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ABSTRACT

3D models have become an essential part of many applications ranging from computer games to architectural
design, virtual heritage, and visual impact studies. Traditionally, 3D model creation is done using modelling
systems such as Maya or Blender. However, these systems have a steep learning curve and require a considerable
amount of training to use. Thus, there is a critical need for tools which allow non-expert users to easily and
efficiently create complex 3D scenes. To answer to that demand, a number of commercial image-based modelling
packages have been introduced recently. Such software offers a very intuitive means to create 3D models from a
sequence of images. However, the algorithms employed by these systems are usually kept secret, which makes
it difficult to compare them algorithmically and identify common underlying concepts. This paper evaluates the
most promising 3D reconstruction software packages with regard to efficiency, accuracy, limitations, constraints
and compares them with a system developed by us in order to give an insight into their performance. To achieve
that, we first describe our own 3D reconstruction system as a reference in order to make deductions about common
concepts and differences. Then, we use a set of benchmark datasets to evaluate all considered systems, and gage
their limitations with regard to the number of input images they need and the image resolution. Our evaluation
shows that as the number of input images decreases, the geometry of models created using correspondence-based
approaches contains more holes. However, the structure and geometry still reflect the original model. In contrast,
silhouette-based methods produce coarse and distorted geometry as the number of input images decreases. Models
obtained using silhouette-based methods from few input images are often unrecognizable.
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1 INTRODUCTION

Creating 3D models of a scene has long been an im-
portant task in computer graphics. While conventional
geometry-based modeling approaches enable the con-
struction of highly realistic and complex 3D models via
interaction with 3D meshes, they have a steep learning
curve and require a considerable amount of training to
use. These restrictions render them unsuitable for non-
expert users. The recent advancement in hardware spe-
cialized in 3D model reconstruction has made it pos-
sible for non-professionals to reconstruct 3D scenes.

However, tools such as laser scanners and structured
lighting systems are often costly, have a limited range
and resolution, are not very portable and flexible to use.
Additionally, they have constraints with respect to ma-
terial properties and environmental conditions such as
string sunlight.

Digital cameras overcome many of these limitations
and their ubiquitous use and integration into comput-
ing devices such as smart phones is making them an
increasingly attractive proposition for 3D scene recon-
struction. Recovering 3D structure from photographic
images is an efficient and intuitive way to create 3D

digital models of objects. Compared with conven-
tional geometry-based modeling and hardware-heavy
approaches, the image-based modeling method can be
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employed to extract original texture and illumination
directly from images for visual 3D modeling, without
the need for complicated processes, such as geometry
modeling, shading and ray tracing. The techniques are



usually less accurate, but offer very intuitive and low-
cost methods for reconstructing 3D scenes and models.

The past few years have seen significant progress to-
ward automatic creation of 3D models. There are now
a number of software packages that offer the ability to
acquire 3D models from a set of images without any a
priori information about the scene to be reconstructed.
Once supplied with the input images, these systems au-
tomatically process and produce a 3D model. As the al-
gorithms used by these systems to reconstruct 3D mod-
els are usually kept secret, it is difficult to identify fun-
damental limitations and commonalities, and hence to
compare them on an algorithmic level. The objective
of this paper is to give an insight into the performance
of the currently best-performing systems by evaluating
them using benchmark datasets. We use the following
methodology to provide some insight into the current
state of image-based modeling: we include a reference
system that allows us to make grounded assumptions on
algorithmic differences, and we systematically vary the
number of input images and their resolution to identify
the current limitations.

After a description of related work on image-based
modeling, a brief overview of our reference system
is presented. In the second part, a set of benchmark
datasets is used to stress test these systems under vari-
ous conditions.

2 RELATED WORK

Ideally, image-based modeling algorithms can be cat-
egorized depending on the visual cues employed to
perform reconstruction, i.e. silhouettes, texture, trans-
parency, defocus, shading or correspondence. Tradi-
tionally, the most well-known and successful visual
cues have been shading, silhouettes, and correspon-
dence [HVCO08]. Silhouettes and correspondence offer
the highest degree of robustness due to their invariance
to illumination changes. The shading cue requires more
control over the illumination environment, but can pro-
duce excellent results [HVCO08]. However, the require-
ment for strict constraints over lighting conditions ren-
ders shape from shading impractical for general appli-
cations.

The shape from silhouette class of algorithms is very
efficient and has been proved to be stable with regard to
object surface properties (color, texture and material).
It is, however, very limited in the object geometries it
can handle [FLB06, MBR*00, NWDL11]. The earliest
attempt of using silhouettes for 3D shape reconstruc-
tion was made by Baumgart in 1974. In his pioneering
work [Bau74], Baumgart exploited silhouette informa-
tion from four input images to compute the 3D shapes
of a baby doll and a toy horse. Following Baumgart’s
work, many different variations of the shape from sil-
houette paradigm have been proposed

Grauman et al. [GSDO03] presented a Bayesian ap-
proach to account and compensate for errors introduced
as the result of false segmentation. The approach has
been shown to produce excellent error-compensated
models from erroneous silhouette information. The dis-
advantage of this method is that it requires prior knowl-
edge about the objects to be reconstructed and large
ground-truth training data. This makes them imprac-
tical for general applications.

Cheung et al. [CA84, mCBKO05a, mCBKO05b] proposed
a method that aligns multiple silhouette images of a
non-rigidly moving object over time in an attempt to
improve the quality of the constructed visual hull. Their
method showed a significant improvement in recon-
struction quality over previous methods.

Amongst the vast body of literature available on image-
based modeling techniques, recent work on multiple
view reconstruction has become a growing area of in-
terest with many different techniques achieving a high
degree of accuracy. These techniques are based mainly
on correspondence cues and focus on producing models
that resemble the original 3D scene from a sequence of
calibrated or uncalibrated images. The concept under-
pinning these techniques is the extraction and combi-
nation of information from several overlapping images
taken from distinct locations at different instants to de-
duce the relations between those images. When rela-
tions between images are properly established, the 3D
structure of the observed scene can be inferred.

One of the most famous and successful reconstruc-
tion systems is the Facade system, which was pro-
posed by Debevec et al. [DTM96]. The Fagade system
was designed to model and render simple architectural
scenes by combining a hybrid geometric and image-
based approach. The system requires only a few images
and some known geometric parameters. It was used
to reconstruct compelling fly-throughs of the Berkeley
campus and was employed for the MIT City Scanning
Project, which captured thousands of calibrated images
from an instrumented rig to compute a 3D model of the
MIT campus. While the resulting 3D models are often
impressive, the system requires considerable time and
effort from the user to decompose the scene into pris-
matic blocks and manually select features and their cor-
respondence in different views, followed by the estima-
tion of the pose of these primitives. Consequently, the
system is impractical for reconstructing large scenes.

More recently, Xiao et al. [XFTT08] developed a
semi-automatic image-based approach to reconstruct
3D fagcade models of high visual quality from a se-
quence of street view images. Their method employed
a systematic and automatic decomposition scheme
of facades for both analysis and reconstruction. The
decomposition is achieved by a recursive subdivision
that partitions the whole fagades into small segments,



while still preserving the architectural structure. Users
are required to provide feedback on facade partition.
This method demonstrated excellent results.

Brown et al. [BLO5] presented an image-based mod-
eling system that aims to recover camera parameters,
pose estimates and sparse 3D scene geometry from a
sequence of images. Snavely et al. [SSS06] introduced
the Photo Tourism (Photosynth) system which is based
on the work of Brown, with some significant modifica-
tions to improve scalability and robustness. Agarwala
et al. [AAC™06] proposed another related technique for
composing panoramas of roughly planar scenes. Al-
though these approaches address the same SfM con-
cepts as we do, their aim is not to reconstruct and vi-
sualize 3D scenes and models from images, but only to
allow easy navigation between images in three dimen-
sions.

3 DESIGN OF 3D RECONSTRUCTION
ALGORITHMS

Ideally, 3D reconstruction algorithms can be catego-
rized depending on the visual cues employed to perform
reconstruction, i.e. silhouettes, texture, transparency,
defocus, shading or correspondence. The best-known
and most successful visual cues have been shading, sil-
houettes, and correspondence [HVCO08, QualO]. Sil-
houettes and correspondence offer the highest degree
of robustness due to their invariance to illumination
changes. The shading cue requires more control over
the illumination environment, but can produce excellent
results.

In this section, we review and analyze the two most
popular reconstruction techniques: silhouettes and
correspondence based methods. In order to be able
to reconstruct a 3D scene without any a prior knowl-
edge, the intrinsic and extrinsic parameters of the
camera being used must first be estimated. This
process is further divided into three sub-steps: feature
extraction, feature matching, and camera parameter
estimation. 3D scene geometry can then be recovered
by either back projecting and interpolating 3D points
(correspondence-based), or using silhouette informa-
tion (silhouette-based). Figure 1 depicts several stages
of the reconstruction process.

3.1 Feature Detection and Extraction

The objectives of this step are to identify features of in-
terest in each image and to match the features across
views. The accuracy of the entire reconstruction pro-
cess relies on the features of the scene that can be iden-
tified, extracted and automatically matched. Conse-
quently, occlusions, illumination variation, limited lo-
cations for the image acquisition and reflective sur-
faces are problematic. However, recent invariant fea-
ture detector, such as SIFT [BLO5], have proved to
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Figure 1: Stages of the reconstruction process.

be fairly robust under large image variations. Feature
points extracted by SIFT are highly distinctive and in-
variant to different transformations and changes in illu-
mination, as well as having a high information content
[BLOS, HLO7].

The SIFT operator works by first identifying potential
points of interest. This is achieved by isolating points
located at the extrema of the Difference-of-Gaussian
(DoG) function in scale space. The location and scale
of each key point is then computed and key points are
selected based on measures of stability. Unstable ex-
tremum points (key points with low contrast or edge re-
sponse features along an edge) are rejected as they are
too sensitive to noise for accurate localization. Each
detected key point is then assigned one or more consis-
tent canonical orientations based on local image gradi-
ents. The key point descriptor is then described relative
to this canonical orientation, thereby achieving invari-
ance to rotation. Finally, using local image gradient in-
formation, a descriptor is produced for each key point
[SSS06]. Figure 2 shows an example of detected key
points from the Queen Victoria statue dataset (Auck-
land, New Zealand) before and after localization.

Figure 2: Left: Candidate key points detected from the first

stage. Middle: After discarding low contrast key points.
Right: After discarding key points located on edges (key-
points near the edges and corners of images are now re-
moved).



3.2 Feature Matching

Once features have been identified and extracted from
all the images, they are matched. This is known as the
correspondence problem. Given a feature in an image
I;, what is the corresponding feature (the projection of
the same 3D point) in the other image 1,? This can
be solved by defining a distance function that compares
the two feature descriptors. All the detected features in
I, are tested and the one with the minimum distance is
selected [CA84]. The Euclidean distance is employed
to measure the similarity between two key points A and
B.

A small distance indicates that the two key points are
close and thus similar. However, a small distance does
not necessarily mean that the points represent the same
feature. For instance, a scene can contain many similar
features such as corners of windows in an large build-
ing. It merely indicates that the two features have the
highest resemblance of all processed features. In or-
der to accurately match a key point in the candidate im-
age, we identify the closest and second closet key points
in the reference image using a nearest neighbor search
strategy. If the ratio of them is below a given thresh-
old, the key point and the closest matched key point are
accepted as correspondences, otherwise that match is
rejected [Low04, Low99].

Since multiple images may view the same point in the
world, each image is matched to the nearest neighbors.
During this process, image pairs whose number of cor-
responding features is below a certain threshold are re-
moved. In our experiment, the threshold value of 20
seems to produce the best results.

As the matching procedure is subject to errors and mis-
matches, many of our matches are spurious. It is pos-
sible to eliminate many spurious matches by enforcing
a geometric consistency. This is predicated on the fact
that, assuming a stationary scene, not all correspond-
ing features between two images are physically resiz-
able, regardless of what the actual shape of the scene
is. This geometric constraint is known as the epipolar
constraint. The epipolar constraint requires that a pair
of corresponding features, (x,y;) — (x2,y2) between
two images satisfies the equation:

X1
yi | =0 (D
1
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Where F denotes the Fundamental matrix, which de-
fines a bilinear constraint between the coordinates of
corresponding image points. Thus, for a given image
pair, only matching features that agree with the epipo-
lar constraint are admissible. All other matches are re-
jected.

3.3 Camera Parameter Estimation

Given a set of matching images, the goal of this stage
is to recover the geometry of the scene and the motion
information of the camera (camera parameters) simul-
taneously. The motion information includes the extrin-
sic (position, orientation) and intrinsic parameters of
the camera for the captured images. This is accom-
plished using the Structure from Motion (SfM) tech-
nique [SSS06, Sze, COMT11].

The reconstruction process begins by estimating param-
eters for an initial pair. The selection of the initial im-
age pair to be reconstructed is highly critical. If the
reconstruction of this initial pair gets stuck in undesir-
able local minima, the optimization is unlikely to ever
converge. To avoid such cases, the initial pair must be
selected carefully. The chosen images should have a
large number of correspondences, but also have a rela-
tively large baseline (the distance between camera op-
tical centers). This is to ensure that the location of the
3D observed point is well-conditioned, so that the ini-
tial two-frame reconstruction can be robustly estimated.

The estimation of the extrinsic parameters for this ini-
tial pair is as follows [SSS06]: First, the Essential
matrix is approximated using the five-point algorithm.
Next, the projection matrix can be retrieved by decom-
posing the Essential matrix. Feature tracks visible in
the two images are then triangulated, giving an ini-
tial set of 3D points. Once the structure of the scene
and the motion information have been estimated for the
first pair, they are further refined using Bundle Adjust-
ment. Bundle Adjustment refines a visual reconstruc-
tion to produce the optimal 3D structure and motion in-
formation. This last step is critical for the accuracy of
the reconstruction, as concentration of pairwise homo-
graphies would accumulate errors and disregard con-
straints between images. The recovered geometry pa-
rameters should be consistent. That is, the reprojection
error, which is defined by the distance between the pro-
jections of each key point and its observations, is mini-
mized (Figure 3).

reprojection error

L
Camera Center

Figure 3: The reprojection error is the distance between the
projected image point p and the observed image point p .



Subsequent images are added to the optimization one
at a time, with the best matching image being added at
each step. Best matching images are those that share
the largest number of tracks whose 3D locations have
already been estimated. Each new added image is ini-
tialized with the same orientation, and focal length as
the image that it matches best. This has proved to work
very well even though images have different rotation
and scale. Next, Bundle Adjustment is applied to refine
the solution. This procedure is repeated, one image at
a time, and terminates when no more images can reli-
ably be added. The reliability test is determined based
on the number of correspondences. A camera is only
added when it shares a sufficient number of correspon-
dences. In our system, we use a threshold value of 25,
which was empirically selected from our experiments.
Figure 4 demonstrates several stages of the SfM algo-
rithm.

Figure 4: Several SfM stages of the reconstruction of our
Rooster dataset. Left: the initial two-frame reconstruction.
Middle: an intermediate stage after 20 images have been
added. Right: the final construction with 42 images.

3.4 Correspondence- and Silhouette-
based Reconstruction

Once the camera parameters have been successfully es-
timated, the 3D scene geometry can be computed. For
correspondence-based approaches, the final steps in-
volved triangulating correspondences to obtain a sparse
set of 3D points. This initial sparse set of points then
undergoes a refinement process which often involves
denoising and resampling. Surfaces are then applied
onto the point clouds to produce the final 3D model
[ASG, SSS06, HL07, NWDL11, FP09].

For silhouette-based approaches, the 3D model is pro-
duced by exploiting silhouette information to create in-
tersected visual cones, which are subsequently used to
derive the 3D representation of an object. The con-
struction of these cones requires the coordinates of a
set of silhouette contour vertices for a given camera,
and the coordinates of the camera’s optical center as
input. Rays extrapolated from the camera’s optical cen-
ter through the contour image points and beyond de-
fine a silhouette cone for that view, which is guaran-
teed to contain the original object. The intersection
of silhouette cones from different viewpoints defines a
polyhedral visual hull as an approximation of the object
[HVCO08, Lam02, FB10, LW10].

4 EVALUATION

In this section, we present an evaluation of four 3D
reconstruction systems. These include two systems
that seem to be correspondence-based (our own
correspondence-based system and Hyper3D) and two
reconstruction systems that seem to be silhouette-based
(Agisoft and 123D Catch). These systems were chosen
because they are among the best with regard to the
quality of reconstruction. Our goal is to evaluate their
efficiency, accuracy, constraints and limitations in order
to provide insight into the current state of image-based
reconstruction in general.

In order to evaluate a system we used a repository of
40 objects. After an initial tests using different objects
we selected one object which reflected the capabilities
of all tested algorithms and used it to investigate the ef-
fect of image acquisition parameters. For this selected
object, we created eight different datasets. Some of the
input images are shown in Figure 5. The datasets vary
in the number of input images they contain and the res-
olution of the input images.

Figure 5: Four input images from four distinct viewpoints.

All images are taken with a Logitec Webcam in an in-
door environment. Some input images are intentionally
captured with other unrelated moving objects, to test
how different algorithms handle unrelated moving ob-
ject in the scene. The original model has a bumpy sur-
face with a reasonable number of distinctive features.

4.1 Effect of the Number of Input Images

The objective of this test is to determine the effect of
the number of input images on reconstruction quality.
We evaluated 4 datasets of the bird model with a con-
stant resolution of 1600 x 1200 and varying numbers
of input images: 30, 20, 12 and 7. Figure 6 shows
the reconstruction results for all the evaluated systems.
The perspectives in which the reconstructed models are
shown in the table were chosen so that reconstruction
deficiencies are most visible.

30 Images For this dataset, our system, /123D Catch,
and Agisoft produce a qualitatively good model. There



30 Images 20 Images 12 Images 7 Images
Our System
123D Catch
Agisoft FAILED
Hyper3D FAILED FAILED

Input Images Our System

123D Catch

Agisoft Hyper3D

Figure 6: Reconstruction results of the first test suit. Last row: Close-up screen shots of the reconstructed models from 30

images.

is a slight deformation (on the side) in /123D Catch’s
model, but overall the resulting reconstruction is visual-
pleasing. Our reconstruction has a more blurry texture
than that generated using /123D Catch. This is because
we generate the texture by performing color interpo-
lation between 3D points while they use a projection-
based texture. However, in terms of geometry, our re-
construction bears the highest resemblance to the origi-
nal model. Hyper3D was only able to construct a partial
model.

20 Images Agisoft’s system produced a reasonably
good model, although there is a slight disruption in
the geometry in the chest of the bird model. 123D
Catch’s model is not as good. There is a large chunk of
the background glued to the model. This is probably
caused during the background subtraction process in
which the object was not properly segmented. The

model produced from our system has the best geometry,
however the texture has become even more blurry. This
is understandable as there are fewer distinctive features
in the input image sequence leading to fewer 3D points
generated. Hyper3D, again, was only able to produce a
partial reconstruction.

12 Images For the third dataset, Hyper3D was unable
to produce any result. Agisoft model’s geometry was
disfigured. There is a large bit missing on the side of
the model. /23D Catch has reasonably good geometry,
although similar to the previous case there is a bit of
the background attached to model (Figure 6). For our
model, there is a small missing region at the top of the
model. Apart from that, the geometry still retains the
highest resemblance to the original model.

7 Images For this dataset, the reconstruction results
from our system and /23D Catch are shown in Figure



1600 x 1200 800 x 600 400 x 300 200 x 150
Our System FAILED
123D Catch FAILED
Agisoft FAILED
FAILED
HyperdD

Figure 7: Reconstruction results of the second test suit.

6. Agisoft and Hyper3D system were unable to produce
any result. Both /23D Catch and our system were only
able to construct a partial model. Although the geom-
etry of /123D Catch model seems more complete, it is
almost unrecognisable and does not share much in com-
mon with the original model. In contrast, the model cre-
ated using our system still has some resemblance to the
original model. This test indicates that our system and
123D Catch are amongst the most robust with regard to
limited number of input images.

The result of this test clearly differentiate
correspondence-based from silhouette-based ap-
proaches for a decreasing number of input images.
Correspondence-based approaches, although produc-
ing models with good geometry, tend to have more
missing geometry when the number of input images
decreases. Additionally, textures generated from this

approach are often blurry as the result of interpolation.
Silhouette-based approaches do not create holes, but
they show coarse and distorted geometry for small
numbers of images. The resulting models become more
refined with an increasing number of input images.
To be able to construct a reasonable quality model of
a small sized object, today’s systems would need at
least 20 input images from a standard consumer-level
camera. Adding more than 30 images does not im-
prove the reconstruction quality significantly. Models
reconstructed from 12 images or less are usually
unsatisfactory.

4.2 Effect of the Input Image Resolution

We aim to evaluate the performance of these systems
with regard to image resolution. For this test suit,
we reduce the resolution of the input images. There



Our System 123D Catch ~ Agisoft Hyper3D

Speed Medium Fast Slow Medium

Geometry Good Good Good Average
Texture Average Good Good Good

#Images Small Small Medium Medium
Resolution Small Small High High
Constraints None None None None

Min #images 12 12 12 20
Min resolution | 400x300 400300  800x600 1600x1200

Table 1: Summary of the four system’s performance.

are four datasets in this test suit, each contains 30
input images with resolution of 1600 x 1200, 800
x 600, 400 x 300, and 200 x 150 respectively.
The objective is to stress the systems further to
determine how well each system performs in the
case of low resolution input images. Figure 7 illus-
trates the resulting reconstructions from all the systems.

1600 x 1200 Due to the large resolution of the input
images, most resulting models are well reconstructed.
Hyper3D produces the worst model, which has a large
missing region.

800 x 600 For this dataset, /123D Catch’s system yields
the most qualitatively accurate model which has its
texture properly recreated, although there remain many
missing regions in the final model. Our model has
the most complete and well-reconstructed geometry
of all resulting models. Our texture, however, is
noisy. Models from Agisoft and Hyper3D are mostly
disfigured. One half of the reconstructed models has
completely vanished. This is mostly due to the fact that
their systems are not able to register views when there
only a limited number of features in each input images.
In the case of Agisoft, the texture appears very blurry.

400 x 300 For this test, Agisoft’s model is completely
unrecognizable. There is a large bit missing from the
reconstructed model. Our system, /23D Catch and
Hyper3D were able to produce some outputs. Although
the resulting reconstructions are only partial. This is
also the result of insufficient number of distinctive
features, which leads to failure to establish global
image correspondence. Models from our system and
Hyper3D are reasonably reconstructed. The resulting
models still reflect the structure of the original object.
In the case of 123D Catch, the resulting model bears
almost no resemblance to the original

200 x 150 In this test, all the systems were unable to
register images due to insufficient overlap between im-
age features.

The results show that silhouette-based approaches
seem to be less robust for low resolutions. This
is probably because silhouette-based methods are
naturally deterministic and do not account for er-
rors that might be present in views. The errors are
typically caused by inaccurately estimated camera
parameters. For silhouette-based systems, resolution
significantly below 1600 x 1200 does not seem to yield
satisfactory models anymore. Correspondence-based
approaches are slightly more robust with regard to
image resolution.

Models reconstructed with low-resolution images us-
ing correspondence-based approaches often have noisy
surfaces, but appear more complete. However, for
correspondence-based approaches, a resolution below
800 x 600 does not seem to produce satisfactory mod-
els anymore.

S CONCLUSION

We described the overall design of image-based re-
construction algorithms, and evaluated a number of
3D reconstruction systems. The evaluation shows that
there are general differences between the different algo-
rithms, particularly between correspondence-based and
silhouette-based algorithms.

Correspondence-based algorithms produce good details
for larger numbers of input images (>20), but tend to
produce missing geometry (holes) as the number of in-
put images decreases. The textures they generate are
often blurry because of interpolation. They are fairly
robust with regard to image resolution and still produce
models with fairly complete geometry for low resolu-
tions, although the surfaces become noisy.

Silhouette-based approaches do not create holes, but
they show coarse and distorted geometry for small num-
bers of images. They tend to produce better textures
because they backproject the original images as the sil-
houettes are constructed. However, they tend to be less
robust for low-resolution input images, as they are more
sensitive to camera parameter estimation errors. A sum-
mary about various aspects of the four systems is shown
in Table 1.



To gain a deeper understanding into today’s reconstruc-
tion algorithms, it is necessary to investigate the effect
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