
The Visual Computer (1999) 15:36±54
� Springer-Verlag 199936

Triage polygonization
of rounded polyhedra

Burkhard Wünsche, Richard Lobb

University of Auckland,
Department of Computer Science, Private Bag 92019,
Auckland, New Zealand
E-mail: {burkhard,richard}@cs.auckland.ac.nz

This paper describes a method for round-
ing and polygonizing edges and corners
of polyhedral models to produce softer,
more natural looking objects. The underly-
ing rounded surface is assumed to be de-
fined by ªquasiconvolutional smoothingº,
and the focus is on polygonizing the sur-
face rapidly and efficiently. A binary space
partitioning (BSP) tree is used to classify
space in the vicinity of a polyhedron to
identify the curved regions. Planar surfaces
are extracted as single polygons, and extra
polygons are introduced only at rounded
edges and corners. The result is a high-
quality polygonization of the rounded poly-
hedron with none of the fragmentation
problems of more general polygonization
methods.

Key words: Polygonization ± Polygonal
models ± Rounding ± BSP trees ± CSG
models

1 Introduction

Many common objects are approximately polyhe-
dral in shape. However, computer models of such
objects often look artificial because of the unnatu-
rally sharp edges and corners of true polyhedra.
Human modellers sometimes overcome this prob-
lem by explicitly trimming planar surfaces and
then adding smooth blends between adjacent faces.
Although this can produce excellent results, it is
rather time consuming. Furthermore, the underly-
ing blending process is computationally difficult
or even intractable with some configurations. A
good overview of blending methods is given by
Hoschek and Lasser (1992).
Colburn (1990) introduced convolutional smooth-
ing as a modelling technique in mechanical engi-
neering. His method uses a spherical test volume
or filter with a radius equal to the desired blend ra-
dius. In the simplest version of this method (name-
ly an unweighted filter), the surface of a smoothed
object is all points such that, when a sphere of the
specified radius is positioned at the point, exactly
half of the volume of the sphere is inside the solid
and half is outside. Figure 1 illustrates the process
in two dimensions, showing a polygon and its
smoothed version.
Convolutional smoothing is easy to specify: only a
single blending radius is required to round an arbi-
trarily complex solid. However, it is in general
hard to implement. Even in the simple unweighted
filter case, in which the convolution integral reduc-
es to the volume of the intersection of a sphere and
a solid, the geometry is difficult or intractable.
Colburn (1990) approximates the convolution cal-
culation by using an octree model of the solid.
Dansted (1997) shows how an exact convolution
can be computed for polyhedral solids and un-
weighted filters, but the computation is expensive.
Lobb (1996) introduces a fast approximation to
convolutional smoothing of polyhedra called qua-
siconvolutional smoothing. Polyhedra are repre-
sented by constructive solid geometry (CSG) trees
with halfspaces at the leaves. True convolutional
smoothing is applied to the leaves only, and the re-
sulting density fields are combined by means of
arithmetic operators in lieu of set operations.
Lobb's method is the one chosen for use in this pa-
per, and it is discussed in more detail in the next
section.
All these convolutionlike methods define the sur-
face of the rounded object by an implicit function,
i.e., the surface is all points x; y; z� � such that

Correspondence to: B. WuÈ nsche

37

f x; y; z� � � k for some function f and isosurface
level k. The problem then is how to render that sur-
face. Colburn uses ray casting to find surface
points from which a polygon mesh is constructed.
Dansted uses a space-subdivision method to obtain
a polygonization. Lobb directly ray-traces his
models using an implicit surface algorithm special-
ly adapted to quasiconvolutionally smoothed mod-
els. Ray tracing is expensive, and is certainly not
suitable for interactive use during modelling. The
two polygonization methods are also relatively ex-
pensive and output large numbers of polygons.
The most common method of polygonizing im-
plicit surfaces is the marching cubes method or
some variant (Wyvill et al 1986; Lorensen and
Cline 1987; Doi and Koide 1991). Such methods
subdivide the space containing the surface into a
uniform cell grid, and use a table lookup to ap-
proximate the surface through each cell. The cell
size must be sufficiently small to capture the
smallest features of interest in the object. In the
case of slightly rounded polyhedra, the cell size
needs to be comparable to the rounding radius
of the edges and corners. Edges are then repre-
sented by many small cell-sized polygons rather
than by a few long, thin polygons. Worse still,
the planar portions of the object that are unaffect-
ed by the rounding are also fragmented into large
numbers of tiny polygons. Regular subdivision
methods are thus unsuitable for use with polyhe-
dron rounding.
Adaptive subdivision methods (Bloomenthal 1988,
1994; Hall and Warren 1990) give less fragmenta-
tion. These methods adaptively reduce the scale of
the subdivision mesh in regions of high curvature.
However, in order not to miss small surface de-
tails, a fairly fine initial mesh is still required,

which in turn leads to significant fragmentation
of planar faces.
The only completely general way of obtaining a
high-quality polygonization in the presence of
small surface details is to use a fine sampling grid,
which produces large numbers of small polygons,
and then use a mesh optimization postprocess to
merge adjacent planar or nearly planar polygons
(Hinker and Hansen 1993; Kalvin and Taylor
1996; Gieng et al 1998). Such methods would cer-
tainly work on the implicit surfaces of rounded
polyhedra. However, some degree of unnecessary
fragmentation is inevitable because general meth-
ods cannot exactly fit subdivision grids to the arbi-
trarily oriented polyhedra. Furthermore, optimiz-
ing large meshes of small polygons is bound to
be expensive; it is clearly more efficient to com-
pute an efficient polygonization directly if possi-
ble. A survey of polygonization methods and opti-
mization techniques is given by Wünsche (1997).
This paper presents triage polygonization, which is
a fast, high-quality polygonization method espe-
cially designed for quasiconvolutionally smoothed
objects. It generates a binary space partitioning
(BSP) tree subdivision of space around the object.
The tree allows planar regions of the rounded poly-
hedron to be extracted directly, each as a single
polygon. Regions containing curved surfaces are
also identified and polygonized efficiently in a step
called subspace polygonization.

2 Quasiconvolutional smoothing

The triage polygonization method introduced in
this paper is specifically designed for use with qua-
siconvolutionally smoothed polyhedra. This sec-

Polygon

Convolutionally smoothed polygon

Smoothing filter

Fig. 1. Convolutional smoothing of a polygon

38

tion summarizes the relevant aspects of quasicon-
volutional smoothing. For full details, refer to the
original paper (Lobb 1996).
Quasiconvolutional smoothing requires that the
polyhedron to be rounded be represented as a con-
structive solid geometry (CSG) tree with halfspac-
es at the leaves. A convex solid is trivially repre-
sented as the intersection of the halfspaces defined
by its faces (Fig. 2a). More complex solids are
constructed by unions, intersections and differ-
ences of convex solids. The rounded polyhedron
is then defined as the 0.5 isosurface of the field ob-
tained by:

1. Convolutionally smoothing all the leaf half
spaces.

2. Combining the resulting density fields by means
of the arithmetic operations of multiplication,
addition and subtraction in lieu of the CSG op-
erations of intersection, union, and set differ-
ence.

This process is illustrated in two dimensions in
Fig. 2b.
The halfspace is regarded as a density field with a
value 1 inside the halfspace and a value 0 outside
it. The values of 1 and 0, rather than the more com-
mon �1 and ÿ1; are chosen so that set intersection
can be mimicked by multiplication, as discussed
later. The value of the convolution at any point p
is equal to the volume of a sphere with radius r
centered at p intersected with the halfspace, for
which the answer is

rr
H p� � �

0
0
1ÿa� �2� 2�a� �=4

a� 1
a�ÿ1

otherwise;

8<: �1�

where a� d
r and d is the distance of point p to the

halfspace H.
The density field rr

pbj p� � of a quasiconvolutionally
smoothed CSG object can then be defined as

rr
obj x� ��

rr
H p� �

rr
A x� ��rr

B x� �
rr

A x� � �rr
B x� �

rr
A x� �ÿrr

B x� �

if
if
if
if

obj is a halfspaceH
obj� A[B
obj� A[B
obj� AnB;

8>><>>: �2�

where ª\º denotes set difference.
Finally, the surface of the quasiconvolutionally
smoothed object is all points x2 R3 for which

rr
obj x� � � 0:5:

For this scheme to be a workable approximation to
convolutional smoothing, the original CSG object
is restricted in two important ways:

1. The union operation can be applied only to non-
intersecting objects.

2. The set difference can be applied only to objects
that completely intersect.

We furthermore assume that the density is always
between zero and one. For a discussion of these

Fig. 2a, b. Rounding a triangle: a the triangle is represented as the intersection of three halfspaces; b the rounded triangle
is obtained by smoothing and then multiplying the individual halfspaces. The solid line in the bottom right figure shows
the 0.5 isocontour that defines the boundary of the rounded triangle

a

b

39

constraints and other properties of the method, re-
fer to Lobb (1996).

3 Triage polygonization

3.1 Overview of triage polygonization

Triage polygonization consists of three distinct
steps.

1. Polyhedral subdivision of space. In this step the
density field of the quasiconvolutionally
smoothed object is partitioned into convex re-
gions called cells, each of which is one of the
following:
(a) A ªlowº cell, meaning that the density at all

points in the cell is below the 0.5 isosurface
level.

(b) A ªhighº cell, meaning that the density at
all points is above the 0.5 isosurface level.

(c) ªUnclassifiedº, meaning that the cell proba-
bly includes some densities above the iso-
surface level and some below. These cells
contain the curved surfaces of the rounded
object.

2. Extraction of planar regions. In this step we
identify and output polygonal faces that are
shared by both high cells and low cells. These
polygons, called tree polygons, essentially cov-
er the planar regions of the surface of the round-
ed polyhedron, i.e., all those surface points that
are common to both the rounded and the un-
rounded polyhedron.

3. Subspace polygonization. In this step we output
a polygonization of the isosurface passing
through each of the unclassified cells. These
output polygons essentially cover the curved re-
gions of the surface of the rounded polyhedron.

3.2 Polyhedral subdivision of space

3.2.1 Density classification

The density field rr
H of a quasiconvolutionally

smoothed halfspace partitions R3 into four parts.
Let h denote the halfspace plane of halfspace H,
and define two parallel planes hr (outer halfspace
plane) and hÿr (inner halfspace plane) at distances
of r and ÿr from h, respectively. Then, for all

points outside hr; the density field is constantly ze-
ro. Similarly, inside hÿr the density field is con-
stantly one. Between the two planes are a low re-
gion (density values smaller than 0.5) and a high
region (density values greater than or equal to
0.5) separated by the halfspace plane h. Note that
points that lie exactly on the planes hr; h, and
hÿr have density values of zero, 0.5, and one, re-
spectively.
Figure 3 shows the density field of the intersection
of two halfspaces. The two halfspaces H1 and H2
are smoothed with rounding radii r1 and r2; respec-
tively. (We have chosen two different rounding ra-
dii for the halfspaces. This extension is explained
in Sect. 3.5.) From Eq. 2, the resulting density field
is the product of the density fields of the halfspac-
es. For example, the density value at the point p1 is
computed as

rH1\H2
p1� � � rr1

H1
p1� � �rr2

H2
p1� � � 0:5 � 1� 0:5

since p1 lies on both the planes h1 and h2;ÿr2 :
The planes H1 and H2; together with their associat-
ed inner and outer halfspace planes, partition the
density field over R3 into 16 regions. By using in-
terval arithmetic (Duff 1992; Snyder 1992), we can
obtain bounds on the density values over each re-
gion. As an example, consider region R1 is bound-
ed by the planes h1; h1; r1 ; h2; and h2;r2 : Since R1 is
bounded by the planes h1 and h1;r1 ; the contribu-
tion of the density field of H1 to this region varies
between zero and 0.5. Similarly, since R1 is bound-
ed by h2 and h2;r2 ; the density contribution of H2
varies between 0.5 and one. Hence, all density val-
ues in the region R1 lie in the product of these two
intervals, namely the (open) interval (0.0, 0.5), and
therefore the region R1 lies outside the 0.5 isosur-
face.
A similar calculation for region R3 in Fig. 3 yields
the result that all density values in the region lie in
the interval (0.25, 1), so potentially this region can
contain the 0.5 isosurface.
These interval computations can be simplified by
replacing intervals with density classes. A single
smoothed halfspace partitions space into regions
with classes zero, one, low, or high. We introduce
a new density class unclassified to denote any
other classification. Table 1 summarizes the rules
for the multiplication of two density classes. Sim-
ilar tables can be defined for addition and subtrac-
tion.

40

}
}

}
}

r1

r1

r2
r2

h1

h1,-r1

h1,r1

h2

h2,r2

R1
R2

R3

p1
p2

h2,-r2

H1

H2

a Rounded(r)

Set&difference

Set&difference

b

e

union

union

Rounded&object

Cell {
One
High

Low
Zero

Halfspace&plane

Inner/outer&halfspace&

f g Density&field

d Set&difference

Set&differencec

plane

Unclassified

Fig. 3. Intersection of two halfspaces

Fig. 4. A quasiconvolutionally smoothed object (a),
its defining CSG object (b), and the density fields of
the two primitives (c). The halfspace planes of the
primitive objects, together with their inner and outer
halfspace planes, partition the density fields into
convex cells (d), which are then classified (e).
Merging the primitive density fields using a BSP
tree approach provides a partitioning for the density
field of the whole object (f)3

4a 4b 4c

4d 4e

4f 4g

41

Replacing the intervals with density classes does
result in some loss of information. However, for
our purposes (the detection of regions intersected
by the 0.5 isosurface), this information loss is in-
significant.

3.2.2 Replacing polyhedral primitives
with classified cells

According to Sect. 2, the polyhedron to be rounded
is represented as a CSG tree with halfspaces at the
leaves. We now restrict that definition so that we
deal only with bounded polyhedra constructed from
convex polyhedral primitives. Rounding such a
CSG tree by quasiconvolutional smoothing results
in an arithmetic tree that combines the density
fields created by rounding each convex polyhedral
primitive. The first step in our algorithm is thus to
replace each primitive by a union of classified cells
that together represent the nonzero density field of
the primitive. We call the resulting modified tree
a density CSG tree. Figure 4 illustrates the process.
It shows a quasiconvolutionally smoothed object
(Fig. 4a) defined as a rounded set difference of
two cuboids (Fig. 4b). In order to subdivide the
density functions of the individual primitives
(Fig. 4c) into nonzero regions, we define, for every
halfspace plane of the primitive object, the corre-
sponding inner and outer halfspace planes (Fig. 4d).
This creates a set of polyhedral regions or cells. As
with the intersection of two halfspaces in Fig. 3, we
classify each cell with respect to each halfspace into
zero, low, high, or one and then compute its density
class by multiple applications of Table 1.
Figure 5 gives the pseudocode for the algorithm
that classifies each cell. Note that a region lying
outside any outer halfspace plane has a zero densi-
ty class, so it is sufficient to subdivide the polyhe-
dron defined as the intersection of all outer half-
spaces. Note, too, that the density class of a cell
is the product of its classifications in all different
halfspaces. Hence its density class can be comput-

ed by counting the number of times it is classified
by the planes into each of the density classes. For
example, if at least one density class is zero, then
the product is zero.

3.2.3 Polyhedral subdivision with BSP trees

The next step is to merge all the classified cells at
the leaves of the density CSG tree into a unified
polyhedral subdivision of space around the original
polyhedron, as hinted at in Fig. 4g. We use BSP
trees for this purpose.
The fundamental methodology underlying BSP
trees is spatial partitioning (Fuchs et al 1980;
Naylor 1981). Planes are used to recursively subdi-
vide R3 to create a set of disjoint convex cells.
Each cell is then designated as either interior or ex-
terior to the set. The boundary need not be repre-
sented explicitly as it is derivable from the cells.
We introduce a density BSP tree, simply called
BSP tree from now on, which is an ordinary BSP
tree in which the resulting leaf cells are classified
into density classes.
Our polyhedral subdivision algorithm transforms
the density field of a density CSG tree into a
BSP tree. The algorithm is similar to the standard
algorithm for the conversion of a CSG object into a
BSP tree (Thibault and Naylor 1987; Naylor et al
1990). Figure 6 gives the algorithm. If the CSG ob-
ject is not a primitive, we transform the left child
object recursively to a BSP tree and insert the right
child object according to the corresponding set op-
eration. A primitive density CSG object, i.e., a
classified cell, is transformed into a linear tree
where the enclosed region has the same density
class as the cell and the outside regions are classi-
fied as zero. A nonprimitive CSG object is con-
verted to a BSP tree by recursively converting
the left subtree of the object to a BSP tree and then
inserting into that the right CSG subtree. The inser-
tion is under control of the CSG set operation that
uses the algorithm of Figure 7.

Table 1. Multiplication of
density classes Zero Low Unclassified High One

Zero Zero Zero Zero Zero Zero
Low Zero Low Low Low Low
Unclassified Zero Low Unclassified Unclassified Unclassified
High Zero Low Unclassified Unclassified High
One Zero Low Unclassified High One

42

Function InsertCSGinBSP involves splitting the
CSG object by the partitioning plane of the root
of the BSP tree. The resulting portions are then re-
cursively inserted in the two subtrees of the BSP
tree. If the CSG object reaches a leaf node, it is
transformed recursively into a BSP tree and the
density classes of the BSP tree are updated accord-
ing to the density class of the leaf node and the in-
volved set operation.

3.3 Tree polygons

The BSP tree partitions the density field of a qua-
siconvolutionally smoothed object into cells with
density classes zero, low, unclassified, high, and
one. It can be seen that the density field on a face
between a low cell and a high cell is a constant 0.5.
These faces are therefore part of the polygonized

surface and can be extracted directly. The algo-
rithm for this step is similar to the surface extrac-
tion step for BSP trees (Thibault and Naylor 1987)
and is given in Figure 8.
For each partitioning plane, we get a candidate tree
polygon by intersecting a bounding box with the
partitioning plane. The bounding box must enclose
all high and one density class regions and can be
computed efficiently from the primitives of the
original CSG object. The definition of our BSP
tree guarantees that all unsmoothed parts of the ob-
ject's surface lie on a partitioning plane; that is, a
halfspace plane of the original CSG object.
For each BSP node, the candidate polygon is
pushed down the IN and OUT trees to find the bits
of it facing a high cell on their inside and a low cell
on their outside. Note that it is sufficient to push
the face down the subtrees because the candidate
face is obtained from a bounding box that has al-

function ClassifiedCells (r :Real /* rounding radius */, planes :List of Plane /* halfspace planes */) :List of ClassifiedCell
/* Subdivides non-zero density field of a polyhedral primitive into classified cells */

outerPlanes=TranslateInNormalDirection(r, planes)
innerPlanes=TranslateInNormalDirection(�r, planes)
boundingPolyhedron=Intersection of halfspaces of outerPlanes
cells=Subdivide(boundingPolyhedron, planesÈinnerPlanes)
classifiedCells= 6 0
For each cell Î cells do

nzero; nlow; nhigh; none
ÿ �

=ClassifyAgainstAllPlanes (cell, planes)
if nzero0 then densityClass=zero
elsif nlow0 then densityClass=low
elsif nhigh �� 0 then densityClass=one
elsif nhigh �� 1 then densityClass=high
else densityClass=unclassified
classifiedCells=classifiedCellsÈ(cell,densityClass)

return classifiedCells

Fig. 5. Transforming a polyhedral primitive into classified cells

function CSG2BSP(obj:CSGObject):BSPTree
/* Transforms a CSG object into a BSP tree */
if obj is a classified cell then

return LinearBSPTree(obj.densityClass, obj.faceList)
else /* obj is not a classified (convex) cell */

return InsertCSGinBSP(obj.right, CSG2BSP(obj.left), obj.op)
function LinearBSPTree(class:DensityClass, faces:List of Faces):BSPTree
/* Computes linear BSP tree for a convex CSG object */
if faces is empty then return MakeLeaf(class)
else

plane=Plane of HeadOfList(faces)
inTree=LinearBSPTree(class, TailOfList(faces))
return MakeNode(plane, inTree, MakeLeaf(zero))

Fig. 6. Transforming a CSG object into a BSP tree

43

function InsertCSGinBSP(obj:CSGObject, tree:BSPTree, op:SetOperation):BSPTree
/* Insert a GSG object into a BSP tree using a given set operation */
if tree is not a leaf

(inObj,outObj)=SplitCSGObj(tree.plane, obj)
inTree = InsertCSGinBSP(inObj, tree.inTree, op)
outTree = InsertCSGinBSP(outObj, tree.outTree, op)
return MakeNode(tree.plane, inTree, outTree)

else /* tree is a leaf with a density class */
if op == È

if tree.densityClass == one then return tree /* no change */
if tree.densityClass == zero then return CSG2BSP(obj)
return UpdateDensityClasses(CSG2BSP(obj), tree.densityClass, op)

if op == Ç
if tree.densityClass == zero then return tree /* no change */
if tree.densityClass == one then return CSG2BSP(obj)
return UpdateDensityClasses(CSG2BSP(obj), tree.densityClass, op)

if op == \
if tree.densityClass == zero then return tree /* no change */
return UpdateDensityClasses(CSG2BSP(obj), tree.densityClass, op)

function UpdateDensityClasses(tree:BSPTree, class:DensityClass, op:SetOperation):BSPTree
/* Perform for the density classes of all cells of the given tree a set operation with the given density class */
if tree is a leaf

then newTree = MakeNode(Apply(op, tree.densityClass, class))
else

inTree = UpdateDensityClasses(tree.inTree, class, op)
outTree = UpdateDensityClasses(tree.outTree, class, op)
newTree = MakeNode(tree.plane, inTree, outTree)

return newTree

Fig. 7. Insert a CSG object into a BSP tree

function TreePolygons(tree:BSPTree, boundingBox:Polyhedron):List of Polygons
/* Compute all tree polygons, i.e., polygons separating low from high cells, for a given BSP tree and a given

bounding box of its non-zero cells /*
if tree is a leaf then return 6 0
else

(inBox, outBox) = SplitBoundingBox(boundingBox, tree.plane)
candidatePoly = Intersection(boundingBox, tree.plane)
resultPolys = 6 0
highOnInsidePolys = SelectedBitsOfPoly(candidatePoly, High, inTree)
for each polygon p in highOnInsidePolys

lowOnOutsidePolys = SelectedBitsOfPoly(p, Low, outTree)
resultPolys = resultPolysÈlowOnOutsidePolys

highOnInsidePolys = SelectedBitsOfPoly(FlippedFace(candidatePoly), High, outTree)
for each polygon p in highOnInsidePolys

lowOnOutsidePolys = electedBitsOfPoly (p, Low, inTree)
resultPolys = resultPolys È lowOnOutsidePolys

polysInInTree = TreePolygons(tree.inTree, inBox)
polysInOutTree = TreePolygons(tree.outTree, outBox)
return resultPolys È polysInInTree È polysInOutTree

function SelectedBitsOfPoly(poly:Polygon, class:DensityClass, tree:BSPtree):List of Polygons
/* Inserts the poly into the tree and returns all bits that reach a leaf with the specified density class /*
if tree is a leaf then

if tree.class == class then return poly
else return 6 0

else
(inBit, outBit) = SplitPolygon(poly, tree.plane)

retainedInBits = SelectedBitsOfPoly(inBit, class, tree.inTree)
retainedOutBits = SelectedBitsOfPoly(outBit, class, tree.outTree)
return retainedInBits È retainedOutBits

Fig. 8. Extracting tree polygons from a BSP tree

44

ready been clipped on the partitioning planes of all
parent nodes of the current BSP node.
The same process is executed for the flipped can-
didate face. The density field outside the flipped
candidate face is now given by the IN tree and
the density field inside the face is given by the
OUT tree. After finding the tree polygons of a
BSP node, the algorithm is called recursively
for the subtrees of the node until a cell is
reached.
Note that the density field of a quasiconvolutional-
ly smoothed object is continuous, and therefore no
part of the 0.5 isosurface neighbors a zero or a one
cell. (This is not true for the final implementation,
which achieves a fast clipping of the object by
clipping the density field.)

3.4 Subspace polygonization

It is known that the remaining object surface lies
inside or on the unclassified cells after the tree
polygons have been extracted. An explicit repre-
sentation of the cell boundaries can be obtained ei-
ther by a postprocessing step or by maintaining the
cell's boundary as an intrinsic component of the
BSP tree (Naylor et al 1990). We polygonize the
0.5 isosurface inside an unclassified cell by ap-
proximating it as follows:

1. Compute the points on the isosurface where the
cell edges intersect the isosurface.

2. Connect the intersection points to form one or
more topological polygons.

3. Refine each edge of the polygon(s) by finding
an additional point on the isosurface near each
edge midpoint.

4. Subdivide the topological polygon(s) into pla-
nar polygons.

Figure 9 illustrates this process.

3.4.1 Computing intersection points

We form set of points on the isosurface by comput-
ing the intersection points of the edges of every un-
classified cell with the 0.5 isosurface. Since we as-
sume a smooth surface, an intersection point exists
if the end points of an edge lie on different sides of
the isosurface. A rootfinder finds the intersection
point using a regula falsi method with an inter-
leaved binary search.

3.4.2 Connecting intersection points

Having determined the intersections of all edges of
the cell with the isosurface, we approximate the in-
tersection of the isosurface with faces of the cell by
connecting appropriate pairs of intersection points
by straight lines lying in the faces of the cell.
Since each BSP tree contains arbitrarily shaped
convex polyhedral cells, the number of isosurface
intersection points with a given face is unlimited.
For more than two intersection points, the connec-
tion is ambiguous. Observe that only neighboring
intersection points can be connected (otherwise
the isosurface would be self-intersecting or folded)
to resolve ambiguities. The density class of the cen-
troid of the intersection points belonging to a cell
face is used to resolve the ambiguity. A pair of con-
secutive intersection points around a face is con-
nected by a polygon edge if and only if the density
class of the centroid differs from that of the cell
face vertices lying between the intersection points.
The direction of the edge is chosen so that points
inside the isosurface have a high density value.
This is illustrated in Fig. 10a and b. Figure 10c
shows that this approach, like all polygonization
methods, can, in principle, yield the wrong topolo-
gy. However, the inherent smoothness of the qua-
siconvolutionally smoothed density fields makes
such an outcome very unlikely.
Once all edges have been determined for the iso-
surface through a cell, the edges are connected to
form one or more topological polygons. These
polygons approximate the isosurface intersection
with the cell.

3.4.3 Refining edges

As can be seen from Fig. 3, a single BSP tree cell
typically encompasses the entire curvature of a
rounded edge. As described so far, the algorithm
would replace a simple rounded edge with a single
polygon. A better approximation is clearly desir-
able. Surprisingly, we have found that just two
polygons, Gouraud shaded, generally produce an
entirely acceptable effect. We subdivide each edge
of a topological polygon into two, introducing a
new vertex that lies on the isosurface. The new
point is initially created at the midpoint of the edge
and is then displaced along the line of the density
field gradient until the isosurface is found
(Fig. 11).

45

Since the density gradient in pmid usually does not
lie in the face plane, we take instead its projection
rprojFr on the face given by

rprojFr�rrÿ nF �rr� �nF;

where nF is the face normal.
We intersect the line along the density field gradi-
ent with the face edges and compare the density

classes of the intersection points sstart and send with
the density class of pmid (Fig. 11a). The two lines
sstartpmid and sendpmid are candidates for a root
search. If either sstart or send is on the side of the
isosurface opposite to pmid; we search for a root be-
tween that point and pmid (Fig. 11b). If both the
former points are on the side of the isosurface op-
posite to pmid; we search in the direction of the
density field gradient. Otherwise we assume that

a b c d

0.5 iso-surface

Point on 0.5 iso-surface

Polygon edge

Cell

a b

Intersection point

Centroid of
intersection points

Sector

Vertex

Low density value

On 0.5 iso-surface

Polygon edge

}

0.5 iso-surface

c

High density value

9a 9b 9c 9d

10a 10b

10c

Fig. 9a±d. The subspace is polygonized in four steps: a the isosurface intersections with the edges are found; b the
intersections are connected to create one or more polygons; c the polygon edges are refined by adding new vertices; d the
topological polygon(s) are subdivided into planar polygons

Fig. 10a±c. Using the centroid of the intersection points to resolve edge connection ambiguities

46

no isosurface intersection exists and do not refine
the edge.

3.4.4 Flattening topological polygons

The last step of the subspace polygonization di-
vides each topological polygon into planar poly-
gons by connecting each vertex to the centroid of
the topological polygon, thus triangulating the to-
pological polygon. We can improve the polygonal
approximation of the isosurface by moving the
centroid in the direction of the density gradient un-
til the 0.5 isosurface intersection is found (Fig. 9).
This again is a root search. The search space is re-
stricted to the volume of the cell to ensure that the
approximation to the isosurface stays within the
cell.

3.5 Improvements

3.5.1 Local density dield

The subspace polygonization involves repeated
evaluation of the density field at points inside the
unclassified cell. To make this calculation more ef-
ficient, a local density field is defined for each un-
classified cell. This is effectively a pruned version

of the original quasiconvolutionally smoothed den-
sity field, involving only those halfspaces that have
a varying contribution to the densities within the
cell. The local density field can be computed dur-
ing the computation of density classes with a table
similar to Table 1. We found that the local density
fields usually have a constant size, whereas the
global density fields grows linearly with the size
of the object.

3.5.2 Intersection of two halfspaces

We inspected the results of our polyhedral subdivi-
sion algorithm and found that on average 30% of
the unclassified cells contained a local density
field from the intersection of two halfspaces. It
can be shown (Wünsche 1996) that the density
field is then a convex swept surface. Figure 12
shows that an improved subspace polygonization
is given for these cells as part of the convex hull
of all isosurface intersection points. An efficient
algorithm that finds polygons of maximum size
is given in Wünsche (1996).

3.5.3 Variable rounding radius

Another desirable feature is to define different
rounding radii for the different edges of an object.

}

pint2

pint1

pmid

send

sstart
pint2

pint1

pmid=send

sstart
pint2

p

pnew

Point

Vertex

Low density value

On 0.5 iso-surface

High density value

Polygon edge

Area of root search

Density gradient projected on face

0.5 iso-surface

b c

int1

Fig. 11. The line along the density field gradient through pmid (a) defines a linear search space for the edge refinement (b).
The refined edge is shown in (c)

a b c

47

Though this effect is not possible for quasiconvo-
lutionally smoothed objects, we can often obtain
a similar effect by defining different smoothing ra-
dii for the halfspaces that form a polyhedral prim-
itive. This technique was used to produce the cy-
lindrical metal pins with smoothly flattened ends
in Fig. 13 (see also the enlargements).

4 Rendering

The vertex normals of the polygons are required
for Gouraud or Phong shading. The vertex normals
of tree polygons, which always describe a planar
area of the isosurface, are given simply by the sur-
face normal of the polygon. The vertex normal~npi

of a vertex pi of a subspace polygon is given by the
gradient of the density field at the vertex

~npi �ÿ
rr pi� �
rr pi� �k k :

We compute the density gradient by differentiating
the arithmetic tree defining the density field (see
Sect. 2).

5 Results

We implemented our algorithm in the functional
language CLEAN 1.0 on a Power Macintosh
9500/120. The polygonized scenes were rendered
with QUICKDRAW3D.

5.1 Images

Figure 13a and c shows a hole punch modeled as a
simple unsmoothed CSG object with polyhedral
primitives. By specifying a few rounding radii,
we obtain a much better looking smoothed hole
punch as shown in Fig. 13b and d. The base of
the hole punch is rounded with a smoothing radius
considerably smaller than the base itself. As a re-
sult, triage polygonization extracts most of the ob-
ject's surface as large rectangles. A smoothed edge
and a corner are represented with two long rectan-
gles and six triangles, respectively. The Gouraud
shaded picture in Fig. 13d shows that the produced
polygons are sufficient to achieve the visual im-
pression of a smoothed surface.
The enlargements of Fig. 13 depict the punch, part
of the hinges, and some metal pins in detail. The

a b

Intersection point

Polyline

c

0.5 Isosurface

Polygon

a b

c

Fig. 12. a Cell containing a quasiconvolutionally smoothed intersection of two halfspaces; b the subspace polygonization
leads to fragmentation; c the desired result of the subspace polygonization

48

F
ig

.1
3.

T
he

un
sm

oo
th

ed
(a

,
c)

an
d

sm
oo

th
ed

(b
,

d)
ªh

ol
e

pu
nc

hº
sc

en
e.

T
he

re
su

lt
s

ar
e

sh
ow

n
as

w
ir

e-
fr

am
e

re
pr

es
en

ta
ti

on
s

(a
,

b)
an

d
G

ou
ra

ud
sh

ad
ed

(c
,

d)

49

F
ig

.1
4.

T
he

un
sm

oo
th

ed
(a

)
an

d
sm

oo
th

ed
(b

)
ªs

ta
pl

er
º

sc
en

e.
T

he
re

su
lt

s
ar

e
sh

ow
n

as
w

ir
e-

fr
am

e
re

pr
es

en
ta

ti
on

s
(a

,
b)

an
d

G
ou

ra
ud

sh
ad

ed
(c

,
d)

50

punch is modeled as a rounded cuboid. Note that
the punch pin has a sharp edge at the top. We
achieve this very easily by applying a clipping
plane to the rounded cuboid. We achieve an effi-
cient implementation by directly clipping the den-
sity field of an object before polygonization. De-
tails are given in Wünsche (1996).
The two metal pins at the bottom right corner of
the enlargement are constructed from halfspaces
with different rounding radii. This gives the im-
pression of a cylinder with a smoothly flattened
end. Observe that the cylindrical part of a
smoothed metal pin is approximated with rectan-
gles, whereas the more complicated end of a pin
is represented by triangles.
A model of a stapler is shown before (Fig. 14a, c)
and after (Fig. 14b, d) applying our algorithm, re-
spectively. Note that, wherever possible, the poly-
gonization method finds long triangles and rectan-
gles. It can also be seen that very thin objects, such
as the side plates of the hinge, are polygonized
without problems.
Figure 15 shows a scene modeled as a union of six
objects, each derived by applying various combi-
nations of rounding operations, and a set operation
to a cube and a small cuboid. Two interesting cases
are shown as enlargements. The top enlargements
of both parts of the figure depict a clipped quasi-
convolutionally smoothed small cube subtracted
from a bigger unsmoothed cube. We model set op-
erations on polygonized objects by merging BSP
trees (Thibault and Naylor 1987; Naylor et al
1990).
The bottom enlargements of Fig. 15a and b give an
example of a concave three plane corner. The cor-
ner results from a quasiconvolutionally smoothed
union of a big cube and a small cuboid. It can be
seen that the corner is nicely polygonized with on-
ly 26 triangles.

5.2 Comparison with
the marching cubes algorithm

The marching cubes algorithm is a popular method
for implicit surface polygonization, and it provides
a good basis for comparison with our new method.
To achieve comparable visual quality, we applied
the marching cubes algorithm with a grid size of
half the rounding radius of the quasiconvolutional-
ly smoothed scene.

Figure 16 shows the results of both algorithms for
a ªvariable radiusº scene, which shows an object
constructed as a set difference of a cube and a
small cuboid smoothed with several different
rounding radii. The object in Fig. 16a and c was
polygonized with triage polygonization, whereas,
for the object in Fig. 16b and d, the marching
cubes algorithm was used. Note that our algorithm
achieves a good polygonization for all objects, in-
dependently of the rounding radius. The polygon-
ization for the objects with small rounding radius
can be considered optimal. For the objects rounded
with a rather large smoothing radius, some ªbandsº
are visible where the object is polygonized more
finely. This is due to small cells in the polyhedral
subdivision of the density fields defining the qua-
siconvolutionally smoothed objects.
We found that triage polygonization is about 20±
30 times faster than the marching cubes algorithm
on average and it outputs only a fraction (»1%±
2%) of its number of polygons. The results also
confirm that triage polygonization produces arbi-
trarily complex polygons of vastly different sizes,
whereas the marching cubes algorithm produces
only about equally sized triangles. Also note that
triage polygonization yields the b-rep of the un-
smoothed object for a rounding radius of zero,
whereas the marching cubes algorithm cannot
polygonize sharp edges at all.
The marching cubes algorithm becomes superior if
the rounding radius reaches about a quarter of the
object size (the middle object of the bottom row in
Fig. 16b and d). In that case, however, the object
no longer fulfills our design objective that it is pre-
dominantly planar.

5.3 Complexity

The complexity of triage polygonization is gov-
erned by the subspace polygonization step, which
is a binary space partition. We have made measure-
ments on several scenes that suggest an average
time complexity of about O n1:3� �; where n is the
number of halfspaces in the unsmoothed CSG ob-
ject. Using the BSP tree algorithm of Naylor et al.
(1990) could improve this result to O n logn� �: Note
that this complexity is quite different from that for a
conventional polygonization method, such as the
marching cubes algorithm, for which the time com-
plexity is O m3� �; where m is the sample resolution.

51

In principle, our algorithm could become less effi-
cient if a single complex object were being round-
ed or if a low sampling resolution were used. How-
ever, rounding is usually applied to fairly simple
objects that are components of more complex ob-
jects. Low sampling resolution cannot generally
be used, since fine structures or high-curvature
edges cannot then be represented.

5.4 Known problems

As with all geometric algorithms, numerical ro-
bustness is an issue. The subspace polygonization
stage depends on classifying cell vertices as above
or below the isosurface, which leads to the ques-
tion of how to treat vertices that lie directly on
the isosurface. This situation is rare with a march-
ing cubes algorithm, but common with ours, since

Fig. 15. The ªCSG exampleº scene polygonized with triage polygonization.
The result is shown as a wire-frame representation (a) and Gouraud shaded (b)

52

our partitioning planes lie on the unsmoothed ob-
ject's faces. Extending the algorithm to handle
such vertices as special cases is more complex
and requires maintaining a honeycomb property.
(A honeycomb is a polyhedral subdivison of space
in which each internal face of each polyhedral cell
is entirely shared by exactly one other cell.) This
requires a data structure, such as the hash table
used by Wyvill et al. (1986), that enforces sharing
of edge and face information. Unfortunately, the
language we have used for our implementation,
CLEAN 1.0, lacks a working array data type or
pointers, and we have been unable to implement
complete sharing of face and edge information.
We have chosen, instead, largely to avoid the prob-
lem by classifying vertices against a displaced

0:5� e isosurface. We determine which edges in-
tersect the displaced isosurface, but then compute
the actual 0.5 isosurface during root searching.
This strategy can lead to holes in the isosurface
in certain cases, but such cases are easily identi-
fied, and the missing polygons can be generated
in a postprocessing step. We use a value of 0.001
for e. Details, and the more general issue of ensur-
ing continuity of the polygonized isosurface, are
discussed at length in Wünsche (1996).

6 Conclusion

This paper has presented triage polygonization, a
new polygonization method specifically designed

Fig. 16. Triage polygonization and the marching cubes algorithm applied to the ªvariable radiusº scene:
the result of triage polygonization as a wire-frame representation (a) and in Gouraud shading (c), the same
representation for the result of the marching cubes algorithm (b, d)

53

for quasiconvolutionally smoothed objects. Triage
polygonization performs best for quasiconvolu-
tionally smoothed objects smoothed with a round-
ing radius small in comparison to their size. Such
objects have predominantly planar surfaces with
only edges and corners rounded. Triage polygon-
ization extracts planar surfaces by means of a
BSP tree with minimal fragmentation and approx-
imates most rounded edges and corners with a
nearly minimal number of polygons. For such ob-
jects, triage polygonization is superior to all gener-
al polygonization methods for implicit surfaces
known to us.
Triage polygonization also performs well for
strongly rounded objects and in such cases its per-
formance is similar to general polygonization
methods.
Triage polygonization is invariant under affine lin-
ear transformation and the quality of the polygon-
ization is independent of the rounding radius (if it
is reasonably small).

7 Future work

As mentioned in Sect. 5.4, several problems still
exist with our method. We would like to imple-
ment the algorithm in an imperative language (C/
C++), using a data structure that allows us to gen-
erate a BSP tree modified to maintain a honey-
comb property.
We should be able to achieve an even better qual-
ity of polygonization by making the refinement
process for edges and topological polygon depen-
dent on the curvature of the surface. An adaptive
refinement process similar to that suggested by
Bloomenthal (1988) could be employed.
We have designed triage polygonization to poly-
gonize quasiconvolutionally smoothed objects.
However, it should be adaptable to other polyhe-
dral smoothing schemes based on implicit surfac-
es. In particular, we would like to investigate its
use with true convolutional smoothing (Dansted
1997).

References

Bloomenthal J (1988) Polygonization of implicit surfaces. Com-
put Aided Geom Des 5:341±355

Bloomenthal J (1994) An implicit surface polygonizaer. In:
Heckbert PS (ed) Graphics Gems IV, Chap. 8. Academic
Press, Cambridge

Colburn S (1990) Solid modeling with global blending for ma-
chining dies and patterns. Proceedings of the 41st Annual
Earthmoving Industry Conference, SAE technical paper se-
ries, SAE International, Warrendale, Pa

Dansted PJ (1997) Convolutional smoothing of polyhedra. Mas-
ters's Thesis, Department of Computer Science, University
of Auckland, Auckland, New Zealand

Doi A, Koide A (1991) An efficient method of triangulating
equivalued surfaces by using tetrahedral cells. IEICE Trans
Commun Elec Inf Syst E-74:214±224

Duff T (1992) Interval arithmetic and recursive subdivision for
implicit functions and constructive solid geometry. SIG-
GRAPH Comput Graph 26:131±138

Fuchs H, Kedem Z, Naylor BF (1980) On visible surface gener-
ation by a priority tree structure. SIGGRAPH Comput Graph
14:124±133

Gieng TS, Hamann B, Joy KI, Schussman G, Trotts IJ (1998)
Constructing hierarchies for triangle meshes. IEEE Trans
Visualization Comput Graph 4:145±161

Hall M, Warren J (1990) Adaptive polygonization of implicitly
defined surfaces. IEEE Comput Graph Appl 10:33±42

Hinker P, Hansen C (1993) Geometric optimization. Comput
IEEE Proceedings of Visualization '93, pp 189±195

Hoschek J, Lasser D (1992) Fundamentals of Computer Aided
Geometric Design, Chapt. 14, pp 592±601, AK Peters Ltd,
Wellesley, MA 2nd edition

Kalvin AD, Taylor RH (1996) Superfaces: polygonal mesh sim-
plification with bounded error. IEEE Comput Graph Appl
16:64±77

Lobb R (1996) Quasiconvolutional smoothing of polyhedra. Vi-
sual Comput 12:373±389

Lorensen W, Cline H (1987) Marching cubes: a high resolution
3D surface construction algorithm. Comput Graph
(SIGGRAPH'87 Proceedings), 21:163±169

Naylor BF (1981) A priori based techniques for determining vis-
ibility priority for 3D scenes. PhD Thesis, University of
Texas, Dallas, Tex

Naylor BF, Amanatides J, Thibault W (1990) Merging BSP trees
yields polyhdral set operations. SIGGRAPH Comput Graph
24:115±124

Snyder JM (1992) Interval analysis for computer graphics.
SIGGRAPH Comput Graph 26:121±130

Thibault WC, Naylor BF (1987) Set operations on polyhedra
using binary space partitioning trees. Comput Graph
(SIGGRAPH'87 Proceedings), 2:153±162

Wyvill G, McPheeters C, Wyvill B (1986) Animating soft ob-
jects. Visual Comput 2:235±242

Wünsche BC (1996) A fast polygonization method for quasicon-
volutionally smoothed polyhedra. Master's Thesis, Depart-
ment of Computer Science, University of Auckland, Auck-
land, New Zealand

Wünsche BC (1997) A survey and analysis of common polygon-
ization methods & optimization techniques. Mach Graph Vi-
sion 6:451±486

54

BURKHARD WÜNSCHE re-
ceived a Vordiplom in Computer
Science from the University of
Kaiserslautern, Germany, in
1993 and an MSc in Computer
Science from the University of
Auckland, New Zealand, in
1996. He is currently a PhD stu-
dent in Computer Science at the
University of Auckland, working
on visualization methods for use
with bioengineering models. His
current research interests include
computer graphics, scientific vi-
sualization, geometric modeling,
and bioengineering.

RICHARD LOBB is a Senior
Lecturer in the Department of
Computer Science at the Univer-
sity of Auckland, New Zealand.
His research interests are in com-
puter graphics and visualization.
He received an MSc in Physics
in 1970 and a PhD in Radio Sci-
ence in 1975, both from the Uni-
versity of Auckland.

