors that can be

mitigated through software are crosstalk (stereoscopy),

A/C breakdown (stereoscopy) and tracking latency

(HCP and HMDs). Since these factors are well estab-

lished for their respective display technologies, there

are well-known techniques to minimise issues they

cause. The solutions are respectively reducing scene

contrast, reducing parallax and minimising rendering

delays. In most cases the engines this paper evaluates

have non-native support for the display technologies

associated with these quality factors, and subsequently

do not follow these practices.

Incorrect software implementations can also influ-

ence the quality of the VR effect, which can occur due

to carelessness, or as a result of optimisation for desk-

top VR. An example of this is special layers (such as the

sky, shadows and first person player’s body) at arbitrary

depths in different passes. While this produces correct

occlusion in desktop VR, the addition of the binocu-

lar parallax cue under stereoscopy reveals the incorrect

depth, and creates a conflict between these two depth

cues. This is not an uncommon issue due to the dom-

inant nature of desktop VR, and serves as another ex-

ample of where a naive third party implementation may

not be as good as native VR support.

From these points it should be noted that while non-

native VR implementations might meet the necessary

technical requirements, other factors must be taken into

account as well. Where possible we have pointed out

these quality issues, but due to their dependence on a

specific implementation and application it is difficult to

make generalisations for a single graphics engine.
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General Engine Properties
In addition to VR capabilities, this paper also outlines

several general properties of graphics engines. These

properties are chosen to assist researchers and develop-

ers in the selection of engines, to help identify trends of

VR support and to classify the engines. What follows

is a list of the general properties we considered useful.

We do not elaborate on these properties as, being so

general, they are largely self-descriptive.

• Developer interface

• Licences

• Programming languages

• Target platforms

• Version evaluated

Graphics Engines
The graphics engines of interest to us are those that are

currently being used to render real-time 3D environ-

ments for research, commercial and other applications,

and will likely continue to be used in the near future.

We selected a representative sample of the most popular

engines for this evaluation. The total number of graph-

ics engines is greatly inflated by the number of graph-

ics engines that are custom built for a select few ap-

plications. A secondary limiting factor is access to en-

gines, as many are not made available to 3rd-party de-

velopers, only made available to established companies,

or have prohibitively high licencing costs (in the or-

der of $100k+ USD). This has effectively restricted our

investigation to graphics engines that are open-source

or have free versions available with restricted access.

Fortunately many normally expensive engines provide

such versions, and so we are still able to cover a good

range.

In addition to these restrictions, investigation of spe-

cific engines that are available to us have been priori-

tised according to the following factors.

• Engines should be in active development.

• An engine should have good community support,

and be used in several applications.

• An engine should additionally have been considered

in previous VR research.

• Engines designed for gaming should also have been

used in non-gaming applications.

• Engines should focus on realistic and immersive

graphics, and cutting edge technology.

The engines we evaluated can be put into 4 groups

based on their licencing model, which also serves as a

reasonably good overview of the general types of en-

gine available.

Premium commercial engines (CryENGINE and

Unreal Engine) are the most expensive and have the

most comprehensive set of features. These are targeted

towards large development studios that can afford the

very high licencing costs to use the engine. These

engines provide graphical tools to allow artists and

game designers to use, while also allowing modifi-

cation and extension of their source to implement

application-specific behaviour. A recent trend has been

for free versions of these engines to be released with

specific restrictions, notably no source-code access and

for non-commercial use only.

Commercial engines (Unity) are similar to pre-

mium engines but at significantly lower costs. They

typically have slightly smaller feature sets or be

intentionally simple and lightweight. Their main

target audience is smaller (particularly indie) studios,

individuals and hobbyists. Like premium engines, they

typically provide graphical development interfaces to

allow non-technical users to use them.

Previously commercial engines (Torque3D) are

commercial engines that have at some point been made

open-source. Reasons for this might be because newer

versions of the same engine are now sold commercially,

alternative revenue sources are being followed, because

the engine is no longer competitive or to attract a larger

user-base.

Open-source (OGRE and Irrlicht) are engines that

are available for free under open-source licencing.

They are frequently community developed, but some-

times also have backing by a commercial organisation.

The quality and feature-sets of these engines varies

dramatically, but usually falls short of commercial

engines. These engines are typically fully code based,

and do not provide graphical tools for development.

In addition to the engine categories included in this

study, another major one is proprietary engines. These

are those engines developed in-house for a specific ap-

plication. None of these engines are included in this

evaluation because they, by very nature, are not made

available to third parties for development.

5 RESULTS AND DISCUSSION
The results of our evaluation can be found in Tables 1

and 2 with a discussion to follow.

The most obvious result from this evaluation is that

almost none of the graphics engines evaluated support
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VR technology Stereoscopy Head-coupled perspective Head-mounted display

CryENGINE 5: Native [10] 3: Coding 3: Coding [2]

Support for both dual render-

ing and retargeting. Supports

both manual and GPU driver

frame packing.

Access to camera matrices

through C++ interface. C++

sufficient to access any head

tracking method.

Stereoscopy supported na-

tively, orientation tracking

can be accessed via C++

plug-in.

OGRE 3: Coding [7, 10] 3: Coding 3: Coding [13]

OGRE rendering can be fully controlled and customised via the C++ interface, allowing

implementation of all three display technologies.

UDK 4: Graphical customisation
[3, 10]

1: Re-engineering* 3: Coding

Dual camera rig can be cre-

ated using Unreal Kismet

and outputs packed using the

material editor.

No access to custom cam-

era projection from engine so

re-engineering is needed if

your licence does not include

source code access.

Stereoscopy through custom

implementation, head orien-

tation can be obtained via a

custom DLL and bound to

camera via script.

Unity 3: Coding [15] 3: Coding 3: Coding
Dual cameras can be created

and control via script, im-

ages can be packed as post-

processing filter.

Scripting supports custom

camera projection matrices.

Tracked head position can be

obtained via C++ plug-in.

Stereoscopy through custom

implementation, head orien-

tation can be obtained via

C++ plug-in.

Irrlicht 3: Coding [10] 3: Coding 3: Coding
Irrlicht rendering can be fully controlled and customised via the C++ interface, allowing

implementation of all three display technologies.

Torque3D 3: Coding [10] 2: Source modification 3: Coding [20]

Multiple passes of rendering

are supported. This can be

used to create the dual views

and pack them in a compati-

ble format.

Scripting interface to cam-

era does not support off-axis

projections, camera projec-

tion generation must be mod-

ified in code.

Head orientation can be

accessed from an external

tracker over TCP. Camera

orientation can be updated

based on this via script.

Table 1: Graphics engines’ levels of support for various VR display technologies. *depends on licence

Name and Version Interface Licence Code language Platforms

CryENGINE 3.4.4
GUI

Framework

Free for non-commercial use,

Licence required for commercial

use or source code access

C++

Lua

PC

Games console

OGRE 1.8.1 Library Open-source (MIT)
C++

Material scripts

PC

Smartphone

UDK 2013/02b GUI

Free for non-commercial use,

Licence required for commercial

use or source code access

C++

UnrealScript

PC

Games console

Smartphone

Unity 4.0.1f2 GUI

Free limited version

Flat fee pro version

Source code access via special

licence

C#

JavaScript

PC

Games console

Smartphone

Irrlicht 1.8 Library Open-source (zlib) C++ PC

Torque3D 2.0
GUI,

Framework
Open-source (MIT)

TorqueScript,

C++
PC

Table 2: General properties of graphics engines
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a non-traditional VR display technology. The only en-

gine that does is the CryENGINE, which natively sup-

ports stereoscopy in most of the formats used by mod-

ern stereoscopic displays. There are two explanations

for this deficit. Firstly, that the developers of the en-

gines do not believe these display technologies war-

rant the extra effort needed to support them. Or sec-

ondly, that they believe that the 3rd party support is

good enough that native support is not necessary. It

is our belief that the second point is the more likely,

since all engines support stereoscopy through several

3rd party programs including NVIDIA 3D Vision.

In terms of how well the engines are designed to ac-

commodate 3rd party VR support, most rate very highly

with all but two instances having levels of support at

level 3: coding or better. The two instances of lower

support occurred when the scripting system did not pro-

vide enough control over the camera parameters. It is

unknown whether the lack of access is intentional be-

cause the underlying rendering systems do not support

arbitrary camera properties, or whether they were seen

as unnecessary, not useful or just not thought consid-

ered.

In some cases the engine extension mechanisms do

not have enough functionality to host the entire VR

technology, but do provide communication functional-

ity so that part of the technology can be offloaded to a

separate process. This occurs when the scripting inter-

face can’t access the HMD or HCP head tracking val-

ues directly, but can indirectly over local TCP or UDP.

Native code (e.g. C and C++) is normally needed to

access the head tracking hardware. An example of this

is Torque3D which does not provide any access to na-

tive code at levels of support above level 2: source code
modification.

Of the three display technologies considered, HCP

is the only for which we could not find any examples

of 3rd-party implementations. Potential explanations

might be that this is a less well-known technique, that

it is a predominantly software technique and so is less

easily commercialised, or more likely because it does

not provide as good an effect as the other VR technolo-

gies.

The core point to take away from this work is that

while the majority of graphics engines do not support

most VR display technologies natively, they almost al-
ways provide enough flexibility such that support can

be manually added.

6 CONCLUSIONS
We have described the mechanisms by which modern

graphics and game engines may be extended to support

non-traditional display technologies, particularly stere-

oscopy, head-coupled perspective and head-mounted

displays. Where these engines do not have built-in ex-

tension mechanisms, or the ones that are provided are

too limited, these display technologies can always be

implemented through re-engineering the engine.

Most of the engines evaluated do not provide na-

tive support for any non-traditional display technolo-

gies, and stereoscopy is the only technology that has

any amount of native support in current versions of

these engines. However several engines have support

for head-mounted displays planned for future versions.

In the many instances where an engine does not pro-

vide native support for a display technology, support

can usually be attained by developing a script or plug-in

to produce the effect. Often this has been proved pos-

sible by other researchers or developers, and in many

cases the source for the implementation is publicly

available.

7 FUTURE WORK
As previously discussed, we believe the reason that

most engines do not support most of the VR technolo-

gies evaluated is that there are still too few commercial

displays that use them. As more exemplar displays be-

come available this should start to change, and this can

already be seen with several game engine developers

(Torque3D, UDK and Unity) announcing support for

HMDs (specifically the Oculus Rift) in future versions.

It will be interesting to see whether support for specific

technologies such as this will bleed through to other

technologies as VR sophistication becomes a more im-

portant feature.

We have also considered a very small subset of

the available classes of VR display technologies.

Extending this evaluation to other technologies such

as CAVEs, volumetric displays, multi-view displays

and gaze-dependent field of view will increase the

number of applications that benefit and also expose

how engines can be adapted to cope with technologies

substantially different from desktop VR.

In a similar vein, we have only evaluated 6 graph-

ics engines which represents a tiny fraction of the en-

tire population. Our preference towards selecting high

speed real-time engines that have already been used for

VR applications also means we did not consider any

graphics engines used for applications such as CAD or

scientific visualisation, which often have pseudo-real-

time engines (in the sense that they react reasonably

quickly to input, but not seamlessly).

We have also only considered the display side of VR,

and ignored input technologies. While in many cases

this can be done with little consequence, dependencies

between the two have been known to cause problems.

For instance mouse pointing depends on the virtual

cameras projection properties which breaks down when

there are multiple projections, as with stereoscopy, or

the projection changes continuously, as with the track-

ing from HCP and HMDs. More work is needed to

determine ways in which such input systems can be
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accommodated for when using these display technolo-

gies.
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