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ABSTRACT 
The rate-distortion performance of wavelet-based mesh compression algorithms is usually only evaluated in a 
purely geometric sense, by measures such as the Root Mean Square Error and the Hausdorff distance, which do 
not capture the human visual perception of distortion.  This lack of quantitative information about the perceptual 
effects of wavelet compression has prompted us to present a more complete evaluation of a classic wavelet-
based mesh compression algorithm, by measuring its rate-distortion performance both with geometric metrics 
(the Hausdorff distance and Root Mean Square Error) and perceptual metrics (the recently introduced Mesh 
Structural Distortion Measure 2 (MSDM2) and the Mean Opinion Scores (MOS) that we obtained by conducting 
a subjective experiment with human observers), where the rate is measured as the percentage of wavelet 
coefficients used in reconstruction.  The MSDM2 has already been proven to outperform other existing 
perceptual metrics for several different types of distortions, but this is the first time that it has been tested for this 
type of geometric distortion in a real-use case scenario.  We found that, in this context, the MSDM2 generally 
correlates well with the MOS but seems to under-estimate the perceptual error in cases of low-frequency (large 
scale) shape distortion.  Due to the disparities in the distortion values produced by the tested distortion metrics, 
we also conclude that a complete evaluation of any mesh compression algorithm should include several different 
distortion metrics, to allow the developers and users of these compression algorithms to make more informed 
decisions about the applicability of those algorithms in different application areas.    
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1. INTRODUCTION 
Since the influential work of Lounsbery [Lou94], 
who introduced the notion of multiresolution analysis 
on surfaces, wavelet-based mesh compression has 
been a topic of much interest in the research 
community.  This is reflected by the variety of 
wavelet-based mesh compression algorithms 
proposed in the literature, notably [HP05, KG02, 
KSS00, SS95, VP04].  The main idea in wavelet-
based mesh compression is to decompose a high-
resolution input mesh into a coarse representation 
called a base mesh and a set of detail coefficients 
termed wavelet coefficients, which can be used to 
refine the base mesh at multiple levels of detail 
[Lou94].  Geometry compression may then be 

obtained either by discarding small (unimportant) 
wavelet coefficients at each resolution level, and/or 
by quantizing and entropy coding the remaining 
coefficients that are to be transmitted.  The aim in 
wavelet-based mesh compression is to optimise the 
trade-off between data size and approximation 
accuracy, which is measured by the rate-distortion 
(R-D) curve.  The rate refers to the amount of 
information transmitted in a compressed mesh, and 
the distortion refers to a quantified measure of 
difference between the reconstructed and original 
meshes.  While the rate is a relatively straightforward 
measure to quantify (usually represented as the 
number of bits transmitted per vertex, or the number 
of wavelet coefficients transmitted), the term 
distortion still lacks a formal definition.  Without 
such a definition, it is difficult to claim that any lossy 
mesh compression algorithm developed to date 
(including wavelet-based algorithms) has been fully 
evaluated.  While wavelet-based mesh compression 
has shown some very promising results and is still an 
active area of research, the performance of existing 
algorithms has usually only been reported based on a 
single error metric.  In addition, the distortion metrics 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 



that are currently used to evaluate these algorithms 
are normally purely geometric measures, such as the 
Root Mean Square Error and the Hausdorff Distance, 
which are not designed to capture the visual disparity 
between two 3D models.  Due to the previous lack of 
availability of an objective perceptual distortion 
metric, the visual distortion caused by discarding 
wavelet coefficients in a wavelet-based mesh 
compression system has not yet been documented in 
a quantitative manner.  However, this information is 
important for many graphics applications where the 
ultimate judge of the transmitted model is a human.  
The surge in recent years to design perceptually-
based distortion metrics (a survey and extensive 
comparison can be found in [LC10]) has produced 
some promising perceptual metrics, particularly the 
Mesh Structural Distortion Measure 2 (MSDM2) 
recently introduced by Lavoué [Lav11].  While the 
MSDM2 has been proven to outperform other 
existing perceptual metrics for several different types 
of classical distortions [LC10, Lav11], it has not been 
tested in a real-use case and has not been investigated 
for the type of geometric distortions that result from 
discarding wavelet coefficients in a wavelet-based 
mesh compression system.   
 
The objective of this paper, therefore, is twofold: (1) 
to evaluate how the MSDM2 metric compares to 
human perception of distortion, in the real-use case 
of wavelet-based mesh compression, where the 
distortion is caused by discarding different 
percentages of wavelet coefficients in mesh 
reconstruction; and (2) to offer a more complete 
evaluation of the effects of discarding wavelet 
coefficients in a wavelet-based mesh compression 
system.  The latter is achieved by measuring the rate-
distortion performance of a classic wavelet mesh 
compression algorithm with several different error 
metrics - two commonly used geometric measures 
(the Hausdorff distance (dH) and the Root Mean 
Square Error (RMSE)) and two perceptual metrics 
(the subjective Mean Opinion Score (MOS) from a 
group of human observers, and the objective visual 
distortion metric, MSDM2).  In this way, we also aim 
to demonstrate that, due to the disparities that exist 
between the performance results generated by these 
distortion metrics, a complete evaluation of a lossy 
mesh compression algorithm is not possible with 
only one distortion metric.  We use our investigation 
of the wavelet compression technique as a case study 
to suggest how an appropriate error metric may be 
chosen for evaluating a lossy mesh compression 
algorithm based on different application needs.   
Section 2 of this paper introduces the wavelet-based 
compression method that we have implemented and 
describes our evaluation procedure, Section 3 
discusses the basic concepts behind the distortion 
metrics that we have investigated, Section 4 

describes the perceptual distortion test that we carried 
out, Section 5 presents our results and discusses the 
insights gained in relation to our objectives, and the 
conclusion ties up the key messages of this paper. 

2. WAVELET COMPRESSION CASE 
STUDY 
The progressive compression algorithm that we have 
investigated is an own implementation of the 
fundamental Lounsbery subdivision wavelet method 
[Lou94].  We only cover here the basic concepts of 
this method that are necessary for an understanding 
of our investigation.  For further details, we refer the 
interested reader to the original thesis [Lou94].     

2.1  Background and Implementation 
The subdivision wavelet method applies the notion of 
multiresolution analysis to subdivision surfaces.  The 
basic idea is that we can take a high-resolution input 
mesh with subdivision connectivity and decompose it 
into a lower-resolution mesh, together with a set of 
detail coefficients that can be added to the lower-
resolution mesh to reconstruct the higher-resolution
mesh.  This decomposition, or analysis, is done by 
two separate filtering operations on the original 
mesh: a low-pass filtering where we compute 
weighted averages of the vertices in the higher-
resolution mesh to obtain the (sparser) set of vertices 
in the resulting lower-resolution mesh (we call this 
lower-resolution mesh an approximation of the 
higher-resolution mesh that it was obtained from), 
and a high-pass filtering where we compute weighted 
differences of the higher-resolution mesh vertices to 
obtain the detail coefficients, called wavelet 
coefficients.  If we continue these filtering operations 
on each successive, lower-resolution mesh, we 
eventually obtain the coarsest possible mesh (called 
the base mesh), together with wavelet coefficients at 
multiple levels of detail.  If we add back the wavelet 
coefficients to the corresponding mesh at each level, 
we can progressively refine the base mesh and 
thereby obtain a multiresolution representation of the 
original mesh.  Figure 1 illustrates a simple example 
of this process, where the mesh on the left is the 
input mesh, the mesh on the right is the base mesh, 
and the middle mesh is the model at an intermediate 
resolution level.    
 
 
 
 
 
 
 

Figure 1: Illustration of wavelet decomposition. 
LPF=low-pass filter, HPF=high-pass filter. The 
reconstruction process proceeds in reverse. The 

purple and green circles represent vertices added at 
the midpoints of edges in the refinement process. 
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The reconstruction, or synthesis, process involves 
two more filtering operations: a refining operation 
where each triangular face of a lower-resolution 
mesh is subdivided into four sub-triangles by 
introducing new vertices at edge midpoints, and a 
perturbing operation where the new vertices are 
perturbed (displaced) to their new positions 
according to the wavelet coefficients.  Figure 1 
highlights the refinement process of one face of the 
base mesh (outlined in red), by showing how the new 
vertices (purple) are added to the midpoints of that 
face and are connected together in the next higher 
resolution level (the middle mesh), in order to refine 
the one base mesh face into four smaller sub-faces.  
Similarly, in the middle mesh in Figure 1, the next 
set of vertices (green) is added at the midpoints of the 
edges of the new faces, and these vertices are 
connected together to produce 16 sub-faces in the 
next higher resolution level (leftmost mesh).  Each 
new set of vertices is, in this case, projected onto the 
surface of a sphere (perturbing operation), which is 
how we get from an octahedron base mesh with flat 
faces (rightmost mesh in Figure 1) to an n-sided 
figure (leftmost mesh in Figure 1) that begins to 
approximate the shape of a sphere.  Since the 
connectivity of the mesh at each resolution level is 
obtained by a common refinement process, we only 
need to transmit the base mesh and the set of wavelet 
coefficients in order to reconstruct the original mesh 
geometry.  Due to the orthogonality property of the 
wavelets (see [Lou94] for an in-depth explanation), 
the mesh approximation at each resolution level is 
guaranteed to be the approximation at that level that 
is the closest to the next, finer-level mesh in a least-
squares sense.  The orthogonality property also 
means that the wavelet coefficients are a good 
indicator of where the approximation is not close to 
the finer-level mesh that it is approximating.  For 
example, if a wavelet coefficient is zero, this means 
that the approximation is locally perfect as it 
indicates that there is no information (detail) missing 
in that region.  If the wavelet coefficient is large, 
however, then it indicates that there is a large amount 
of information missing at that position and scale.  
Since the approximation at each resolution level is 
guaranteed to be the best possible approximation for 
that level, however, most of the wavelet coefficients 
are usually distributed around zero (not much 
information missing), so we can discard many of the 
(small) coefficients (thereby achieving compression) 
and still be able to reconstruct a close approximation 
of the original mesh.   
In our implementation, we order the coefficients by 
magnitude and then select the largest wavelet 
coefficients at each level.  The percentage of chosen 
coefficients at each level constitutes our rate of 
transmission.  The wavelet coefficients are 
deliberately not quantized or entropy coded, in order 

to isolate the distortion effects (and compression) that 
are caused solely by eliminating wavelet coefficients.  
Our implementation also incorporates a naïve 
reconstruction, where every location on the mesh is 
refined in a uniform manner (every face is split into 4 
sub-faces), regardless of whether or not additional 
detail is ever added to that location.  This means that 
the reconstructed mesh always has the same number 
of triangles as the input mesh, but the quality of 
geometry reconstruction (the accuracy of the final 
vertex positions) depends on the number of wavelet 
coefficients that we use in the reconstruction.   

2.2  Experimental Procedure 
We tested the rate-distortion performance of the 
subdivision wavelet compression method on six 
different meshes with subdivision connectivity - 
shown in Figure 2, along with their associated base 
meshes.  The base meshes are presented in faceted 
form, to demonstrate their different levels of 
complexity. 
 
 
 
 
 
 
 
 
 
 

2.2.1  Choice and Preparation of Test Models
The models were chosen based on the amount of 
complexity, in terms of visual detail, that they 
possessed.  We wished to investigate a range of 
models, from those that have very smooth surfaces 
(e.g., the Sphere) to those with quite a large amount 
of visual detail on the surface (e.g., Mannequin and 
Bunny).  We also chose the models so that they 
would possess different types of details (e.g., smooth 
corners in the Rounded Octahedron, sharp points in 
the Star, sharp curves on the Bunny’s ears and 
thighs) because we wished to see how the wavelet 
method would handle these different features as 
measured by the different distortion metrics. The 
associated base mesh for each model was chosen as 
the simplest (lowest-resolution) version of that mesh 
available in the model library.  Each base mesh is 
therefore considered resolution level 1 in our 
experiments, and the resolution level for the 
corresponding input model is always considered 
relative to its base mesh.  The resolution levels for 
each of the input models, relative to their base 
meshes, are stated in the caption of Figure 2. 

Figure 2: The subdivision models used for testing, 
and their associated base meshes (underneath each 
model). From left: Sphere (res. level 4), Rounded 
Octahedron (res. level 4), Torus (res. level 3), Star 
(res. level 4), Mannequin (res. level 3), and Bunny 

(res. level 6). 



2.2.2  Rate-Distortion Testing  
Each of these test meshes was first decomposed 
(similar to Figure 1) to obtain its corresponding base 
mesh and wavelet coefficients.  Then the 
reconstruction process was carried out at 11 different 
rates, where the rate is defined as the percentage of 
largest wavelet coefficients used at each resolution 
level, from 0% to 100% coefficients inclusive, in 
10% steps.  The mesh distortion at each of these rates 
was then measured separately with four different 
error metrics, which are discussed below. 

3. STUDIED DISTORTION METRICS 
We selected two traditional geometric error metrics - 
the Hausdorff distance (dH) and the Root Mean 
Square Error (RMSE) - and two perceptual error 
metrics - the MSDM2 metric and the subjective Mean 
Opinion Scores (MOS) obtained through a subjective 
experiment.  The basic concepts behind each metric 
are discussed below. 

3.1  Hausdorff Distance (dH) 
The Hausdorff distance represents the maximum 
distance between a point on one mesh and the surface 
of another mesh.  It is formulated as follows: 
The distance, , between a point  in 3D space 
and a mesh surface , is defined as:  

 

where is the Euclidean distance between 
points  and  and  is a point on surface .  Then 
the one-sided (asymmetric) distance between two 
surfaces (or meshes),  and , is defined as:  

. 

A two-sided (symmetric) distance, which is termed 
the Hausdorff distance, , is defined as the 
maximum of  and :  

. 
We used the Metro tool [CRS98] with the default 
settings, to compute the symmetric Hausdorff 
distance in all our experiments.  The obtained dH 
values were then normalized to fit into the range 
[0,1], to enable a comparison between the rate-
distortion trends obtained from the different error 
metrics.  The normalized Hausdorff distance, dHNi 
for distorted model i, was computed as: 

 

Where Current dH
i is the current (un-normalized) dH 

value for mesh i, and Minimum dH
M and Maximum 

dH
M are, respectively, the smallest and largest 

Hausdorff values produced for any of the distorted 
versions of mesh M.  

3.2  Root Mean Square Error (RMSE) 
The Root Mean Square Error (RMSE) measures how 
far, on average, the difference between the original 
and reconstructed vertex positions is from 0.  The 
RMSE between two meshes,  and  is computed 
as:  

 

where  is the number of vertices in the meshes (both 
meshes must have the same number of vertices), and 

 is the vertex in mesh corresponding to vertex 
 in mesh . 

The RMSE was also normalized in our experiments 
to fit into the range [0,1], in a similar way to the 
Hausdorff normalization.   

3.3  Mesh Structural Distortion Measure 
2 (MSDM2) 
The Mesh Structural Distortion Measure 2 (MSDM2), 
descendant of the earlier Mesh Structural Distortion 
Measure (MSDM) [LGDBE06], was recently 
introduced by Lavoué [Lav11] as a multiscale metric 
for objective visual quality assessment of a 3D mesh.  
The MSDM2 is based on the 2D image metric, SSIM 
(Structural SIMilarity index), from Zhou et al. 
[ZBSS04], and works by measuring the differences 
in curvature statistics between two meshes, which are 
computed on local corresponding spherical 
neighbourhoods.  These neighbourhoods vary in size 
according to the scale, h, which is related to the 
maximum length of the bounding box of the model.  
For example, for 3 scales, , where 

 of the maximum length of the bounding 
box.   
The symmetric MSDM2 measure between a reference 
mesh, , and a distorted mesh, , is computed as 
the average of the two asymmetric global multiscale 
distortion (GMD) measures,  and 

, where  is defined as: 

 

  is the multiscale local distortion measure 
defined as: 

 

which is the average of local distortion (LD) values 
at single scales.  The LD at a given scale h is defined 
for each vertex v from Md as: 

 



where and  are set to 1, 1 and 0.5, respectively, 
and Lh(v), Ch(v) and Sh(v) are, respectively, the 3D 
mesh equivalents of the luminance comparison 
function, the contrast comparison function, and the 
structure comparison function defined for images in 
[ZBSS04].  Lavoué defines these functions for 
meshes in [Lav11].  
In our experiments, we obtained the symmetric 
MSDM2 values and the associated distortion maps 
from the MEPP platform [LTD12], using 3 scales.  
These values are in the range [0,1], where 0 indicates 
that the reconstructed mesh is identical to the 
original, and values closer to 1 correspond to 
increasingly larger visual differences between the 
two meshes. 

3.4  Mean Opinion Score (MOS) 
The Mean Opinion Score (MOS) is a subjective 
measure of distortion, where a group of human 
observers is asked to give a score to some distorted 
objects, which reflects the observer’s degree of 
perceived distortion on these objects, in relation to an 
original, undistorted object.  The MOS for a distorted 
model, i, is computed as: 

 

where  is the mean opinion score of the ith 

distorted model, n is the number of test observers, 
and mij is the distortion score given by the jth observer 
to the ith model. 
The next section describes the subjective experiment 
that we conducted to obtain these MOS values. 

4. SUBJECTIVE EXPERIMENT 
Due to a lack of information in the literature about 
the perceptual effects of discarding different 
percentages of wavelet coefficients, and from a 
desire to evaluate the MSDM2 in this context, we 
carried out our own perceptual distortion test on three 
of our test models.  The details of this test are 
explained below. 

4.1  Assessment Procedure 
A group of 13 human observers were shown 3 
different 3D models (the Torus, Star and Bunny – see 
Figure 2), where each original model was printed on 
paper together with its 11 distorted versions 
(reconstructions with 0%-100% wavelet 
coefficients), and the printouts were given to each 
individual observer.  The original model was 
labelled, but the 11 distorted versions were arranged 
in random order around the original.  The observers 
were asked to give a distortion score between 0 and 
10 to each distorted model (using whole numbers 
only), which would reflect the degree of perceived 
distortion on this model in relation to the original.  
Participants were told that a score of 0 meant that, in 

their opinion, the distorted model was identical to the 
original (i.e., they could not perceive any distortion 
on this model) and a score of 10 was the worst case 
scenario (i.e., the distorted model was “very 
different” to the original).  Participants were not told 
to assign a 10 to the worst model and then assign 
lower scores to all the other models; in fact, the 
observers were told that if they felt that no model 
“deserved” a 10, for example, they did not need to 
use the full range of distortion scores.  The observers 
were also told to consider the distorted models 
together and give them relative scores.  They were 
further asked, for all the models to which they gave a 
score greater than zero, to circle the area(s) on those 
models that they thought were the “worst distorted” 
areas.  There was no specific time limit for the test, 
but the task took approximately 20 minutes for the 
whole group. 

4.1.1  Choice and Preparation of Test Models 
The Torus, Star and Bunny were chosen for the 
subjective experiment because these models have a 
range of interesting surface details: the smooth 
curves on the Torus, the sharp points on the Star, and 
the curves of varying degrees of sharpness on the 
Bunny.  We wished to investigate how the MSDM2 
compares with the MOS for capturing such different 
types of surface detail.  The viewing angle for each 
model (same viewing angle as in Figure 2) was 
chosen so as to portray that model in what we 
subjectively judged to be both its most discriminative 
angle and the angle that offered the most familiar 
viewpoint of the object.  The lighting and surface 
reflectance conditions were also chosen specifically 
for each model, based on the selected viewpoint, so 
as to produce what we believed was the best visibility 
of the shape and surface detail of each model, for the 
test observers.  For all three models we used 
interpolated shading and Phong face lighting, but the 
strengths of diffusion, ambient lighting and specular 
highlights were chosen individually for each model 
so that, for the chosen viewpoint, no surface details 
(or, as little as possible) would be hidden by the 
specular highlights or shadows.  The printed models 
were made to be of similar size, so that 6 models 
could fit on one side of an A4 sheet of paper in 
landscape orientation, organized side by side in two 
rows and three columns.  While this use of a fixed 
viewpoint and fixed viewing distance for the test 
models does limit the generality of the obtained 
results, this step was an attempt at reducing the 
amount of variance between the test subjects.  If the 
observers were free to zoom in and out of the models 
and rotate them, it would have been difficult to 
ensure that all observers saw the same parts of each 
model; perhaps some people would have used more 
viewpoints than other people, or a wider range of 
viewpoints, to make their decision.  Having a fixed 



viewing angle and distance ensured that this type of 
variation between the subjects was eliminated and so, 
since everyone was looking at exactly the same 
images, this made it easier to isolate the features of 
each model which were responsible for the different 
distortion scores given.  This was ultimately the goal 
of the subjective experiment: to determine how the 
MOS compares to the MSDM2 for different models 
with different types of features, distorted in the same 
way. 

4.2  Normalizing the Distortion Scores 
Before computing the MOS for each distorted model, 
the individual distortion scores were normalized to be 
in the range [0,1].  This was simply done by dividing 
each score by 10.  Since the observers were 
instructed to only use the entire available scoring 
range (0-10) if they actually saw the need for it (i.e., 
if they could see enough difference between the 
different levels of distortion to require them to use 
the entire scoring range), they did not necessarily 
have to assign a 10 to the worst model and a 0 to the 
best model.  Rather than scaling all the scores to fit 
into the 0-10 range, we were interested in the 
differences in the actual range of values that would 
be assigned for each model (a discussion of this is 
provided with Table 1, opposite).  For this reason, it 
was not appropriate in our experiment to correct for 
the differences in gain and offset among the 
observers (as was done in [LC10], for example).  The 
suitability of our experimental protocol was assessed 
by computing three Intraclass Correlation 
Coefficients (ICC), each of which measures the 
variation between the different observers in their 
subjective ratings of all the distorted versions of one 
of three test models (Torus, Star, and Bunny), 
respectively.  The ICCs were computed from a two-
way ANOVA test with no repetitions, and using the 
ICC equation related to Model 2 in [SF79].  The ICC 
value for the Torus models was computed as 0.81, for 
the Star models as 0.79, and for the Bunny models as 
0.94.  Since ICC values close to 0 indicate poor 
agreement while values close to 1 indicate almost 
perfect agreement, the computed values show that 
there was strong agreement between the observers on 
the distortion scores they assigned to the Torus and 
Star models, and almost perfect agreement on the 
distortion values assigned to the Bunny models.  
These high levels of agreement indicate that our 
subjective experiment protocol was correct as it 
produced meaningful, consistent scores from the test 
observers.   

5. RESULTS AND ANALYSIS 
The rate-distortion curves for all six models were 
plotted and are displayed in Figure 3.   

5.1  Variability between the Observers 
While the ICC values reported above suggest strong 
agreement between the overall subjective distortion 
scores given to all three test models, looking at the 
distortion scores for the models at each rate of 
wavelet coefficients individually leads to some 
interesting observations.  In particular, for the Torus 
model, only 4 out of 13 observers used the full 
distortion scoring range (0-10), for the Star 5 out of 
13 used the full range, and for the Bunny 9 out of 13 
used the full range.  Table 1 shows the distortion 
scores provided by the 13 observers for the Torus, 
Star and Bunny, at a rate of 0% wavelet coefficients, 
which is where the highest distortion scores were 
given.   

Observer Distortion 
score for 
Torus 

Distortion 
score for 

Star 

Distortion 
score for 
Bunny 

1 6 7 10 
2 10 10 10 
3 10 10 10 
4 8 7 10 
5 7 8 10 
6 8 8 10 
7 8 9 9 
8 5 8 10 
9 7 6 10 
10 10 10 10 
11 10 10 10 
12 10 10 10 
13 9 10 10 

Table 1: Subjective distortion scores for the 
Torus, Star and Bunny models reconstructed with 

0% wavelet coefficients. 
At a rate of 0% wavelet coefficients, the mesh 
reconstruction just produces the base mesh shape 
(but with the same number of triangles as the input 
mesh, due to the naïve reconstruction).  Since the 
Bunny’s base mesh is perceptually much more 
different to the input Bunny (see Figure 2) than the 
Torus and Star base meshes are to their respective 
originals, this explains why for a rate of 0%, the 
Bunny received the highest possible distortion score 
(10) from 12 out of 13 observers, whereas the Torus 
at this rate received a 10 from only 5 observers and 
the Star from 6 observers.  This observation indicates 
that the choice of base mesh is a critical factor in the 
perceptual quality of the reconstructed mesh, 
especially at low rates of wavelet coefficients.  
Furthermore, the table above shows that the range of 
distortion scores for the Torus model at a rate of 0% 
coefficients is the largest (10-5=5), the Bunny the 
smallest (10-9=1), and the Star in between the two 
(10-6=4).  A similar relationship holds for other low 
rates – from 10% to around 40% wavelet coefficients 
– but this is not shown in Table 1.  The wider ranges 
for the Torus and Star indicate that the observers 



found it more difficult to decide on appropriate 
distortion scores for these models, especially at the 
lower rates of wavelet coefficients.  The greater 
agreement between the scores for the Bunny in 
general (indicated by both the smaller range and the 
higher ICC value) implies that the different levels of 
distortion were perceptually more obvious on the 
Bunny than on the Torus or Star.  In fact, when the 
13 observers were asked which model they found it 
the easiest and hardest to judge different levels of 
distortions on, the Bunny was almost unanimously 
selected (by 12/13 observers) as the easiest, and the 
Torus and Star were both said to be equally difficult.  
The observers felt that this was because the Bunny is 
quite a familiar, natural object, and so it was easy to 
tell when the model looked ‘wrong’.   

5.2  Comparison of MOS and MSDM2  
We were able to make several important comparisons 
between the MOS and MSDM2 distortion results for 
each tested model. 

5.2.1  Bunny  
The most significant difference between the MOS 
and the MSDM2 R-D curves for all three tested 
models is that the MSDM2 has a more stable, almost 
linear rate of decrease with increasing percentages of 
wavelet coefficients, whereas the MOS curves are 
more irregular.  The most obvious example of this is 
in the Bunny R-D plots, where the MOS curve 
indicates a sharp drop in perceived distortion 
between 40% and 50% wavelet coefficients, but the 
MSDM2 curve does not reflect this as a large change.  
Indeed, the MSDM2 curve seems to decrease at a 
nearly constant (slower) rate, from 0% right up to 
around 70% wavelet coefficients.  If we compare the 
Bunny reconstructions with 40% and 50% wavelet 
coefficients (see Figure 4) and compare these to the 
original Bunny model (see Figure 2), we notice that 
the Bunny at 50% looks much more similar to the 
original model than the Bunny at 40% does.  
Perceptually, the worst distortion in the 40% model 
(as judged by the majority of the test observers) is the 
area circled in Figure 4, and this distortion is not 
present in the 50% model.  The reason why the 
MSDM2 does not perceive this as a large difference 
between the two models may be because the MSDM2 
is designed to capture differences in curvature, but 
the circled area in the 40% Bunny and the 
corresponding area in the 50% Bunny have almost 
the same curvatures (i.e., the Bunny ‘bulges out’ in 
nearly the same places).  The perceptual difference, 
as reflected by the MOS, is purely geometric – the 
circled area bulges out much further in the 40% 
model than in the 50% model, which makes the 
Bunny look out of proportion and unnatural, whereas 
the 50% Bunny looks much closer to what we might 
imagine a bunny to look like and it is much closer, 
visually, to the original Bunny model.  

 
 
 

Interestingly, the opposite result occurs for the 
Bunny at 50%-60% wavelet coefficients: the MOS 
curve in this range changes very little (it is nearly 
flat), while the MSDM2 has a sharper rate of 
decrease.  Looking at Figure 5, which shows the 
reconstructed Bunny models with 50% and 60% 
wavelet coefficients, we can see that the most 
noticeable difference between them is the area circled 
in red (almost all observers circled this area as 
looking the most distorted).  The MSDM2 indicates 
this as a large distortion (see the area circled in red in 
the MSDM2 distortion map in Figure 5, where 
“warmer colours” indicate higher distortion [Lav11]).  
This is because this ‘bump’ consists of rather a sharp 
curve compared to the smooth corresponding area in 
the 60% model (notice the corresponding area in the 
MSDM2 distortion map for the 60% model, which 
indicates a considerably smaller error).  However, the 
human observers did not perceive the removal of this 
bump in the 60% model as a very significant 
improvement, presumably because this was only a 
small ‘glitch’ on an otherwise good-looking bunny.   
 
 
 
 
 
 
 
 
 
 
 

5.2.2  Star 
In the case of the Star model, the MOS curve seems 
to follow the MSDM2 curve more closely than in the 
Bunny’s case.  A good reason for this might be that 
the perceptual distortions in the Star are mainly due 
to the changes in curvature, which is what the 
MSDM2 is designed to capture.  For example, 
comparing the Star models reconstructed with 10%, 
20% and 50% wavelet coefficients (see Figure 6), it 
appears that the perceived distortions on all these 
models are due to the differences in the sharpness of 
the Star’s points and in the concavity of the Star’s  

Figure 4: Bunny reconstructed with 40% wavelet 
coefficients (left) and 50% coefficients (right). 

Figure 5: Bunny reconstructed with 50% wavelet 
coefficients (top left) and 60% wavelet coefficients 

(top right). Corresponding MSDM2 distortion 
maps are beneath each model.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
surface (circled on the 20% model, below, as an 
indication).  These are the areas that the 13 observers 
circled as having the worst (most noticeable) 
distortion on most of the Star models.  The 
corresponding MSDM2 distortion maps indicate that 
the worst MSDM2 distortions are in the same regions.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.3  Torus 
The Torus model seems to have the largest disparity 
out of the three models tested, between the MOS and 
MSDM2 rate-distortion curves, especially at the 
lower rates.  A reason for this might be that, because 
the perceptual distortions in the Torus usually 
manifested themselves as small ‘bumps’ on the 
surface (for example, see the Torus reconstructed 
with 30% wavelet coefficients, in Figure 7), the 
MSDM2 does not perceive these as very large 
differences in curvature to the original model, as 
these distortions are, in fact, not very sharp curves.   
This can be seen in the MSDM2 distortion map in 
Figure 7, where the areas of the Torus with the worst 
perceived distortion (circled in red) do correspond to 
the areas of highest distortion in the MSDM2 colour 
map, but these colours are mostly still in the lower 
(blue-green) range of distortion values, which, 
compared with the bright reds in the distortion map 
for the 10% Star model in Figure 6, are not very 
high.  However, because the human eye expects a 
smooth, uniform shape, any small ‘bumps’ on the 
surface are readily visible and annoying as they 

Figure 6: Star reconstructed with 10% wavelet 
coefficients (top left), 20% coefficients (top middle), 

and 50% coefficients (top right). Corresponding 
MSDM2 distortion maps are beneath each model. 
Red circles indicate areas of worst distortion, as 

judged by the majority of the test observers. 

Figure 3: (Left) Rate-distortion curves for the 3 models used in the subjective test, and 
(Right) Rate-distortion curves for the remaining 3 models.  
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interrupt the smooth flow of the surface.  This 
observation was confirmed in the perceptual 
distortion test, where people seemed so aware of the 
little bumps that they even perceived the Torus 
models reconstructed with 100% wavelet coefficients 
as being different to the original (the two models are, 
in fact, geometrically identical).  Only 5 observers 
out of 13 gave the Torus model at 100% a distortion 
score of 0, compared to the 10/13 zeros which were 
given to the 100% Star model and the 9/13 zeros 
which were given to the 100% Bunny model.  
 
 
 
 
 
 
 
 
 

5.2.4  Overall Performance of MSDM2 vs MOS 
Even though there are disparities between the MOS 
and MSDM2 rate-distortion curves, the locations of 
various distortions on our test models and the general 
levels of distortion have been captured well by the 
MSDM2, compared to the human perception of these 
distortions.  Evidence of this can be seen in Figures 
5, 6 and 7, where the human-circled areas of “worst” 
distortion correspond to the highest error values on 
the MSDM2 distortion maps, and in the R-D curves 
in Figure 3, where the MSDM2 values, like the MOS 
values, gradually decrease as the percentage of 
wavelet coefficients increases.      
In general, the largest differences between the MOS 
and MSDM2 rate-distortion curves for all the three 
test models in our experiments seemed to occur at the 
lower rates (smaller percentages of wavelet 
coefficients).  Because the largest wavelet 
coefficients are responsible for reconstructing the 
overall, global shape of a model, and the smaller 
wavelet coefficients are used to reconstruct the 
details, these results seem to suggest that the human 
eye is more critical of large-scale distortions (which 
affect the overall shape of a model) than the MSDM2 
predicts.  On a low-detail model like the Torus, the 
human eye notices differences in local distortions 
more easily.  This is to be expected, as this detail is 
not masked on a smooth surface whereas it might be 
masked on a highly-detailed surface.  This last point 
agrees with the observations of the visual masking 
effect demonstrated by Lavoué [Lav11].     
The disparities between the MOS and MSDM2 for 
different models are an indication that human 
observers use more visual cues than just curvature 

differences to perceive visual distortion.  For the type 
of distortion that we investigated, the removal of 
low- or medium-frequency wavelet coefficients 
produces large-scale localized distortions that have a 
high impact on the visual quality (see the left Bunny 
in Figure 4).  However, the MSDM2 metric fails to 
detect them; it underestimates these degradations, 
especially on very smooth, low-detail models like the 
Torus. 

5.3  Using a Combination of Distortion 
Metrics for R-D Performance Evaluation 
The performance of a wavelet-based mesh 
compression algorithm has not previously been 
reported with a combination of geometric and 
perceptual error metrics, and our investigation 
resulted in four main observations: 
1. Both the geometric and perceptual distortion 

values decrease with increasing percentages of 
wavelet coefficients.  This confirms that both the 
geometric and visual quality of a mesh improve 
with a greater number of wavelet coefficients. 

2. The dH and RMSE curves are quite closely 
correlated with the MOS curves for the Torus 
and Star models, but for the Bunny model the dH 
drops more rapidly than the MOS at low rates.  
This suggests that large-scale distortions on 
detailed models like the Bunny affect perceptual 
quality more than geometric quality. 

3. Across all six test models, the dH curves 
generally seem less stable than the RMSE curves.  
This shows that the quality of maximum error 
induced by the surface reconstruction (measured 
by the dH) is not always proportional to the 
average quality of vertex reconstruction 
(measured by the RMSE) as the number of 
wavelet coefficients increases. 

4. The R-D performance of a wavelet-based mesh 
compression algorithm, and the suitability of a 
distortion metric to measure this performance, is 
dependent on the 3D model used as input. 

More generally, we are able to conclude that, due to 
the disparities in distortion measurements produced 
by the different error metrics, it is not sufficient to 
evaluate the rate-distortion performance of a lossy 
mesh compression algorithm, such as the wavelet 
method, with a single error metric.  The use of 
multiple distortion metrics for evaluation would 
benefit both the developers and users of mesh 
compression algorithms.  The developers would 
benefit as it would be easier to accurately compare 
the performance of different algorithms, and the 
users would benefit because it would be easier to 
select the right compression method based on their 
application needs.  For example, users that are only 
concerned with the look of the reconstructed model 
may choose a compression method with the best 

Figure 7: Torus reconstructed with 30% wavelet 
coefficients (left) and the corresponding MSDM2 

distortion map (right). Red circles indicate areas of 
worst distortion on this model, as judged by the 

majority of the test observers.  



MSDM2 or MOS performance, users that desire a 
close surface reconstruction (geometrically) within a 
certain tolerance regarding the original surface may 
be interested in the Hausdorff performance, while 
users that require the mesh vertices to be 
reconstructed exactly may consider the RMSE values.  
Our evaluation of the classic wavelet mesh 
compression method with several different error 
metrics aims to provide the first small step in this 
direction.  

6. CONCLUSION 
We evaluated the rate-distortion performance of the 
Lounsbery wavelet mesh compression scheme by 
using four different distortion metrics – the 
Hausdorff distance (dH), the Root Mean Square Error 
(RMSE), the Mesh Structural Distortion Measure 2 
(MSDM2), and the Mean Opinion Scores (MOS) 
obtained through a subjective experiment.  We used 
the MOS to evaluate how well the MSDM2 metric 
compares to the human perception of distortion 
caused by discarding different numbers of wavelet 
coefficients in the mesh reconstruction.  The MSDM2 
has been found to correlate well with the MOS in 
terms of capturing the locations and general levels of 
these distortions, but has been shown to under-
evaluate the perceptual effects of low-frequency 
(large-scale) shape distortions, especially on very 
smooth, low-detail models.  We have further shown, 
through our evaluation of the wavelet compression 
method with different error metrics, that there exist 
disparities between the performance results produced 
by the existing distortion metrics, and for this reason 
it is important to measure and report the performance 
of a (lossy) mesh compression algorithm with several 
different distortion metrics.  This would make it 
easier for developers and users of these compression 
algorithms to make more informed decisions about 
the applicability of those compression algorithms in 
different application areas and for different types of 
3D models.    
Promising future work in perceptual distortion 
metrics for wavelet-based mesh compression might 
include an investigation of the visual optimization 
tools used in JPEG 2000 [ZDL02], to determine 
whether some of the perceptual models used there to 
steer 2D image compression might be useful for 3D 
mesh compression.   
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