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Abstract| Second-order tensors are a fundamental entity

in engineering, physical sciences and biomedicine. Examples

are stresses and strains in solids and viscous stresses and

velocity gradients in 
uid 
ows.

Unfortunately second-order tensors have the same com-

plexity as matrices. Large amounts of tensor data are hence

di�cult to interpret. Visualizing the tensor data is impor-

tant to scientists because it improves their ability to under-

stand and interpret the data.

This paper presents a toolkit for the visualization of stress

and strain tensor �elds in biological tissue. The toolkit in-

corporates a wide range of existing visualization techniques.

Data exploration is facilitated by allowing the user to de-

rive new �elds from already existing �elds. We also suggests

some improvements for existing visualization methods, in-

troduces a user interface for the construction of color maps,

and a new visualization method based on particle clouds.
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I. Introduction

During the past few years, physically based modeling

has emerged as an important new approach to computer

animation and computer graphics. An important sub�eld

is the modeling of elastic bodies as used, for example, in

computer animation [Parke and Waters, 1996] and surgical

simulation [Sagar et al., 1994]. A mathematical description

of elastic bodies is given by the theory of elasticity, which is

the study of the deformation of a solid body under loading

together with the resulting stresses and strains.

Stresses and strains are important since they are related

to material deformation and material failure. Unfortu-

nately stresses and strains are tensors having the same

complexity as matrices. Large amounts of tensor data

are hence di�cult to interpret. The visualization of ten-

sor �elds improves the understanding and interpretation

of tensor data and is therefore important in the �elds of

engineering, medicine, and biomechanics.

In this paper we �rst introduce the concept of stress

and strain tensors and then present a toolkit to visualize

stresses and strains in biological tissue. We demonstrate

our toolkit using �nite element models of the heart.

II. Notations and Definitions

We use a rectangular Cartesian coordinate system with

the base vectors e1, e2, and e3. Vectors are written in

small bold Latin letters and tensors in capital bold Latin

letters or small bold Greek letters. Examples of tensors are

stresses and strains which are explained in the next section.

We deal only with second-order tensors which are linear

transformations between vectors and can be represented

by matrices.

An important property of a n-dimensional symmetric

tensor T is that there always exist n eigenvalues �i and

n mutually perpendicular eigenvectors vi such that

Tvi = �ivi i = 1; : : : ; n (1)

The eigenvalues and eigenvectors de�ne the tensor com-

pletely.

III. Displacement, Strain, and Stress

An elastic body under an applied load deforms into a new

shape. We want to �nd a mathematical description for the

displacement the body undergoes. Figure 1 shows a body

before and after deformation. In order to understand the

deformation we consider how two neighbouring points P

and Q change in relation to each other. After deformation

the points P and Q arrive in position x
0 = x + u(x) and

x
0 + dx

0 = x + dx + u(x + dx), respectively, where u is

called the displacement �eld.
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Fig. 1. A body before and after deformation.

Lai et al. [Lai et al., 1986] show that

dx
0 = dx+ (ru)dx

where the second-order tensor

ru =

0
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Fig. 2. Principal stretch axes of a deformed body.

is known as the displacement gradient.

It can be seen that if ru = 0 then dx
0 = dx and the mo-

tion in the neighborhood of point P is that of a rigid body

translation. The information about the material deforma-

tion around P is contained in ru. However, the displace-

ment gradient contains also rotational information. An en-

tity which contains information about \pure" deformation,

i.e., without rigid body rotation is the Lagrangian strain

tensor

E
� =

1

2

�
(ru) + (ru)T + (ru)T (ru)

�

For small deformations the displacement gradients @ui=@xj
are small and the quadratic term of E� can be neglected

giving the strain tensor �, where

�ij =
1

2

�
@ui

@xj
+

@uj

@xi

�
(2)

Lai et al. show [Lai et al., 1986] that for small values �ii can

be interpreted as the unit elongation of a material element

in the xi direction and 2�ij , i 6= j, can be interpreted as

the decrease in angle between two material vectors initially

in xi and xj direction.

Note that by de�nition the strain tensor � is symmet-

ric. The eigenvectors v1, v2, and v3 of � are the principal

directions of the strain, i.e., the directions where there is

no shear strain. The eigenvalues �1, �2, and �3 are the

principal strains and give the unit elongations in the prin-

cipal directions. The maximum, medium, and minimum

eigenvalue are called the maximum, medium, andminimum

principal strain, respectively.

The meaning of the principal directions is illustrated in

�gure 2 which shows a 2D body before (solid lines) and

after (dashed lines) a deformation called pure shear. The

eigenvectors of the corresponding strain tensor at some ar-

bitrary point are given by v1 and v2. It can be seen that

the small square region axis-aligned with v1 and v2 is de-

formed into a rectangle, i.e., it does not experience a shear

strain.

Deformation and strain give a purely kinematic descrip-

tion of the motion and deformation of an elastic body with-

out considering the internal and external forces causing it.

Internal forces are body forces acting throughout the body

(e.g., gravity) and external forces are surface forces acting

on a real or imagined surface within the body. The surface

force at a point on such a surface is described by a stress

vector.

Consider a plane S with normal n at a point P of the

elastic body as shown in �gure 3. Let �f be the force

acting on a small area �A containing P . The stress vector

tn at P is de�ned as

tn = lim
�A!0

�f

�A

A∆

f
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n
∆

Fig. 3. De�nition of a stress vector.
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Fig. 4. Stress components of a tensor.

In classical continuum theory the resulting stress vector

is the same for all surfaces through point P with a tangent

plane S in P , i.e., it is independent of the surface curva-

ture. It can be shown ([Lai et al., 1986]) that the stress

vector acting on any plane with normal n through P can

be expressed as

tn = �n

where the linear operator � de�nes the stress tensor in P .

To interpret the components of the stress tensor � con-

sider an in�nitesimal axis-aligned cube as shown in �gure 4.

The stress tensor components �11, �12, and �13 are the

components of the stress vector te1 . The other compo-

nents of � are interpreted similarly. We call the diagonal

elements �11, �22, and �33 the normal stresses and the o�-

diagonal elements �12, �13, �23, �21, �31, and �32 the shear

stresses. By using the conservation of momentum equation

it can be shown that � is symmetric for most materials

[Henwood and Bonet, 1996].

As for the strain tensor the three eigenvectors of the

symmetric stress tensor � give the principal directions of

the stress. The eigenvalues of � give the principal stresses.

Each principal direction gives the normal direction of a

plane on which the shear stresses are zero and the normal

stress is the principal stress.



IV. The Heart Model

A. Overview

A three-dimensional �nite element model of the mechan-

ical and electrical behavior of the heart has been developed

by the Department of Engineering Science and the Physi-

ology Department of the University of Auckland in collab-

oration with the University at San Diego, U.S., and the

McGill University, Canada.

The model is based on the theory of large deformation

elasticity and is solved using Galerkin and collocation tech-

niques. Electrical activation is described by the FitzHugh-

Nagumo equations and the mechanical behavior is governed

by an orthotropic \pole-zero" law and a Wiener cascade

model for the passive and active properties of the heart

muscle (myocardium), respectively. Since the behavior of

the myocardium is highly anisotropic the model incorpo-

rates the orientation of the muscle �bers and the �ber sheet

normals. Details are described in [Hunter et al., 1993].

For our visualization purposes we use the data computed

with the full heart model and don't attempt to solve the

model ourselves. We therefore need to implement only a

part of the model. The geometry is described by tricu-

bic Hermite elements and the muscle �bers and sheet nor-

mal directions in the myocardium are interpolated using

linear-bicubic basis functions. The use of di�erent-order

basis functions for dependent and independent variables

depends on their spatial variation and continuity require-

ments. Note that the muscle �ber and sheet normal direc-

tions are speci�ed with respect to the material coordinate

axis (see below) so that their orientation changes consis-

tent with the deformation of the model. An image of our

model is shown in �gure 5.

Fig. 5. A wireframe representation of the �nite element model of
the full heart during contraction. The element faces at the left
and right ventricles are rendered as surfaces. The heart is rotated
upside down.

Fig. 6. The �nite element model of the left ventricle at end-diastole.

Additionally we use a model of the left ventricle devel-

oped by the Physiology Department of the University of

Auckland. The geometry is represented by linear-bicubic

elements and was computed from tagged MRI images using

B-spline snakes and surface �tting methods. An image of

our model is depicted in �gure 6.

B. Finite Elements

As an example of a �nite element, we consider a cubic-

linear element in two dimensions. We �rst specify a parent

element (�gure 7 (a)), which is a square in �-parameter

space. The coordinates �i (0 � �1; �2 � 1) are called the el-

ement or material coordinates. The value of some variable

u (e.g., temperature) at the material coordinates � is then

speci�ed by interpolating the variables ui and its deriva-

tives in �1-direction
�

@u
@�1

�
2

(i = 1; : : : ; 4) at the element

nodes.
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Fig. 7. The �nite element model of the full heart.

The cubic-linear interpolation of u over the parameter

space is then given by

u(�1; �2) = (3)

H
0

1
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0
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where

L1(�) = 1� �, and L2(�) = � (4)

are the one-dimensional linear Lagrange basis functions,

and

H
0

1
(�) = 1� 3�2 + 2�3; H

1

1
(�) = �(� � 1)2 (5)

H
0

2
(�) = �

2(3� 2�); H
1

2
(�) = �

2(� � 1)

are the one-dimensional cubic Hermite basis functions.

The geometry of an element in world coordinates (�g-

ure 7 (b)) is then obtained by specifying the world-

coordinates vi and the �1-tangents
�

@v
@�1

�
i
(i = 0; : : : ; 4)

of the element vertices and interpolating them as above.

V. Visualization of Tensor fields

The major sources of material failure in structural me-

chanics are stresses and strains. For an idealized isotropic

and homogeneous material failure will occur if the max-

imum principal stress reaches a material dependent crit-

ical value. Biological tissue, however, is usually highly

anisotropic and inhomogeneous. Complete knowledge of

both the stress and the strain tensor �elds is therefore nec-

essary to understand the material behavior. For exam-

ple, Aspden and Hukins [Yettram, 1989, chapter 8] relate

shear strains to fatigue syndromes in bone material and

Knight reports about recent research that suggests that

very low or turbulent wall shear stress might be responsi-

ble for atherosclerosis [Knight, 1999].

The di�culty of interpreting tensor data arises not only

from the usually large size of the data sets but also from

the fact that each tensor is represented by a matrix. The

aim of tensor �eld visualization is therefore to transform

these large amount of data into a single image which can

be easily understood and interpreted by the user.

A. Data Transformation and Reduction

Two useful tools in visualizing data are data transfor-

mation and data reduction (e.g., [Schroeder et al., 1996]).

Data transformation retains all the information in the data

but presents it in a di�erent form. We have already pre-

sented the transformation of a tensor into its eigenvectors

and eigenvalues. In 3D the tensor �eld is then represented

by three orthogonal vector �elds and three scalar �elds.

Another popular transformation is given by a change of

coordinate systems. For example, if we represent a strain

tensor with respect to the material coordinate system of

our heart model its diagonal components give us the strain

in the circumferential, longitudinal and radial directions.

Data reduction on the other hand extracts only partial

information from the original tensor data and so gives an

incomplete representation. We distinguish by the type of

the reduced data, e.g., vector or scalar. Examples of vec-

tor data obtained by reducing tensor data are the major

or minor principal stress or strain together with the cor-

responding principal direction. Other useful vector quan-

tities are the surface traction vector obtained by multiply-

ing the tensor with the surface normal and the direction

of the maximum shear stress [Lai et al., 1986] and shear

strain [Fung, 1990].

Scalar data obtained by reducing tensor data includes:

any principal stress or strain, the angle between any prin-

cipal direction and a material coordinate axis or muscle

�ber direction, the maximum shear stress or strain, and

the strain energy per unit volume [Fung, 1990].

B. Classi�cation of Tensor Icons

Having determined what form of data transformation or

reduction is appropriate for a given tensor �eld, the prob-

lem is now to visualize the selected data. The visualization

is by means of geometric objects with visual attributes,

so-called tensor icons. We �rst present a classi�cation of

tensor icons before giving a more detailed explanation.

Our classi�cation is a modi�cation and extension of a

framework originally introduced in [Hesselink and Delmar-

celle, 1994]. Tensor icons are classi�ed according to the

covered spatial domain and the embodied information level,

which we call the information scope. We additionally clas-

sify by the inherent information type. As a result we get

a three-dimensional classi�cation matrix as shown in ta-

ble I. In three dimensions the spatial domain is either

Info. Spatial Information Scope
Level Domain Elementary Local Global

tensor ellipsoid, degenerate
Point tensor cross, point topology

tensor glyph
Full Line hyperstreamline

Surface
Volume

Point tensor line
Vector Line tensor streamline

Surface spot noise
Volume

Point
Scalar Line

Surface color mapping, isosurface
Volume volume

visualization

TABLE I

Tensor icons containing full tensor information, vector

information, and scalar information.

a point, a line, a surface, or a volume. The embodied

information scope is elementary if the icon represents the

data only across the extent of its spatial domain; local if

in addition derivative information (e.g., gradient, curl) is

displayed; and global if the icon represents the structure of

the whole tensor �eld. The information type gives the type

of information displayed after data reduction, in our case

scalar, vector, or tensor.

VI. The Visualization Toolkit

We programmed our visualization toolkit in OpenGL us-

ing FLTK, a LGPL'd C++ graphical user interface toolkit



for X (UNIX), OpenGL, and WIN32 (Microsoft Windows

NT 4.0, 95, or 98) [Spitzak, 1999]. Our visualization toolkit

has four essential components explained in the following

subsections: a uni�ed �eld data structure to achieve opti-

mal data exploration, 3D user interaction, a user interface

to design specialized color maps, and �nally a variety of

visualization methods for tensor, vector, and scalar �elds.

A. The Field Data Structure

The previous section suggested that a tensor �eld can be

visualized by transforming it or by reducing it to a vector

�eld or a scalar �eld. We are also interested in other �elds

not derived from the tensor �eld such as the �ber �eld, the

displacement vector �eld, and the electrical potential �eld.

A uni�ed approach to represent, manipulate, and compare

these diverse �eld structures is therefore desired.

We achieve this goal by using an object-oriented ap-

proach. The �eld class is �rst subclassed into a tensor �eld,

a vector �eld, a scalar �eld, and a �ber �eld class. The �rst

three of these �elds can be either de�ned �elds or derived

�elds. With each de�ned �eld we associate a sampling grid

and a set of interpolation functions. As mentioned in sec-

tion IV the interpolation functions chosen depend on the

spatial variation and continuity requirements of the �eld.

Usually the �eld is de�ned at the nodes of the underlying

�nite element model. However, a �eld can also be de�ned

over a di�erent grid. For example, the strain �eld for the

left ventricle is de�ned at a regular subsampling grid over

each �nite element and is interpolated trilinearly over that

grid.

A derived �eld, on the other hand, is associated with a

parent �eld and contains a function de�ning how a �eld

value is derived from the corresponding parent �eld. The

advantage of this construction is twofold:

� we eliminate problems with the interpolation of de-

rived values. For example, directly interpolating the

eigenvalues of a tensor over a �nite element gives usu-

ally the wrong results. Instead we rather interpolate

the tensor and compute the eigenvalues from the re-

sulting tensor.

� we can combine arbitrary �elds through arithmetic

functions (e.g., the di�erence between two scalar �elds)

even if they are de�ned over di�erent grids. Similarly,

we can interactively derive new �elds by choosing a

parent �eld for a derived �elds.

Examples of derived �elds are eigenvalue �elds and eigen-

vector �elds (in both cases we can specify whether we want

the major, medium, or minor eigenvalue or eigenvector),

vector length �elds, vector angle �elds (specifying the angle

with any of the material axis), gradient �elds, and vector

and tensor component �elds. We are usually interested in

the components of a tensor with respect to the material

coordinate system so that a basis transformation is per-

formed if the tensor is de�ned with respect to a di�erent

coordinate system.

The only disadvantage of our �eld structure is that the

computation of a derived �eld value is slower than if the

�eld were directly de�ned at the nodes of the �nite element

mesh.

This class hierarchy could also be extended by analytic

�elds, which are directly de�ned as a analytic functions

over the domain of the �nite element model. Up to now,

however, we haven't found any application of such a �eld

for our visualization task.

B. User Interaction in 3D

Two types of user interaction are essential in a visual-

ization toolkit. Firstly the user wants to rotate, translate,

and zoom into the model. This is achieved in OpenGL

using a standard camera model. Rotation is performed us-

ing a virtual trackball. Movement of the mouse cursor in

the window is interpreted as movement on the surface of

a virtual sphere enclosing the window. Zooming can be

performed by either changing the distance of the camera

to the origin or by selecting a subwindow. We found that

in the latter case the user prefers the trackball origin to be

shifted in a way such that its projection lies in the center

of the new window.

The second important type of user interaction is the se-

lection and movement of objects in the 3D domain. Objects

are selected using the standard OpenGL mechanism [Woo

et al., 1997]. We then move them by translating the mouse

movements on the screen into an object movement paral-

lel to the view plane. This is achieved by determining the

z-bu�er value of the selected object. The new mouse posi-

tion is then projected back into the 3D domain so that the

z-bu�er value stays constant.

Many people are used to moving objects in 3D by inter-

acting with the orthogonal projections of the model into the

three coordinate planes. Our method is a generalization of

this. However, a similar e�ect is obtained by aligning the

yz-, xz-, and xy-plane of the coordinate system with the

view plane which is achieved by pressing the x,y, and z-

key, respectively.

Fig. 8. Zoom into the full heart model showing the tensor probe and
the values of a variety of �elds at that point.

We use these principles to construct a �eld probe. The



user can move the �eld probe through the 3D domain. At

any point the probe shows the current world coordinates,

the current element it is in (if any), the associated mate-

rial coordinates, and the current �-coordinate system axis.

Additionally, the values of all enabled �elds at that point

are shown (�gure 8).

Note, that since the probe gets moved in world coor-

dinate a multi-dimensional Newton method [Press et al.,

1992] must be employed to �nd the corresponding mate-

rial coordinates. The start point of the search is given by

the element number and �-coordinate of the last position

of the probe. If the returned �-coordinate lies outside the

element we determine the face intersected by the line con-

necting the old point and new point in parameter space.

By using a precomputed adjacency matrix we then obtain

the neighboring element and continue the search in it us-

ing the intersection point with the face as the start point of

the Newton search. We found that on average only three

iterations are necessary to determine the material coordi-

nates of the probe when moving it through the model. The

Newton method fails close to the apex of our models since

the �nite elements are degenerate at that location. For this

special case we employ a simple hack.

C. Color Mapping

A popular method to visualize a scalar �eld over a one-

dimensional or two-dimensional domain is color mapping

(e.g., [Cox, 1988]). In this technique the range of scalar

�eld values is associated with a color spectrum. Figure 9

shows two popular spectra. The top spectrum interpolates

linearly between saturated yellow, saturated red, and sat-

urated blue. We found that the visualizations obtained

with this spectrum often had too much red content which

made the interpretation of the results di�cult. An im-

proved spectrum is shown at the bottom of �gure 9. This

spectrum is the same as the previous one, except that on

the left hand side it is extended by a linear interpolation

between saturated yellow and yellow-white and on the right

side the spectrum is extended by a linear interpolation be-

tween saturated blue and blue-black.

Fig. 9. Color spectra for the visualization of scalar �elds.

The most common use of colour mapping is to visualize

the scalar �eld on a surface intersecting the domain. We

prefer taking a surface orthogonal to one of the material

coordinate axis. Color mapping involves subdividing the

surface into polygons and computing the scalar �eld val-

ues at the vertices of the polygons. These values are then

mapped into the colour spectrum. The resulting polygons

are rendered using standard graphics hardware. An exam-

ple is given in �gure 10.

Fig. 10. A prede�ned colour map is used to visualize the maximum
principal stress on the endocardial surface of the left ventricle
and on two surfaces orthogonal to the longitudinal material axis.

The user has the choice to enable or disable lighting.

For most application disabling of the lighting is prefered

since otherwise it would be hard to determine the mapped

colour. However, lighting is important for perception of

the 3D geometry of an object. A lit colour mapped surface

is used for the costruction of hyperstreamlines, which are

explained in subsection VI-D.2.

De�ning colour mapped objects by specifying vertex col-

ors results in the graphics hardware using linear interpo-

lation (Gouraud shading) to render the polygon. This can

result in shading artifacts as shown in �gure 11 (a) or,

worse, in omitted colors. The problem becomes especially

obvious when using cyclical colour maps which are intro-

duced in the next paragraph. The problem can be reduced

by subdividing the object surface into more polgons. This,

however, is very ine�cient. Rather we de�ne a colour map

as a one-dimensional texture map. For each polygon ver-

tex we de�ne a texture coordinate and render the poly-

gons using texture mapping hardware. We found that 1024

texels, each consisting of three 
oats for the RGB colour

values, were su�cient in all our applications. Using an

OpenGL graphics card the rendering times using texture

mapping did not change. The resulting improvement is

demonstrated in �gure 11 (b). Note that texture mapped

polygons can still be lit in OpenGL by specifying them as

white for the shading algorithm and then blending them

with the texture colour.

A further advantage of using 1D texture maps is that we

can insert markers into them. The markers are then visible

as isocontour-like structures on the colour mapped surface

as illustrated in �gure 12.

Often, prede�ned colour maps are not suited for a partic-

ular visualization task, e.g., because their color interferes



Fig. 11. A colour mapped surface using Gouraud shading (a) and
texture mapping (b).

Fig. 12. The circumferential strain at a surface inside the my-
ocardium is visualized using a colour map and a marker.

with other visualization icons. Our toolkit therefore al-

lows the speci�cation of arbitrary piecewise linear colour

maps (the right-hand side window in �gure 13). It is also

possible to construct cyclical colour maps, where several

cycles of he colour spectrum are mapped over the range

of a scalar �eld. We have found cyclical colour maps espe-

cially useful when trying to understand the �ne structure of

a scalar �eld. Figure 13 visualizes the maximum principal

stress using a colour mapped surface and additionally indi-

cates the �bre direction and �ber sheet normal direction by

red and blue arrows, respectively. Another feature of our

toolkit is to allow a logarithmic mapping into the scalar

�eld range. This proved useful in structural mechanics,

e.g., crack propagation, where extreme stress values occur

resulting in a visualization with large surface areas of the

same color.

We are also planning to de�ne colour maps by letting the

user de�ne a spline curve in a 2D or 3D colour space (RGB,

HIV, or CIE colour space). The spline curve is then pa-

rameterized with its arclength [Hoschek and Lasser, 1992]

and sampled at regular intervals resulting in a 1D texture

map usable with our color mapping algorithm. Initial con-

sultation with the intended user group also showed that it

is desirable to use the same colour map for di�erent scalar

�elds. For example, in our case the user wanted to com-

pare the strain values in longitudinal, circumferential, and

Fig. 13. The image shows some of the �nite elements representing the
outer layer of the heart model in red. The direction of the muscle
�bers and the direction of the �ber sheet normals is indicated by
red and blue arrows, respectively. The maximum principal stress
in the middle of the myocardium is visualized using a cyclical
colour map.

radial direction de�ned over di�erent surfaces.

D. Visualization Icons

In the previous sections we introduced a classi�cation of

tensor icons, a uni�ed �eld structure, and colour maps. In

this section we show how our visualization toolkit incorpo-

rates these principles in order to visualize tensor �elds.

D.1 Tensor Icons Containing Scalar Information

Several examples of colour mapped surfaces visualizing

derived scalar �elds, such as the maximum principal stress

and the strain in circumferential direction, have already

been given in the previous section.

The c-isosurface of a scalar �eld s is de�ned as all points

x for which s(x) = c. Isosurfaces give a rough idea of the

overall distribution of the scalar �eld and are best combined

with other visualization tools in order to achieve optimal

results. Figure 14 shows the 0.23-isosurface of the radial

strain together with the radial strain on the endocardial

surface. The isosurface encloses the area in the heart mus-

cle with wall thickening rates higher than 23%.

D.2 Tensor Icons Containing Vector Information

When visualizing vector quantities we must distinguish

between signed and unsigned vector �elds. Most traditional

vector �elds, such as the velocity and the displacement vec-

tor �eld are signed, and we can therefore visualize them by

small arrows.

The sign of an eigenvector, on the other hand, is in-

determinate with equation 1. We therefore visualize an



Fig. 14. The 0.23-isosurface of the radial strain together with the
radial strain on the endocardial surface.

eigenvector by a simple line. The direction and length of

this line is given by the eigenvector and the corresponding

eigenvalue, respectively. The same icon can be used for

other derived vector data with indeterminate sign, such as

the direction of the maximum shear stress.

The obvious disadvantage of using vector icons at dis-

crete points is that using too few might fail to reveal inter-

esting areas of the tensor �eld, but using too many leads

to visual cluttering which makes interpretation di�cult. A

continuous representation of a vector �eld v is achieved by

a streamline which is an integral curve x(s) satisfying

dx

ds
= v(x) (6)

An unsigned vector �eld, such as an eigenvector �eld, is

visualized in the same way, except that we have to cre-

ate a streamline for the positive and negative direction of

the unsigned vector �eld. The resulting streamline is color

coded with an appropriate scalar �eld: for example, if us-

ing an eigenvector �eld we would use the corresponding

eigenvalue �eld. An example is given in �gure 15 which

shows streamlines in the direction of the medium principal

stress.

One problem with streamlines is the di�culty in placing

them. If they are too close together they merge and the

directional information is obscured. If the tensor stream-

lines are too far apart information is missing for large areas.

One solution is spot noise which is generated by distorting

a noise texture with the derived vector �eld [de Leeuw and

van Wijk, 1995]. An example in two-dimensions is shown

in �gure 16.

D.3 Tensor Icons Containing Full Tensor Information

Tensor ellipsoids are constructed by de�ning the direc-

tions and lengths of the principal axes of an ellipsoid as the

eigenvectors and eigenvalues of the tensor, respectively. We

additionally visualize the sign of each eigenvalue by using

blue for a negative value and red for a positive value. An

example is given in �gure 17. The image illustrates clearly

that the strain in the myocardium is usually compressive in

circumferential and longitudinal direction and it is usually

Fig. 15. Direction and value of the medium principal strain visualized
by color mapped streamlines.

Fig. 16. Topology of a stress �eld with maximum principal stress
visualized by spot noise.



tensile in radial direction. More sophisticated tensor icons

are given by Haber [Haber, 1990].

Fig. 17. Tensor ellipsoids at regular sampling points over each ele-
ment.

The visual clutter of the ellipsoidal tensor icons can be

reduced by using a hyperstreamline [Hesselink and Delmar-

celle, 1994]. The trajectory of a hyperstreamline is a tensor

streamline of an eigenvector �eld. The other two eigen-

vectors and corresponding eigenvalues de�ne the axes and

lengths of the ellipsoidal cross section of the hyperstream-

line. The eigenvalue corresponding to the eigenvector de�n-

ing the trajectory is color mapped onto the surface of the

hyperstreamline. Figure 18 shows that the complete infor-

mation about the eigenvector �elds along the trajectory is

revealed.

Degenerate points are points for which at least two eigen-

values of the tensor are equal. It can be shown that in this

case all vectors in a plane are eigenvectors. Degenerate

points are therefore the only points where the trajectories

of an eigenvector �eld can cross. Delmarcelle shows that

the derivatives of the tensor components can be used to de-

rive the direction in which separatrices emanate from the

degenerate point [Delmarcelle, 1994]. The separatrices are

trajectories of the major eigenvector �eld separating it into

regions of similar behavior and therefore de�ne the topol-

ogy of the tensor �eld. A two-dimensional example is given

in �gure 16. The separatrices are drawn in white and the

directions in which separatrices emanate from a degenerate

point are indicated by white arrows. The major eigenvector

�eld is additionally visualized by spot noise. Information

about the minor eigenvector �eld can be obtained by using

hyperstreamlines as separatrices.

As a new visualization method we present tensor parti-

cles. Distributing the particles randomly over the domain

and color coding them gives a good impression of a scalar

Fig. 18.

�eld. By using tensor particles, �gure 19 reveals that the

maximum stress in the circumferential direction occurs at

the bottom and on the outside of the ventricular wall.

Moving the particles along the gradient of a principal

stress �eld and constraining them to user de�ned isovalues

de�nes isosurfaces. Currently we are implementing interac-

tive methods, similar to that de�ned for the tensor probe,

to select particles and to expand them into tensor ellipsoids

or, by tracing, into tensor streamlines and hyperstreamline.

Fig. 19. Circumferential strain throughout the myocardial wall vi-
sualized by tensor particles.

VII. Conclusion

We have presented a simple introduction to stress and

strain �elds as they occur in elastic bodies. An under-

standing of the stresses and strains in a body is important

in medicine and biomechanics since they are a major source



of organ failure and are necessary for the understanding of

organ function [Fung, 1990], [Knight, 1999].

Interpreting large amounts of tensor data is di�cult,

though, since a second-order tensor is equivalent to a ma-

trix. As a solution we have presented a visualization toolkit

which contains a wide variety of visualization techniques,

allows interactive data exploration and the derivation of

new data �elds, and provides a 
exible color mapping.

We have demonstrated our work by visualizing the stress

in a model of the heart and the strain in a model of the

left ventricle. Visualizing the stress and strain �elds in the

heart can be used for diagnosis, surgical planning, and the

evaluation of the success of surgery.
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