
Using Game Engine Technology for Virtual Environment
Teamwork Training

Stefan Marks
Auckland University of

Technology, New Zealand
stefan.marks.ac@gmail.com

John Windsor
The University of Auckland,

New Zealand
j.windsor@auckland.ac.nz

Burkhard Wünsche
The University of Auckland,

New Zealand
b.wuensche@auckland.ac.nz

ABSTRACT
The use of virtual environments (VE) for teaching and training is increasing rapidly. A particular popular medium
for implementing such applications are game engines. However, just changing game content is usually insufficient
for creating effective training and teaching scenarios. In this paper, we discuss how the design of a VE can be
changed to adapt it to new use cases. We explain how new interaction principles can be added to a game engine
by presenting technologies for integrating a webcam for head tracking. This enables head-coupled perspective as
an intuitive view control and head gestures that are mapped onto the user’s avatar in the virtual environment. We
also explain how the simulation can be connected to behavioural study software in order to simplify user study
evaluation. Finally we list problems and solutions when utilising the free Source Engine Software Development
Kit to design such a virtual environment. We evaluate our design, present a virtual surgery teamwork training
scenario created with it, and summarize user study results demonstrating the usefulness of our extensions.

Keywords: Serious Game, Source Engine, Medical Teamwork Training, Head Tracking, Non-Verbal Communi-
cation, Head-Coupled Perspective

1 INTRODUCTION

In recent years, virtual environments (VEs) have
become increasingly popular due to technological
advances in graphics and user interfaces [MSL+09].
One of the many valuable uses of VEs is teamwork
training. The members of a team can be located
wherever it is most convenient for them (e.g., at home)
and solve a simulated task in the VE collaboratively,
without physically having to travel to a common
simulation facility. Medical schools have realised
this advantage and, for example, created numerous
medical simulations within Second Life or similar VEs
[DPH+09].

To implement a VE, the developer has to choose be-
tween three possibilities:

1. To use a completely implemented commercial or
free VE solution like Second Life [Lin10]. This has
the advantage of being able to completely focus on
content creation instead of having to deal with tech-
nical implementation questions and problems. How-
ever, the disadvantage is that these frameworks can-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

not easily be extended with additional functionality
required for a specific simulation scenario.

2. To build a VE from scratch. This enables complete
freedom in the design and usability of the VE, but
significantly extends development time.

3. To use a simulation framework that can be flexibly
extended to account for special design requirements,
but already provides a solid foundation of function-
ality to achieve a quick working prototype.

Whereas the first two options are located at the oppo-
site extremes of the spectrum, the last option is located
between these extremes in terms of development flex-
ibility and rapid prototyping. A game engine, the un-
derlying component of computer games, can be used as
such a framework. This is the principle behind “seri-
ous games”: To use the technology of computer games,
e.g., graphics, sound, physical simulation, multi-user
support, but to replace and adapt the original content to
build “serious” applications, e.g., for education, train-
ing, or simulation.
The literature provides several examples of studies with
simulation environments based on game engines, e.g.,
[TSHW08], [MRL+06], [ST09]. For an extended re-
view of serious games, see [SJB07].
However, rarely does the reader find information dis-
cussing design options, the advantages and disadvan-
tages of tools such as game engines, and how to use
them effectively and integrate new functionalities. This
makes it difficult for researchers to extend existing sim-
ulations or create new ones. One example of the few
exceptions is the publication of Ritchie, Lindstrom, and

Client Computer

- Face detection
- Head tracking
- Eye tracking
- Expression recognition
- ...

User Monitor (Xpressor)

- Head orientation
- Gaze direction
- Facial expression
- ...

Data Model

Network

Server

Game Engine Client

Plug-InVE Engine Client

Training Scenario

Game Engine Server

VE Engine Server

Figure 1: The functional blocks of the simulation framework

Duggan, where not only the used tools for the develop-
ment process but also source code details are provided
[RLD06].

We have created a VE for medical teamwork training
which provides additional control mechanisms by using
a webcam to capture the head movement of the user.
This head movement is decomposed into the transla-
tional part which is used for head-coupled perspective
(HCP), and the rotational part which is used to control
head gestures of the user’s avatar to convey non-verbal
communication cues. The results of our user studies
show that HCP improves the usability of the VE as it
introduces an intuitive view control metaphor that even
inexperienced users were able to master within seconds.
In addition, tracking-based head gesture control of the
avatar improved the perceived realism of the simulation
[MWW11].

This paper provides insight into the design of game
engines and their modification for advanced “serious
games” applications. In particular we explain how new
user interface devices can be integrated. In our discus-
sions, we use the Source Engine [Val07] as an example,
which, at the time of the survey, fulfilled most of our
simulation requirements: good graphical and animation
capabilities, availability of an Software Development
Kit (SDK) and developer tools, and reliable synchroni-
sation of physically simulated objects among multiple
clients. The details of the selection process of a suitable
engine can be found in [MWW07].

Section 2 presents the design of our VE framework. In
Section 3, we describe the details of the implementa-
tion. A summary of the results of our user studies con-
ducted with the framework are then presented and dis-
cussed in Section 4, and we finish with the conclusion
in Section 5.

2 DESIGN

The goal of the research described in this paper is to
utilise a game engine to implement a virtual environ-
ment for surgical teamwork training. An important
component in teamwork is non-verbal communication,
such as head gestures, which we capture with a web-
cam and then map onto avatars in the virtual environ-
ment. In addition we need an intuitive method for view
control, since most surgical procedures require the sur-
geon to use both hands for instruments. We therefore
decided to implement HCP using webcam input. HCP
changes the view of the VE based on the movements of
the user’s head position in front of the monitor. The im-
plementation of these additional hardware components
and control metaphors is also part of this paper.

Realising our simulation scenario requires changing the
game content, gameplay, and integration of webcam in-
put to control game engine parameters. Figure 1 gives
an overview of the architecture of the resulting system.
The sections marked in red were developed, extended,
or modified for the implementation. Figure 2 shows a
screenshot of the final VE for teamwork training simu-
lations.

The simulation is run on a central server that all users
connect to with their client computers. The server as
well as the clients run their part of the VE engine, be-
ing constructed on top of the Source Engine. It is im-
portant to distinguish between the terms “game engine”
referring to components of the simulation framework
that are parts on the Source Engine itself and therefore
cannot be altered, and “VE engine” referring to compo-
nents that are based on the Source SDK and have been
altered to create a VE with new features and interac-
tions.

The original game content on the server is replaced by
the teamwork training scenario. This includes virtual

Figure 2: Screenshot of the final surgical teamwork simulator
MedVE created from the original deathmatch game code

rooms, objects, instruments, sounds, textures, 3D mod-
els, etc.

On each client, an additional program, called Xpressor,
is running, using the input from the webcam for track-
ing the user’s head and face. The tracking information
is sent in the form of a specific data model (see Sec-
tion 3.3) to a plug-in of the VE engine. By using an
external tracking program and the plug-in architecture,
it is easily possible to exchange these components later
with more advanced ones, without having to modify the
actual VE engine.

The translational head tracking information is used to
control the view “into” the VE. This so called head-
coupled perspective (HCP) enables intuitive control,
such as peeking around corners by moving the head
sideways, or zooming in by moving the head closer to
the monitor.

The rotational head tracking information is used to con-
trol the head rotation of the user’s avatar. That way,
other users in the VE can see head movement that is
identical to the movement actually performed physi-
cally by the user, such as nodding, shaking, or rolling
of the head.

In addition, data from face tracking can be used to de-
tect facial expressions and transfer them onto the user’s
avatar. Bartlett et al [BLWM08], for example, present a
system that recognises a large set of movements of fa-
cial keypoints, such as lip corners, eyebrows, or blink-
ing. Using a simpler set of movements and keypoints,
the authors of [QCM10] created a virtual mirror, where
an avatar mimics smile, gaze and head direction, and an
opened/closed/smiling mouth of the user in realtime. In
our implementation, we use a non-commercial version
of the face tracking library faceAPI which does not in-
clude the detection of facial expressions.

3 IMPLEMENTATION
In the following three sections, we will explain the im-
plementation of the three important components of this
framework: the virtual environment, the user monitor
Xpressor, and the data model.

3.1 Virtual Environment
3.1.1 Steam Client

The modification of a game that utilises the Source
Engine starts off with Steam, a client software of the
manufacturer Valve, designed to enable the user to buy
games online, download and install them, and to keep
the games updated when bugfixes or extras are released.

3.1.2 Creating a New Project

The Source SDK is available to anybody who has pur-
chased at least one game that utilises the Source En-
gine, e.g., Half-Life 2, Team Fortress 2, Portal. With the
help of the Steam client, the SDK is easily downloaded
and installed like any other game. The SDK gives a
good starting point to experiment with the code and the
game engine, and to start modifying certain aspects of
the game. Several pages on the Valve Developer Com-
munity (VDC) website give additional hints and ideas,
for example the “My First Mod” tutorial [Val10b].

3.1.3 Version Control

Directly after creating and compiling the modification
project, we put the code under version control, using
Subversion [The11], as described in [Val10e]. That
way, we were able to update the code with changes that
were applied to the SDK later in the development pro-
cess.

3.1.4 Concepts of the Source Engine

Gaining an understanding of the design and function-
ality of the Source Engine was a very time-consuming
process. At first sight, the developer website creates an
impression of a thorough documentation. But when it
comes down to details and specific questions, this doc-
umentation reveals large gaps and provides outdated or
even contradictory information.

The majority of work necessary for understanding the
Source Engine was to read through the provided code
of the SDK, ignore several inconsistently implemented
naming conventions, insert execution breakpoints, trace
method calls through several class inheritance levels,
and much more.

Good documentation and a well structured codebase is
important for any game engine that is to be the founda-
tion of a simulation. Without these prerequisites, a lot
of time is spent on deciphering the inner workings of
the underlying code or on figuring out how to achieve

Game Client / client.dll

Engine Client

Game Server / server.dll

Engine Server

IBaseClientDLL

IVEngineClient

IServerGameDLL

cdll_int.h

IVEngineServer

eiface.h

▪ Initialise/shutdown
▪ Calculate view, render frame
▪ Process mouse/keyboard event
▪ Prepare data for saving/loading
▪ ...

Get player/object info ▪
Execute server/client command ▪

Get map/game settings ▪
Get system settings/time/screen size ▪

… ▪

▪ Initialise/shutdown
▪ Simulate one frame
▪ Provide map information
▪ Prepare data for saving/loading
▪ ...

Load/change map ▪
Create/destroy/move entities ▪

Simulate physical objects ▪
Emit sounds ▪

… ▪

S
ou

rc
e

S
D

K
S

ou
rc

e
E

ng
in

e
hl
2.
ex
e

Figure 3: Boundaries between the Source SDK and the Source Engine

a certain functionality, instead of implementing the es-
sential parts of the program.

In the following sections, we will present some of the
major concepts of the Source Engine that played an im-
portant role in the development and modification phase.

3.1.5 Game Engine/SDK Boundaries

When a multi-user Source Engine game is started, four
program parts are involved (see Figure 3):

• The game engine (hl2.exe) is executed, consist-
ing of the server

• and the client part.

Depending on whether the user chooses to start a new
game server or to connect to an existing game server,
the engine then activates

• either the game server dynamic link library (DLL)
server.dll

• or the game client DLL client.dll.

The game engine itself cannot be modified at all. No
source code of the inner workings of the engine is given.

The SDK contains header files with interface defini-
tions for the server (eiface.h) and the client part
(cdll_int.h) of the engine. These interfaces pro-
vide access to very basic entity and resource manage-
ment, and to the sound, graphics, and system functions
of the engine.

It is possible to build a game completely from scratch,
using only those header files. However, the SDK deliv-
ers a comprehensive set of classes and methods that, in
its entirety, already constitutes a complete game. Start-
ing from this point, the developer can now modify, re-
move or add custom parts to this framework. The ad-
vantage is rapid prototyping, as long as the result does
not differ much from the original kind of game.

However, with every additional change that is necessary
to get away from the original game towards the final
product, it gets more and more difficult to implement
the changes. Some of these difficulties are described
further down in this section.

3.1.6 Client-Server Architecture
Games and VEs for multiple users are mostly con-
structed using a client/server architecture [Val10d]. The
basic principle of client and server communication of a
game based on the Source Engine is shown in Figure 9.

The server is mainly responsible for running the simu-
lation, updating the position, orientation, and speed of
animated and physically simulated objects. In regular
intervals, e.g., every 33ms (=30Hz), it receives com-
pressed command packets from the clients, carrying in-
formation about mouse movement, keyboard input, and
other events that the users on the clients have triggered.
These command packets are unpacked, checked, and
their effect is taken into consideration for the simula-
tion: avatars move, objects are picked up or released,
sounds are played, etc. After each simulation step, the
new state of all objects and avatars is sent to the clients
which can in turn update the changed state of the world
on the screen.

During runtime, each simulated object in the VE ex-
ists in two versions: One version, the “server entity”, is
managed on the server, and is actively simulated. The
second version, the “client entity”, exists on each client
and is kept in sync with the server version by network
variables [Val10c].

These variables automatically take care of maintaining
a synchronous state between the server and all clients.
As soon as a variable value changes, its value is marked
for transmission on the next update data packet from the
server to the clients. To conserve bandwidth, the val-
ues are being compressed and only sent when they have
changed. This mechanism is important to enable fluid
gameplay on low-bandwidth connections, e.g., dial-up.

3.1.7 Prediction
The fact that clients have to wait for a data packet from
the server to show the updated world has a major draw-
back: Users would experience a noticeable delay to
their actions, especially on slow network connections.

To avoid this delay and to provide a fast and respon-
sive game, the client predicts the response of the server

and uses this prediction for an immediate response to
user input. When the client later receives the real server
response, it corrects the prediction, if necessary.

For the prediction, the client needs to have the same
rules and simulation routines as the server. In the
SDK, this is implemented by a major duplication
of code for the server and client entity representa-
tions. However, instead of physical file duplication,
shared code is contained in shared source files (e.g.,
physics_main_shared.cpp) that are included in
both, client and server projects.

3.1.8 Stripping Down the Engine
The next big step, after understanding the engine, was
to strip the project code of unnecessary classes and enti-
ties, e.g., weapons and the player health indicator. This
step proved very difficult due to numerous interdepen-
dencies within the code. Weapon related code espe-
cially, was very deeply integrated into basic classes.
Removal of one class file would break several other
classes. It required a lot of re-compilation passes and
uncommenting of large code sections until the code
would compile again.

3.1.9 Changing the Interaction
One major change in the original SDK deathmatch
game style was the primary interaction type. After we
had removed all weapons, we wanted to assign the left
mouse button click to grabbing and releasing of phys-
ical objects, and to triggering of interactions with ob-
jects, e.g., buttons or patients.

This seemingly simple change required a lot of rework-
ing in the code to create access methods to the objects
that the user interacts with, to enable users to take ob-
jects from each other, and to log all of those interaction
events.

On a visual level, we wanted the avatars to grab an ob-
ject with the right hand as soon as the user would pick
it up. This can be implemented with inverse kinemat-
ics (IK): When the target position of the hand is given,
IK calculates the position of the animating bones of the
arm so that the attached hand reaches that position ex-
actly.

The Source Engine is capable of IK, as can be seen in
Half-Life 2 – Episode 2, where a certain tripod char-
acter always touches uneven ground with all three feet.
However, the Source SDK website states that in multi-
player games, IK is not activated due to difficulties and
performance reasons on the server [Val10a].

Our queries in the developer forums resulted in a con-
firmation that the engine is capable of IK, but nobody
was able to give an answer on how to do it.

For this reason, grabbed objects “float” in front of the
avatar while they are carried around. However, this flaw

Figure 4: Different styles for the viewpoint indicator

Figure 5: Creating body awareness for the avatar

Figure 6: Examples of a room with the original Source SDK
textures (left) and the custom textures for the user studies

in realism did not distract the participants of the user
studies. Some of them even made fun of the strange
appearance, mentioning “Jedi-powers”.

3.1.10 Changing the User Interface
Together with the change of the interaction style, we
redesigned parts of the user interface. In the original
SDK, the centre of the screen is marked by a crosshair,
indicating the point where the weapon would be fired
at.

With the removal of any weapon related code, the
crosshair turned into a viewpoint indicator. After
some experiments with different indicator styles, We
chose a segmented circle that turns green as soon as
an interactive object is in focus, and closes when a
physical object is grabbed and held (see Figure 4).
Such a circle has an improved visibility over, e.g., a
simple point. It is also less associated with weapons
than, e.g., a crosshair.

The original weapon crosshair was simply painted at
the centre of the screen. With the inclusion of head
tracking however, we also had to consider a position
offset caused by the avatar head rotation and translation.

3.1.11 Body Awareness
In the original SDK, the user cannot see the avatar’s
own body when looking down, as shown in the left im-
age of Figure 5.

To create body awareness, we had to change several as-
pects:

Figure 7: Observer XT visualising interactions, movements,
and talk patterns of a teamwork simulation

1. The body model has to be drawn, even when the
game is in first-person view.

2. The camera viewpoint has to be synchronised with
any animation of the body model, e.g., walking,
standing idle. To achieve this, the camera position
is constantly updated with the position of the eye-
balls of the avatar model.

3. When looking up or down, the vertical head rotation
cannot simply be translated into a camera rotation,
because in that case the user would be able to see
the inside of the head or the body (see left screenshot
in Figure 5). We added a forwards translation to the
camera that is slightly increased when the user looks
up or down. Together with correct settings for the
near and far plane of the camera frustum, this creates
a realistic body awareness without literally having
“insight” into the avatar model.

We had planned to use IK to visualise the head move-
ment caused by head tracking. Physical, translational
head movement of the user would then have resulted in
identical translational upper body and head movement
of the avatar. As a result, an avatar would lean forward
or sideways in sync with the user who is controlling it.
However, we were not able to implement this feature
due to the insufficient documentation of the IK features
of the engine.

3.1.12 Textures

The original textures of the SDK are designed for creat-
ing games that are set in a post-war era. These textures
are, in general, worn down and dull, creating a depres-
sive feeling in all maps created with them.

We replaced some of the wall, floor, and ceiling tex-
tures with synthetic textures that look like clean tiles.

Figure 8: Screenshot of the user interface of Xpressor

The regular style of the tile textures creates a very or-
ganised, sterile look. The realism of the rooms created
with these textures could be increased further by using
photos of real rooms. However, this was not a priority
for our research, but it is an indicator of the complexity
of designing and creating realistic environments.

3.1.13 Data Logging

We also implemented a data logging module that
records user head movement, user interactions, and
gaze targets and duration. The generated logfiles enable
us to analyse individual and teamwork scenarios for
statistical evaluations. An additional benefit, especially
for teamwork assessment, is the ability of the logfiles
to be imported into external assessment tools, like
the behavioural analysis tool Observer XT shown in
Figure 7 [Nol10]. This import eliminates the need
for human assessors to observe a teamwork recording
again to create a list of actions and behaviours. All this
information is already present in the VE engine during
the simulation and can therefore be directly exported
into the logfile.

3.2 Xpressor
Xpressor is the program that we developed for encapsu-
lating the head tracking library faceAPI. The program
communicates bidirectionally with the VE engine, us-
ing two local user datagram protocol (UDP) connec-
tions.

The communication with the VE engine occurs through
a plug-in, as shown in Figure 1. The Source SDK has
certain settings and abstraction layers that prevent the
direct use of networking functions and several other op-
erating system related functions. However, it is possible
to load plug-in DLLs and to exchange data with them.
We therefore created a simple Xpressor plug-in that is
loaded in the beginning, accepts the UDP connection,
and relays the following data into the VE engine:

• translational and rotational tracking data,

ClientsClients

User Avatar
Client Entity

User Avatar
Server Entity

User Avatar
Client Entity

Input Module

Client Server Clients

Control Input

Extended Client Data Packet

Build compressed
client data packet

Unpack and evaluate

Network VariablesNetwork Variables

Display on screen Display on screen

Run simulation step

other Client
Data Packets

User Xpressor

Tracking Data

Head
Movement

Figure 9: Data exchange between Xpressor, the VE clients, and the server

• a low resolution video stream,
• information regarding whether the user is speaking

or not, and
• values to control the facial expression of the avatar.

The video stream is helpful for the user e.g., to ad-
just his or her position at the beginning of a simula-
tion. To conserve bandwidth, the video is resized to
100×60pixel, converted to 4bit greyscale, and trans-
mitted with 10fps via a separate UDP connection.

The program also monitors the signal strength of the
connected microphone, signalising the VE engine via
a flag whether the user is speaking or not. The state of
this flag is determined by a simple signal energy thresh-
old algorithm.

Xpressor is written in C++, using the Microsoft Foun-
dation Classes (MFC) for the graphical user interface
(GUI) (see Figure 8). For the control of the facial ex-
pression, we developed a custom circular controller in-
terface, visualising six expression types as circle seg-
ments and the strength of the expression by the distance
of the controller position from the centre of the circle.

While sitting in front of the screen, the user inadver-
tently shifts his or her neutral head position relative to
the camera. As a result, any concept relying on an abso-
lute position will reflect that drift in a slowly changing
view of the VE. Similar to the recommendations from
Sko and Gardner for games using HCP, we have imple-
mented a configurable automatic slow adjustment of the
neutral position towards the average of the measured
position over several seconds [SG09]. This adjustment
accommodates for the gradual change of the neutral po-
sition and rotation of the user’s head. To avoid an un-
wanted compensation when the user is at the extreme
ends of the tracking range, e.g., when looking at an ob-

ject from the side, the adjustment is reduced towards
the outer regions of the tracking volume.

3.3 Data Model
The data model is a description of how to pack the
values from head tracking and future facial expression
recognition into a data structure that can be easily ex-
tended, but at the same time also easily compressed and
transmitted.
Figure 9 visualises the extension in the data flow be-
tween the VE clients and server. Because of the fast
local UDP connection between Xpressor and the client,
the data is transferred uncompressed. Between the
clients and the server however, bandwidth can be lim-
ited, therefore the parameters are compressed.

4 RESULTS
The modification of the Source Engine into a virtual en-
vironment for medical teamwork training with webcam
support for HCP and head gestures was a non-trivial
process due to the complexity and insufficient docu-
mentation of the engine, but allowed for rapid proto-
typing of early design stages.
All software outside of the VE engine, e.g., Xpressor,
was kept modular, as well as most of the code we cre-
ated to add functionality to the VE engine. This en-
abled us in the early stages of our experiments to easily
exchange our own head tracking module by faceAPI.
However, features or modifications that required deep
changes within the original code had to be kept close
to the coding style of the SDK itself, resulting in sub-
optimal program code. The latter problem might be of
a different magnitude when using different game en-
gines, e.g., Unity 3D [Uni11] that provide a more struc-
tured codebase to program against. The problems with

the complexity of the code of the Source SDK were in-
creased by insufficient documentation. A lot of devel-
opment time was spent on deciphering the code or con-
sulting the forums and developer websites for examples
to compensate for the lack of documentation. To avoid
this problem, it is important to put more emphasis on
the quality of the documentation and the code of a game
engine when engines are considered for selection.

Content for our VE was created using the free 3D editor
Blender [Ble11] and the tools provided by the Source
Engine, e.g., the map editor Hammer and the charac-
ter animation tool Faceposer. Most time during content
creation was spent on figuring out ways how to simulate
a specific effect or physical behaviour with the engine
which is optimized for fast action gameplay, not for pre-
cise simulations. On several occasions, we had to com-
promise between realism and the ability of the engine to
simulate a specific feature. One example is the bleeding
that occurs during the surgical procedure we designed
for the multi-user study. The Source Engine does not
provide physically correct fluid simulation. Instead, we
created a particle effect that resembles a little fountain.

We measured the “success” of the design and imple-
mentation of our VE indirectly by the user studies we
conducted for our overall goal: to show improvements
of usability, realism, and effectiveness of VE-based
training scenarios by including camera-based non-
verbal communication support and intuitive HCP-based
view control.

Overall, the VE proved to be stable and intuitive to use
for the participants, regardless if they were experienced
in playing computer games or not. Our studies compar-
ing manual view control against HCP showed that HCP
is an intuitive and efficient way of controlling the view,
especially for inexperienced users [MWW10].

For highest user comfort, it is important that the delay
between physical head movement and virtual camera
movement is as short as possible. Our framework was
able to deliver a relatively short response time of about
100ms. However, this delay lead to participants repeat-
edly overshooting their view target. We suspect that the
delay is a sum of several smaller delays in each process-
ing stage of the data flow, therefore requiring several
different optimisation steps for an improvement.

For our latest user study, we created a surgical team-
work training scenario and alternated between HCP and
avatar control being enabled or disabled to investigate
the effect of tracking-based avatar head movement on
non-verbal communication within a VE. The results
showed an increase in perceived realism of the commu-
nication within the environment [MWW11]. An effect
on teamwork training effectiveness was not proven, but
might have been masked by the experiment design. A
clarification is subject to future research.

5 CONCLUSION
In summary, the Source Engine is suitable for rapidly
developing a teamwork training VE, as long as the
changes required to the original SDK code are not too
major. The more functionality that is necessary for spe-
cific features of the desired VE, the more complex the
coding task becomes. At a certain point, it would be in-
feasible to use this engine and alternative game engines
would have to be considered.

However, the Source Engine proved stable and flexi-
ble enough for our medical teamwork training scenario
with additional support for HCP and camera-controlled
avatar head gestures. The user studies we have con-
ducted show that these extensions are well received, and
improve the usability and the perceived realism of the
simulation. In addition, the digital recording of the in-
teractions and behaviours within the VE is a valuable
support for automated (e.g., with tools like Observer
XT) as well as “manual” assessment of teamwork per-
formance.

6 REFERENCES
[Ble11] Blender Foundation. Blender, 2011.

http://www.blender.org.
[BLWM08] Marian Bartlett, Gwen Littlewort, Tingfan

Wu, and Javier Movellan. Computer Ex-
pression Recognition Toolbox. In Demo:
8th Int’l IEEE Conference on Automatic
Face and Gesture Recognition, 2008.

[DPH+09] Douglas Danforth, Mike Procter, Robert
Heller, Richard Chen, and Mary Johnson.
Development of Virtual Patient Simula-
tions for Medical Education. Journal of
Virtual Worlds Research, 2(2):3–11, Au-
gust 2009.

[Lin10] Linden Research, Inc. Second Life, 2010.
http://secondlife.com.

[MRL+06] Brian MacNamee, Pauline Rooney,
Patrick Lindstrom, Andrew Ritchie,
Frances Boylan, and Greg Burke. Seri-
ous Gordon: Using Serious Games To
Teach Food Safety in the Kitchen. In Pro-
ceedings of the 9th International Confer-
ence on Computer Games: AI, Animation,
Mobile, Educational & Serious Games
(CGAMES06), November 2006.

[MSL+09] Paul R. Messinger, Eleni Stroulia, Kelly
Lyons, Michael Bone, Run H. Niu, Kris-
ten Smirnov, and Stephen Perelgut. Vir-
tual Worlds – Past, Present, and Future:
New Directions in Social Computing. De-
cision Support Systems, 47(3):204–228,
June 2009.

[MWW07] Stefan Marks, John Windsor, and
Burkhard Wünsche. Evaluation of Game
Engines for Simulated Surgical Train-
ing. In GRAPHITE ’07: Proceedings of
the 5th international conference on Com-
puter graphics and interactive techniques
in Australia and Southeast Asia, pages
273–280, New York, NY, USA, December
2007. ACM.

[MWW10] Stefan Marks, John Windsor, and
Burkhard Wünsche. Evaluation of the Ef-
fectiveness of Head Tracking for View and
Avatar Control in Virtual Environments.
25th International Conference Image and
Vision Computing New Zealand (IVCNZ)
2010, November 2010.

[MWW11] Stefan Marks, John Windsor, and
Burkhard Wünsche. Head Tracking Based
Avatar Control for Virtual Environment
Teamwork Training. In Proceedings of
GRAPP 2011, 2011.

[Nol10] Noldus Information Technol-
ogy. Observer XT, 2010.
http://www.noldus.com/
human-behavior-research/
products/the-observer-xt.

[QCM10] Rossana B. Queiroz, Marcelo Cohen, and
Soraia R. Musse. An extensible frame-
work for interactive facial animation with
facial expressions, lip synchronization and
eye behavior. Computers in Entertainment
(CIE) - SPECIAL ISSUE: Games, 7:58:1–
58:20, January 2010.

[RLD06] Andrew Ritchie, Patrick Lindstrom, and
Bryan Duggan. Using the Source En-
gine for Serious Games. In Proceed-
ings of the 9th International Conference
on Computer Games: AI, Animation,
Mobile, Educational & Serious Games
(CGAMES06), November 2006.

[SG09] Torben Sko and Henry J. Gardner.
Human-Computer Interaction — INTER-
ACT 2009. In Tom Gross, Jan Gulliksen,
Paula Kotzé, Lars Oestreicher, Philippe
Palanque, Raquel Oliveira Prates, and
Marco Winckler, editors, Lecture Notes in
Computer Science, volume 5726/2009 of
Lecture Notes in Computer Science, chap-
ter Head Tracking in First-Person Games:
Interaction Using a Web-Camera, pages
342–355. Springer Berlin / Heidelberg,
August 2009.

[SJB07] Tarja Susi, Mikael Johannesson, and
Per Backlund. Serious Games -– An

Overview. Technical report, School of
Humanities and Informatics, University of
Skövde, Sweden, February 2007.

[ST09] Shamus P. Smith and David Trenholme.
Rapid prototyping a virtual fire drill envi-
ronment using computer game technology.
Fire Safety Journal, 44(4):559–569, May
2009.

[The11] The Apache Software Foundation.
Apache Subversion, 2011. http://
subversion.apache.org.

[TSHW08] Jeffrey Taekman, Noa Segall, Eugene
Hobbs, and Melanie Wright. 3DiTeams
— Healthcare Team Training in a Virtual
Environment. Simulation in Healthcare:
The Journal of the Society for Simulation
in Healthcare, 3(5):112, 2008.

[Uni11] Unity Technologies. UNITY: Unity 3 En-
gine, 2011. http://unity3d.com/
unity/engine.

[Val07] Valve Corporation. Source Engine, 2007.
http://source.valvesoftware.
com.

[Val10a] Valve Developer Community. IK
Chain, 2010. http://developer.
valvesoftware.com/wiki/
$ikchain.

[Val10b] Valve Developer Community. My First
Mod, 2010. http://developer.
valvesoftware.com/wiki/
First_Mod.

[Val10c] Valve Developer Community. Net-
working Entities, 2010. http://
developer.valvesoftware.com/
wiki/Networking_Entities.

[Val10d] Valve Developer Community. Source
Multiplayer Networking, 2010. http://
developer.valvesoftware.com/
wiki/Net_graph.

[Val10e] Valve Developer Community. Us-
ing Subversion for Source Control
with the Source SDK, 2010. http:
//developer.valvesoftware.
com/wiki/Using_Subversion_
for_Source_Control_with_the_
Source_SDK.

