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ABSTRACT
Image-based modeling is becoming increasingly popular as a means to create realistic 3D digital models of real-

world objects. Applications range from games and e-commerce to virtual worlds and 3D printing. Most research

in computer vision has concentrated on the precise reconstruction of geometry. However, in order to improve

realism and enable use in professional production pipelines digital models need a high-resolution texture map. In

this paper we present a novel system for creating detailed texture maps from a set of input images and estimated

3D geometry. The solution uses a mesh segmentation and charting approach in order to create a low-distortion

mesh parameterization suitable for objects of arbitrary genus. Texture maps for each mesh segment are created

by back-projecting the best-fitting input images onto each surface segment, and smoothly fusing them together

using graph-cut techniques. We investigate the effect of different input parameters, and present results obtained for

reconstructing a variety of different 3D objects from input images acquired using an unconstrained and uncalibrated

camera.

Keywords
Texture reconstruction, Image-based modeling, mesh parameterization, texture mapping

1 INTRODUCTION

Digital 3D models are used in a large number of appli-

cations ranging from entertainment (games, movies) to

engineering and architecture (design), e-commerce (ad-

vertisement) and education (simulation and training).

3D model creation can be made more effective, more

affordable, and more accessible to inexperienced users,

by using image-based reconstruction methods, which

aim to create a high-quality digital model from a set of

input photographs [HVC08, REH06].

Most published research has concentrated on the prob-

lem of reconstructing 3D geometry from a set of input

images, and estimating camera parameters for methods

assuming uncalibrated and unconstrained image acqui-

sition. The problem of texture reconstruction for multi-

view stereo has also been investigated, however, many
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authors make assumptions, such as known camera pa-

rameters, which can not be guaranteed in practice.

In this paper we present a complete system for tex-

ture reconstruction for image-based modeling. The sys-

tem is fully automatic and input images can be ac-

quired with an unconstrained and uncalibrated camera.

The resulting models contain a high-definition texture

map and can be integrated into professional produc-

tion pipelines. Our algorithm automatically estimates

the intrinsic and extrinsic parameters of the input cam-

eras using Structure-from-Motion and Bundle Adjust-
ment techniques. The 3D model is then automatically

parameterized using a segmentation and charting tech-

nique, which is suitable for surfaces of arbitrary genus

[ZMT05]. A texture map is then created by back-

projecting the best fitting input images onto each sur-

face segment, and smoothly fusing them together over

the corresponding chart by using graph-cut techniques.

The remainder of this paper is organized as follows.

Section 2 reviews existing approaches for texture recon-

struction in multi-view stereo. Section 3 summarizes

our image-based modeling technology, which we use

to create 3D geometry and estimate camera parameters.

Section 4 describes our texture reconstruction process

in detail. Section 5 evaluates our solution and discusses

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 39 ISBN 978-80-86943-74-9



the effect of various parameters and the algorithm’s ad-

vantages and shortcomings. We conclude this paper and

give an outlook on future research in section 6.

2 LITERATURE REVIEW
Image-based texture reconstruction for 3D models re-

quires in general two steps: a surface parameterization

of the reconstructed 3D object, and computation of the

object’s surface texture from a set of input images of

the object.

The surface parameterization creates a mapping of a 2D

domain (parameter space) to the surface mesh of the re-

constructed 3D object. Texture mapping can then be

accomplished by creating a 2D texture image over the

parameter space. An explicit surface parameterization

can be avoided by determining the input image regions

best representing the object’s surface, blending them to-

gether, and storing them in a texture atlas indexed by

the mesh vertices [XLL+10]. However, since there is

no global parameterization, postprocessing algorithms,

such as polygon reduction, can result in unwanted arti-

facts.

Surface parameterization methods can be classified ac-

cording to their complexity, whether the resulting map-

ping is bijective, whether they have a predetermined

boundary for the parameter space, and to what extend

distortion is minimized [SPR06]. For objects with a

non-zero genus or complex geometry the surface must

be cut into multiple parts and parameterized individ-

ually in order to minimize distortions. The resulting

charts can be combined into one single texture atlas us-

ing a packaging algorithm.

Most recent image-based texture reconstruction algo-

rithm seem to use a charting approach. Goldluecke and

Cremers [GC09] create a planar texture space via an

automatically created conformal atlas [LWC06]. The

planar texture space is then used to solve a partial dif-

ferential equation, originally defined over the object’s

surface, in order to find the surface texture representing

the input images best.

Computation of a surface texture from input images is

difficult since several images mapping to the same sur-

face region can result in conflicting color information

due to geometric errors (camera parameters), limited

image resolution, and varying environmental parame-

ters (lighting) during image acquisition. Four classes of

solutions are described in the literature:

1. Blend input image information per texel using suit-

able weights for different source images [BMR01,

LH01].

2. Compute texture patches and fuse them

seamlessly together by optimizing seam lo-

cations [LI07, XLL+10] or warping texture

patches [EdDM+08].

3. Compute texture patches and blend them seamlessly

together. Chen et al. use multi-band blending in or-

der to minimize seam discontinuities [CZCW12].

4. Use a local optimization step in order to fully

utilize the information given by multiple im-

ages of the same object region. Goldluecke and

Cremers present a technique for computing high-

resolution texture maps from lower-resolution

photographs [GC09]. The method requires accurate

geometry and camera calibration.

Additional optimization steps are possible to take into

account texture differences in input images, e.g., due

to illumination changes, shadows, and camera param-

eters such as dynamic range adjustment. Xu et al.

[XLL+10] use radiometric correction to adjust color

difference between patches. Valkenburg and Alwesh

reduce seams resulting from image illumination vari-

ations by applying a global optimization to all vertex

colors of a 3D mesh [VA12]. Chen et al. remove high-

light effects by determining all input images mapping

to a surface area [CZCW12]. Image regions which

vary too much from the median color of the surface

area are removed. Missing or deleted image regions

(e.g., highlights) can be filled using Poisson image edit-

ing [CZCW12, CAH+13].

3 3D GEOMETRY RECONSTRUC-
TION

In this section we summarize our image-based model-

ing algorithm for geometry reconstruction. We concen-

trate on the algorithm steps effecting texture reconstruc-

tion, i.e., camera parameter estimation and surface rep-

resentation. More details of the algorithm are described

in [NWDL13, NWDL12b].

Figure 1: Overview of our algorithm for reconstructing 3D

models from a set of unconstrained and uncalibrated images.

An overview of our image-based modeling technology

is given in Figure 1. The algorithm uses a coarse-to-fine

strategy where a rough model is first reconstructed and

then sequentially refined through a series of steps.
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The first step of the geometry reconstruction consists of

estimating the camera parameters for each view. This

is accomplished by detecting and extracting distinctive

features using a SIFT feature detector [Low99, Low04].

We then isolate all matching images, selecting those

that contain a common subset of 3D points [HQZH08].

Given a set of matching images, a scene geometry

(point cloud) and camera pose can be estimated simul-

taneously by using a Structure from Motion algorithm

and subsequently refining the solution using Bundle Ad-
justment. The last step is critical for the accuracy of the
reconstruction, as concentration of pairwise homogra-

phies would accumulate errors and disregard constrains

between images. The method minimizes the reprojec-

tion error, which is defined by the distance between the

projections of each point and its observations.

Due to the sparseness of the point cloud representing

the scene geometry, artifacts can arise during the

surface and texture reconstruction processes. We

overcome this problem by integrating a shape-from-

silhouette approach. Silhouette data is obtained by

using the rough depth estimation from the previous

step for a foreground segmentation and applying

the Marching Squares algorithm [Lor95]. The com-

plexity of each silhouette line is reduced using the

Douglas-Peucker algorithm [VW90]. The 3D positions

of silhouette points are estimated by forming cone

lines from silhouette contour points and the camera’s

estimated optical center, projecting the lines onto the

other silhouettes, computing the intersection points,

and lifting them to 3D [MBR+00].

Adding silhouette points and using them in the bundle

adjustment step results in a better camera parameter es-

timation and smoother surface reconstruction.

Finally the object’s surface is reconstructed. We tested

the α-shape algorithm, the power crust algorithm, and

the ball pivot algorithm. In the end we decided to use

the Poisson surface reconstruction algorithm [KBH06].

The technique gives a smoother reconstruction than

other tested techniques, is more stable towards noise,

and always creates a watertight surface.

A perceived weakness of the algorithm is that it re-

quires oriented normals at the input points. However,

we can obtain them from the image and silhouette in-

formation. Furthermore, it has been shown hat the ap-

proach is quite resilient to inaccuracies in the directions

of the normals [Kaz05].

A surface texture is created by projecting each vertex

of the mesh onto all input images containing the point

(i.e., the surface point is visible from the images’ esti-

mate camera location). The mesh vertex color is the

weighted average of the corresponding image pixels.

The resulting triangle mesh with vertex colors is ren-

dered using Gouraud shading. An example is shown in

Figure 2.

Color interpolation suffers from two major shortcom-

ings: (1) detailed input image textures appear blurred

(see bottom row of Figure 2), and (2) texture resolution

is lost if a mesh reduction method is applied.

Figure 2: Photograph of a rooster statue (left) and the re-

constructed model using vertex colors and Gouraud shading

(right). The images at the bottom show an enlargement of the

neck region of the object.

4 TEXTURE RECONSTRUCTION
We create a high quality texture map for our 3D model

in two steps: The 3D mesh model is first parameter-

ized yielding a one-to-one triangle mapping from the

3D model to a 2D planar surface. Input images are then

projected onto the surface and suitable texture regions

are identified, cut, and fused together to form a 2D tex-

ture atlas.

4.1 Surface Parameterization
The objective is to segment the resulting meshes

into patches and unwrap them onto a 2D planar

surface. We evaluated different surface parameteri-

zation techniques, but found that existing libraries,

such as Blender, either create a very disjoint map of

triangle patches, or create a single parameter patch

with large distortions. We hence use a Feature-
based Surface Parameterization, which consists of

three stages [ZMT05]: Genus reduction, feature

identification, and patch creation.

Genus reduction In order to identify non-zero genus

surfaces, a surface-based Reeb graph [Ree46] induced
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by the average geodesic distance [HSKK01] is con-

structed. The leaf nodes of this graph reveal the tips of

the protrusions of the meshes, while loops in the graph

signify the existence of handles. The principle behind

genus reduction is to identify loops that do not separate

the surface into two disjoint connected components and

cut the surface open along the cycle, which reduces the

combined genus of the surface segments by one. This

process is repeated until there are no more handles.

Feature identification From the Reeb graph the tips

of protrusions are identified and the features are sep-

arated from the rest of the surface by constructing a

closed curve γ as follows: We separate the region R that

corresponds to the tip of the protrusion by first com-

puting the function fp(q) = g(p,q), where fp(q) is the
geodesic distance function [HSKK01] with respect to

p. The value of fp is normalized to fit in the interval

[0,1]. Regions which are bounded by a given isovalue
are examined. Specifically, the interval [0,1] is parti-
tioned into k equal sections. The surface is then divided
into levelset bands by performing region-growing from

the tip of the protrusion p based on the values of fp in

these intervals [ZMT05].

Variation in the area of this sequence of bands tends to

be small along a protrusion slope, and large where the

feature connects to the remaining section of the surface.

The separating region R can be extracted by examining

these areas, which are considered as a continuous func-

tion A(x). To remove any small undulations, A(x) is
passed through a Gaussian filter function N times.

Three parameters (isovalue, k, and N) influence the ef-

fectiveness and efficiency of the region separation pro-

cess. The larger the isovalue is, the further the region-

growing process continues. This leads to fewer surface

patches being generated. Higher k values result in more

samples being used to discretize A(x), increasing the

probability of small noise being considered as potential

candidate places for the separating region. Large N val-

ues tend to cause the location of the separating region to

shift or it being lost, while too small values often result

in false separations.

Once the separating region R has been identified, a

closed curve γ separating the surface into segments is

constructed as follows: A collection of edges in the

surface separating the feature from the rest of the sur-

face (the skeleton) of R is found. During this process

dangling edges are rejected. A separating cycle ρ from

this skeleton is then extracted. Finally, a shorter and

smoother separating cycle γ is constructed based on ρ .
Patch creation Patches are created by unwrapping

them using a discrete conformal mapping [EDD+95].

The method creates first texture coordinates of the

boundary vertices, and then determines texture co-

ordinates of the interior vertices through solving a

closed form system. The main problem with this

mapping technique is that regions can be stretched or

compressed during the process leading to areas of the

meshes not being preserved. This in turn results in

uneven sampling rates across the surface.

Interior vertices’ texture coordinates are optimized to

reduce the geometric distortion by first computing an

initial harmonic parameterization [Flo97]. A square
virtual boundary enclosing the patch is constructed.

The exact coordinates of the boundary are not impor-

tant as long as they do not coincide with those of the

patch boundary. We then perform triangulation of the

regions between the virtual boundary and the original

boundary using Scaffold triangles. The patch optimiza-

tion technique proposed by Sandle et al. [SGSH02] is

then applied to the enlarged patch.

4.2 Texture Map Generation
At this stage, we have successfully generated a parame-

terization of the 3D model. The next task is to construct

a complete texture map using the computed parameter-

ization. This is accomplished in three steps:

1. Identify images and regions of input images to be

mapped onto each patch of the parameterization.

2. Cut these patches and paste them over the parame-

terized surface.

3. Merge overlapping regions using a graph cut tech-
nique [KSE+03a, CFW+12].

Texture region identification: For each patch

of the surface parameterization we need to identify

the image regions mapping onto it. We project all

triangles of a patch onto all input images where it is

visible, i.e.: (1) the triangle normal forms an angle of

less than 90◦ with the vector to the estimated camera

position; (2) the triangle is not occluded by other

surface regions. The resulting image regions and the

one-to-one correspondence between projected triangles

and original triangles of the patch is saved for the next

stage of the algorithm.

Texture map computation: At this stage for each

patch we have a set of texture regions. The goal is to

process these texture regions to produce a new texture

that will cover the patch. We perform the mapping of a

texture region from an input image to a patch for each

triangle separately. Given two arbitrary triangles �1

and �2, an affine transformation that transforms trian-

gle�1(P,Q,R) to�2(P◦,Q◦,R◦) is defined as follows:
Let Φ1 be the affine transformation that maps the unit

triangle to�1, and Φ2 be the affine transformation that

maps the unit triangle to�2. The affine equivalence of

these two triangles is Φ2 ◦Φ−11 .

The procedure is repeated for each texture region yield-

ing a set of overlapping textures covering the face of the
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processed patch. We use a greedy technique to assem-

ble these textures. We start with the least fitting texture

and project it onto the input image. We then use the

next least fitting texture and add as much as possible of

it while minimizing the seam between the two textures

using a graphcut technique [KSE+03a]. This process

is repeated until all input images have been considered.

The effect of this strategy is that artifacts which occur

only in one input image, such as highlights, are reduced

since frequently they result in a visible seam with the

current partial texture map. Furthermore the last tex-

ture added is the one from the best fitting input image,

so most of the final texture results from this image un-

less it creates inconsistencies with the other input im-

ages. Note that the current method does not guarantee

removal of artifacts. For example, if a surface region is

only visible in one input image and it contains a high-

light, then this highlight is part of the final texture map.

We have tested this algorithm with more than 40 data

sets and did not encounter any problems apart from the

shading inconsistencies explained in subsection 5.2.3.

Seam Minimization: Seams between overlapping in-

put image texture regions are minimized by using a

graphcut technique [KSE+03a]. Given two overlapping

images A and B, we want to find the cut within the over-
lap region, which creates the best transition between

these images. The overlap region is represented as di-

rected graph, where each node represents a pixel posi-

tion p in the overlap region, which is denoted A(p) and
B(p) for the two images A and B, respectively. Nodes
are connected by edges representing 4-connectivity be-

tween pixels. Each edge is given a cost encoding the

pixel differences between the two source images at that

position.

We have investigated the effect of different parame-

ters for image fusion applications [CFW+12] and tested

them with various 3D models. Based on this we use the

following parameters: Image pixels are represented in

the RGB color space. Color distances are computed us-

ing the L2 norm. The cost function w corresponds to the

gradient weighted color difference between the images

A and B at the neighboring pixels p and q, i.e.,

w∇ =
||A(p)−B(p)||+ ||A(q)−B(q)||

||Gpq
A (p)||+ ||Gpq

A (q)||+ ||Gpq
B (p)||+ ||Gpq

B (q)||
where Gpq

A (p) is the image gradient in the direction of

the edge pq at pixel p. This cost function has been orig-
inally devised by Kwatra et al. [KSE+03b] based on

the observation that seams are more noticeable in low-

frequency regions, and a visually more pleasing cut is

computed by increasing the cost of an edge with a de-

creasing image gradient.

Figure 3 illustrates an example in which two texture

patches of our Rooster model are fused together to form

a larger and more complete texture patch. The newly

merged texture patch is then fused together with the

next available texture patch in the list. The process ter-

minates when all texture patches have been successfully

merged.

Figure 3: Seam minimization. Source texture patches are

shown in the the left column, while the merged texture patch

is shown in the right column.

Figure 4 shows the texture map obtained by back-

projection surface patches onto the input images (right)

and the resulting textured 3D model (left). In many

instances the input images do not cover the entire

surface of the object. For example, in many of our

experiments users did not take photos of the underside

of objects. In this case the 3D point cloud contains

large gaps. The Poisson surface reconstruction will

create a smooth watertight surface interpolating the

gaps, but the corresponding regions of the texture map

have no color information (red color regions in the

top-right image of Figure 4). The accuracy of our

new texture reconstruction process is illustrated by

comparing the bottom-left image of Figure 2 and the

bottom-right image of Figure 4.

5 RESULTS

5.1 Effect of Parameters

We have investigated the effect of different algorithm

parameters on the quality of the surface parameteriza-

tion and texture reconstruction.

5.1.1 Isovalue

The larger the isovalue is, the farther the region-

growing process continues, and the fewer surface

patches are generated. Figure 5 illustrates the sur-

face segmentation and Figure 6 the resulting texture

patches. If the isovalue is too large the resulting texture

map suffers from large distortions. However, having

a single texture patch simplifies some operations such

as image inpainting to fill surface regions without

matching input images.
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Figure 4: Top row: Reconstruction of the Rooster in Figure 2

(left) and the surface parameterization after texture map com-

putation (right). Regions that were not visible in any of the in-

put images are colored red. Bottom row: Surface appearance

of the rooster’s neck region using vertex color interpolation

(left) and our new texture reconstruction process (right).

Figure 5: Parameterization of our Bird model with the isoval-

ues of 1.0, 2.0, and 5.0, respectively.

Figure 6: Texture map for the surface parameterization ob-

tained using an isovalue of 2.0 (left) and 5.0 (right).

5.1.2 Number of Gaussian Iteration Steps

Increasing the number of times the Gaussian filter func-
tion is applied during the parameterization process, ef-

fects how sensitive the segmentation process is towards

differently sized features. Figure 7 demonstrates that

small values result in unnecessarily many segments,

whereas large values result in too few patches and hence

larger texture distortions.

Figure 8 shows that the resulting texture maps look very

similar. However, the texture map generated using 10

Gaussian steps contains falsely oriented texture features

in the neck region of the bird model. This seems to be

due to aliasing effects caused by a high distortion of

the corresponding parameter space region. Contribut-

ing causes are the relatively low resolution of the web-

cam images, and the fact that we currently use a nearest

neighbor interpolation for the texture reconstruction.

Figure 7: Parameterization of the Bird model with (from left

to right) 10, 30, and 50 Gaussian steps, respectively.

Figure 8: Top: an input image of the bird data set. Bottom:

the texture map created using 10 (left) and 30 (right) Gaussian

steps.

5.2 Reconstruction Results
We have evaluated our system using a variety of

datasets of objects at different scales acquired under

different weather and lighting conditions. In general,

our system produces qualitatively good results with

high resolution textures for both uniformly colored

and feature-poor objects, and for objects with concave
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regions and moderately complex geometries. The size

of our test datasets varied from as few as 6 images to

hundreds of images. All input images were acquired

with simple consumer-level handheld cameras, includ-

ing a Smartphone camera. Our systems fails for objects

which have viewpoint dependent surface appearance,

e.g., refractive and reflective materials within complex

environments. This section contains a summary of

different experiments that we performed to evaluate

our texture reconstruction method.

5.2.1 Rooster Dataset

The first dataset contains 35 images of a White Rooster
with a resolution of 2592× 1944 pixels. Figure 9 shows

some of the input images. The original object has a

complex surface geometry with many bumps and wrin-

kles. Notice that most of the surface of the model con-

tains few visual features.

Figure 9: Two out of 35 input images of the White Rooster
datasets.

The resulting reconstructed model, shown in the left

of Figure 13, is of good quality and bears a high re-

semblance to the original object. The overall shape,

along with details such as feathers of the original model

are reconstructed well. The resulting model consists of

298,187 polygons. There are a few regions (underneath

the model) where no texture has been generated (col-

ored in red) due to missing input images showing these

regions.

5.2.2 General Dataset

This data set contains 18 images (2592 × 1944 pixels

resolution) of a General figurine. The original model

has a very smooth, reflective and shiny surface. The re-

construction, shown on the right-hand side of Figure 10,

is of good quality and the final model has a high resem-

blance to the original object. The resulting model con-

sist of 101,778 polygons. The texture is very realistic,

but contains some visible seams along patch boundaries

Figure 10: Input image of the General dataset (left) and the

resulting reconstruction (right).

5.2.3 Vase Dataset

This dataset contains 26 images (2592 × 1944 pixels

resolution) of a vase. The original object has a very

smooth, reflective and shiny surface with repetitive tex-

tures. The reconstructed model has 215,918 polygons.

The geometry of the reconstruction is very realistic.

However, the texture reconstruction shows some visible

illumination differences due to some input images hav-

ing been taken with flash and some without. In future

we plan to overcome these problems by using multi-

band blending techniques [APK08] and global opti-

mization of luminance values in CIELUV color space

along seam boundaries.

Figure 11: Image of a vase (left) and the resulting 3D re-

construction (right). The enlargement shows brightness vari-

ations due to some input images taken with flash.

5.2.4 Objects with High Genus

Section 2 reviewed previously presented techniques for

texture reconstruction. Despite some seemingly im-

pressive results, we did not find any examples in the lit-

erature for objects with high genus, for which geometry

and texture reconstruction are notoriously difficult. Fig-

ure 12 illustrates that our image-based modeling system
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and texture reconstruction method handles such cases

without problems.

Figure 12: Two examples of models with a high genus: in-

put image (top), 3D reconstruction (middle), and the surface

parameterization (bottom).

5.3 Running Time
The presented algorithm has not been optimized yet

and the running time varies between approximately 10

minutes for the reconstruction of an apple from 6 pho-

tographs, to many hours for more complex models. For

example, the reconstruction of the rooster data set in

subsection 5.2.1 takes 6 hours and 19 minutes on a PC

with Intel Quad Core i7 CPU and 6GB RAM. The time

requirements of the various stages of the algorithm are:

1. Camera Parameter Estimation: 18.6% = 71 minutes

(feature detection and matching are implemented in

parallel and use all four cores of the CPU)

2. Point Cloud Generation: 33.0% = 125 mins

3. Mesh Processing: 9.8% = 37 mins

4. Texture Reconstruction: 38.6% = 146 minutes

Initial tests indicate that a GPU implementation would

be 50-100 times faster. Alternatively a compute cloud

could be used to speed up computation.

5.4 Comparison
The combination of “Bundler” [SSS08] and CMVS

& PMVS [FCSS10] is a well-known and open-source

image-based modeling system. However, the output of

these research tools is a dense point cloud. While we

can easily obtain a closed surface from this data, we

were unable to find published software for texture re-

construction. We hence compared our system with the

only complete systems we could find. We identified

thirteen companies working in this field and compared

the best four algorithms [NWDL12a]. We showed that

our solution and “123D Catch” achieved the best geom-

etry reconstruction. The system presented in this paper

achieves even higher quality reconstructions due to the

integration of silhouette information and the novel tex-

ture reconstruction algorithm. Figure 13 demonstrates

that these improvements make a significant difference

when dealing with data sets containing few distinct vi-

sual features. For such data sets “123D Catch” strug-

gles both with reconstructing a correct geometry and

appropriate texture map.

Figure 13: 3D reconstruction from the “white rooster data set”

using our method (left) and “123D Catch” (right).

6 CONCLUSION AND FUTURE
WORK

We have described a texture reconstruction technique

for image-based modeling systems. In contrast to pre-

viously presented methods we integrate shape-from-

silhouette and correspondence-based methods, which

gives us very reliable camera parameter estimates and

excellent geometry reconstruction. This enables us to

fuse together texture regions obtained from input im-

ages without requiring excessive blending and defor-

mations. Textures are combined using a greedy al-

gorithm and a graph-cut technique minimizing gradi-

ent weighted color differences. The texture reconstruc-

tion uses an advanced surface parameterization method

which takes into account the genus and geometric fea-

tures of an object We have demonstrated the quality of

the reconstruction process using objects with different

geometries, genus, colors and surface properties. In all

cases we achieved an excellent reconstruction and re-

alistic texture. In contrast to laser scanners our system

also works for shiny and dark objects, and is easily scal-

able.
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Some problems still exist with seams along texture

patches, and discontinuities due to color inconsistencies

created during the image acquisition process. The cur-

rent system does not generate a texture for surface re-

gions not visible in the input images. We currently work

on texture inpainting techniques and exemplar-based

texture synthesis to fill such regions [PGB03, CPT04].

7 REFERENCES
[APK08] Cedric Allene, Jean-Philippe Pons, and

Renaud Keriven. Seamless image-based

texture atlases using multi-band blend-

ing. 19th International Conference on
Pattern Recognition, pages 1–4, 2008.

[BMR01] Fausto Bernardini, Ioana M. Martin, and

Holly Rushmeier. High-quality texture

reconstruction frommultiple scans. IEEE
Trans. on Visualization and Computer
Graphics, 7(4):318–332, October 2001.

[CAH+13] A. Colburn, A. Agarwala, A. Hertzmann,

B. Curless, and M.F. Cohen. Image-

based remodeling. IEEE Transactions on
Visualization and Computer Graphics,
19(1):56–66, 2013.

[CFW+12] Xiao Bao Clark, Jackson Finlay, Andrew

Wilson, Keith Milburn, Minh Hoang

Nguyen, Christof Lutteroth, and

Burkhard C. Wünsche. An investigation

into graphcut parameter optimisation for

image-fusion applications. In Proceed-
ings of Image and Vision Computing New
Zealand (IVCNZ 2012), pages 480–485,
Dunedin, New Zealand, 2012.

[CPT04] A. Criminisi, P. Perez, and K. Toyama.

Region filling and object removal by

exemplar-based image inpainting. Trans.
Img. Proc., 13(9):1200–1212, September

2004.

[CZCW12] Zhaolin Chen, Jun Zhou, Yisong Chen,

and Guoping Wang. 3d texture map-

ping in multi-view reconstruction. In

Advances in Visual Computing, volume

7431 of Lecture Notes in Computer Sci-
ence, pages 359–371. Springer Berlin

Heidelberg, 2012.

[EDD+95] Matthias Eck, Tony DeRose, Tom

Duchamp, Hugues Hoppey, Michael

Lounsberyz, and Werner Stuetzle. Mul-

tiresolution analysis of arbitrary meshes.

Computer Graphics Proceedings (SIG-
GRAPH 1995), pages 173–182, 1995.

[EdDM+08] Martin Eisemann, Bert de Decker, Mar-

cus A. Magnor, Philippe Bekaert, Edil-

son de Aguiar, Naveed Ahmed, Christian

Theobalt, and Anita Sellent. Floating

textures. Computer Graphics Forum,

27(2):409–418, 2008.

[FCSS10] Y. Furukawa, B. Curless, S.M. Seitz, and

R. Szeliski. Towards internet-scale multi-

view stereo. In Proceedings of Computer
Vision and Pattern Recognition (CVPR
2010), pages 1434–1441, 2010.

[Flo97] Michael S. Floater. Parametrization and

smooth approximation of surface trian-

gulations. Computer Aided Geometric
Design, 14(3):231–250, April 1997.

[GC09] B. Goldluecke and D. Cremers. Super-

resolution texture maps for multiview re-

construction. In Proceedings of the 12th
International Conference on Computer
Vision (ICCV 2009), pages 1677–1684,
2009.

[HQZH08] Shaoxing Hu, Jingwei Qiao, Aiwu

Zhang, and Qiaozhen Huang. 3d re-

construction from image sequence taken

with a hand-held camera. Interna-
tional Archives of the Photogrammetry,
37(91):559–563, 2008.

[HSKK01] Masaki Hilaga, Yoshihisa Shinagawa,

Taku Komura, and Tosiyasu L Ku-

nii. Topology matching for fully auto-

matic similarity estimation of 3D shapes.

Computer Graphics Proceedings (SIG-
GRAPH 2001), pages 203–212, 2001.

[HVC08] Carlos Hernandez, George Vogiatzis, and

Roberto Cipolla. Multi-view photomet-

ric stereo. IEEE Transaction on Pattern
Recognition and Machine Intelligence,
30(3):548–554, 2008.

[Kaz05] Michael Kazhdan. Reconstruction of

solid models from oriented point sets.

In Proc. of the 3rd Eurographics sym-
posium on Geometry processing, pages
73–82, 2005.

[KBH06] Michael Kazhdan, Matthew Bolitho, and

Hugues Hoppe. Poisson surface recon-

struction. In Proceedings of the 4th Eu-
rographics symposium on Geometry pro-
cessing, pages 61–70, 2006.

[KSE+03a] Vivek Kwata, Arno Schodl, Irfan Essa,

Greg Turk, and Aaron Bobick. Graph-

cut textures: Image and video synthe-

sis using graph cuts. ACM Transaction
Graphics, 22(3):277–286, 2003.

[KSE+03b] Vivek Kwatra, Arno Schödl, Irfan Essa,

Greg Turk, and Aaron Bobick. Graph-

cut textures: image and video synthesis

using graph cuts. ACM Trans. Graph.,

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 47 ISBN 978-80-86943-74-9



22(3):277–286, July 2003.

[LH01] Hendrik P. A. Lensch and Wolfgang Hei-

drich. A silhouette-based algorithm for

texture registration and stitching. Graph-
ical Models, 63(4):245–262, 2001.

[LI07] V. Lempitsky and D. Ivanov. Seamless

mosaicing of image-based texture maps.

In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recog-
nition (CVPR ’07), pages 1–6, 2007.

[Lor95] W. E. Lorensen. Marching through the

visible man. In Proceedings of IEEE
Visualization ’95, pages 368–373, 1995.

[Low99] David G. Lowe. Object recognition from

local scale-invariant features. Interna-
tional Conference on Computer Vision,
2:1150–1157, 1999.

[Low04] David G. Lowe. Distinctive image fea-

tures from scale-invariant keypoints. In-
ternational Journal of Computer Vision,
60(2):91–110, November 2004.

[LWC06] L. M. Lui, Y. Wang, and T. F. Chan.

Solving PDEs on manifold using global

conformal parameterization. In Proceed-
ings of the Third International Workshop
on Variational, Geometric, and Level
Set Methods in Computer Vision (VLSM
2005), pages 309–319, 2006.

[MBR+00] Wojciech Matusik, Chris Buehler,

Ramesh Raskar, Steven J. Gortler, and

Leonard McMillan. Image-based visual

hulls. In Computer Graphics Proceed-
ings (SIGGRAPH 2000), pages 369–374,
2000.

[NWDL12a] Minh Hoang Nguyen, Burkhard C. Wün-

sche, Patrice Delmas, and Christof Lut-

teroth. 3d models from the black box:

Investigating the current state of image-

based modeling. In WSCG 2012 Com-
munication Proceedings, pages 249–258,
Pilsen, Czech Republic, June 2012.

[NWDL12b] Minh Hoang Nguyen, Burkhard C. Wün-

sche, Patrice Delmas, and Christof Lut-

teroth. Modelling of 3d objects using

unconstrained and uncalibrated images

taken with a handheld camera. In Com-
puter Vision, Imaging and Computer
Graphics - Theory and Applications,
pages 1–16. Springer Verlag, 2012.

[NWDL13] Hoang Minh Nguyen, Burkhard Wün-

sche, Patrice Delmas, and Christof Lut-

teroth. A hybrid image-based modelling

algorithm. In Proc. of the 36th Aus-
tralasian Computer Science Conference

(ACSC 2013), pages 115–123, Adelaide,
Australia, 2013.

[PGB03] Patrick Perez, Michel Gangnet, and An-

drew Blake. Poisson image editing. ACM
Transaction Graphics, 22(3):313–318,
2003.

[Ree46] Georges Reeb. Sur les points singuliers

díune forme de pfaff completement inte-

grable ou diune fonction numerique [on

the (singular points of a completely inte-

grable pfaff form or of a numerical func-

tion). Comptes Randus Acad. Sciences
Paris 222, pages 847–849, 1946.

[REH06] Fabio Remondino and Sabry El-Hakim.

Image-based 3d modelling: A review.

The Photogrammetric Record, 21:269–
291, 2006.

[SGSH02] Pedro V Sander, Steven J Gortler, John

Snyder, and Hugues Hoppe. Signal-

specialized parameterization. Proceed-
ings of the 13th Eurographics Workshop
on Rendering, pages 87–100, 2002.

[SPR06] Alla Sheffer, Emil Praun, and Kenneth

Rose. Mesh parameterization methods

and their applications. Found. Trends.
Comput. Graph. Vis., 2(2):105–171, Jan-
uary 2006.

[SSS08] Noah Snavely, Steven M. Seitz, and

Richard Szeliski. Modeling the world

from internet photo collections. Int. J.
Comput. Vision, 80(2):189–210, Novem-

ber 2008.

[VA12] Robert Valkenburg and Nawar Alwesh.

Seamless texture map generation from

multiple images. In Proc. of the 27th
Conference on Image and Vision Com-
puting New Zealand, IVCNZ ’12, pages

7–12, New York, NY, USA, 2012. ACM.

[VW90] M. Visvalingam and J. D. Whyatt. The

Douglas-Peucker algorithm for line sim-

plification: re-evaluation through visu-

alization. Computer Graphics Forum,

9(3):213–228, September 1990.

[XLL+10] Lin Xu, E. Li, Jianguo Li, Yurong Chen,

and Yimin Zhang. A general texture

mapping framework for image-based 3d

modeling. In Proc. of the 17th IEEE
International Conference on Image Pro-
cessing (ICIP 2010), pages 2713–2716,
2010.

[ZMT05] Eugene Zhang, Kobstantin Mischaikow,

and Greg Turk. Feature-based surface

parameterization and texture mapping.

ACM Trans. Graph., 24(1):1–27, 2005.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 48 ISBN 978-80-86943-74-9


