A Survey and Analysis of
Common Polygonization Methods

&

Optimization Techniques

Burkhard Wunsche

Department of Computer Science
University of Auckland

email: bwue001Q@cs.auckland.ac.nz

August 1997

Abstract

Implicitly defined surfaces of scalar fields (isosurfaces) are a com-
mon entity in scientific and engineering science. Polygonizing an iso-
surface allows storing it conventionally and permits hardware assisted
rendering, an essential condition to achieve real-time display. In ad-
dition the polygonal approximation of an isosurface is used for sim-
plified geometric operations such as collision detection and surface
analysis. Optimization Techniques are frequently employed to speed
up the polygonization algorithm or to reduce the size of the resulting
polygon mesh.

1 Introduction

In this paper we review popular polygonization methods for implicitly de-
fined surfaces (isosurfaces), which are important in scientific and engineer-
ing science. Isosurfaces are used to visualize scalar fields [Bli82, DK91]
and, by reduction to scalar quantities, vector fields and tensor fields [DH93,
PvW094]. Brill et al. use isosurfaces to define streamballs for flow visualization
[BHR194].

Isosurfaces are also common in geometric modeling. Several blending
methods use implicitly defined surfaces [HH87, War89, HH91, HL92]. In
addition implicitly defined surfaces prove useful to define “blobby models”.
These models use a scalar field composed of many field generating primi-
tives [Bli82, WMW86b, Mur91, BW90, BS91]|. Colburn defines a smoothed
object as isosurface in a scalar field obtained by convolving the object’s char-
acteristic function with a spherical filter [Col90]. Lobb presents an efficient
approximation to the convolutional smoothing process [Lob96].

The polygonization of implicitly defined surfaces is essential for hardware
assisted real-time rendering. Additionally the polygonized approximation fa-
cilitates geometric operations such as collision detection and surface analysis.

A practical introduction to polygonization methods for implicitly defined
surfaces is provided by Bloomenthal who also gives working C code [Blo94].
Ning and Bloomenthal give a good evaluation of polygonization algorithm
[NB93|. Kalvin [Kal92] presents an extensive survey of algorithms for con-
structing surfaces from 3D volume data. He assumes as input a regular grid
of sample points and that no resampling is possible. Allgower and Gnutzman
[AG87| give a more theoretical approach for a polygonization method and
yield error bounds based on the mesh size. Dobkin et al. [DLTW90] gives a
contouring algorithm for general dimensions. Finally Gelder and Wilhelms
[vGW94] give a thorough discussion of design-objectives of isosurface algo-
rithms, isosurface generation and solving of ambiguities.

This paper gives an overview and analysis of popular polygonization
methods for implicitly defined surfaces and possible optimization methods.

To get a basis for discussion we first introduce some notations. We
then explain four specific methods, which demonstrate useful principles in
more detail. We discover a common framework for a general polygonization
method for implicitly defined surfaces. Next we list some general quality
criteria and review how the presented methods relate to them. We conclude

with a review of optimization methods, both to improve speed and to reduce
the size of a polygonization.

2 Notations & Definitions

An implicit surface is given as all points 2 € IR*® such that p(z) = c for a
scalar field p : IR> — IR and a constant ¢ € IR. The resulting surface is called
a c-isosurface. Note that the c-isosurface of a function p(z) is equal to the
O-isosurface of the function p(z) — c. Without loss of generality we use ¢ = 0
and don’t mention the ¢ value explicitly.

A polygonization method approximates an implicit surface with a mesh of
polygons. The implicit surface is either given as a function or as a set of sam-
ple values. In the following we assume that the isosurface is a 2-manifold, i.e.,
that it is locally homeomorphic to IR?. Bloomenthal and Ferguson published
recently a polygonization method for non-manifold isosurfaces and explain
the inherent problems [BF95].

All reviewed polygonization methods take data samples in the volume of
interest and compute or approximate from them points on the isosurface.
Those isosurface points are connected to form a polygon mesh. To avoid
confusion we introduce here a set of notations that we use throughout this
paper.

A data sample is referred to as a vozel. A convex polyhedral region
bounded by voxels is called a computational cell, and voxels at the cell’s
corners are called vertices. Generation of the isosurface involves sampling
of the scalar field and defining computational cells. For each cell determine
whether the underlying function takes on the threshold value within the cell,
and if so, approximate where the isosurface lies. We shall call a vertex value
positive if its value is greater than or equal to the threshold, and negative if
not.

An intersection point is the point at which the isosurface is estimated to
cross the edge connecting two adjacent cell vertices that have different sign.
Such intersection points become vertices of one or more topological polygons.
These polygons specify the topology of the approximated surface but are
usually not planar.

We define the center of a set S,, of n points p;...p, as

n
i=1Di

center(Sy,) = "

The central estimate of a scalar field p at the center of a set S, of n points
P1 - - -Pp is defined as

_ e p(pi)

central_estimate(S,)
n

The center of a face is the center of the face’s vertices, the center of a cell
is the center of the cell’s vertices. Similarly for the central estimate.

We use the word cell edge for an edge of a polyhedral cell, and polygon
edge for an edge of a polygonal approximation of the isosurface.

3 Four Common Polygonization Methods

Many published methods exist for finding a polygonal approximation to an
implicitly defined surface. Though often written with a specific application
in mind all methods that we review in this paper can be used to approximate
a general isosurface.

In the following subsections we present four selected algorithms in more
detail. First we choose the Marching Cubes method because it is popular and
fast. Next we analyze the Soft Object method from Wyvill et al. [WMWS86b).
This method is fast and eliminates the ambiguities of the original Marching
Cubes method. Hall’s and Warren’s algorithm [HW90] and Bloomenthal’s
method [Blo88] are good examples for adaptive solutions. The former algo-
rithm performs a tetrahedral subdivision of space, whereas the latter one is
interesting because it uses an octree representation.

3.1 Marching Cubes: A High Resolution 3D Surface
Construction Algorithm

The Marching Cubes algorithm combines simplicity with high speed. In
the original implementation [LC87, CLL*88] the Marching Cubes algorithm

4

assumes discrete input data such as results from computed tomography (CT),
magnetic resonance (MR), and single-photon emission computed tomography
(SPECT). The scalar field p is unknown. The algorithm processes the 3D
data in scan-line order and builds a logical array of cubes. Each cube is
created from eight voxels; four each from two adjacent slices. The algorithm
determines how the surface intersects this cube, then moves to the next cube.

The isosurface intersection is determined by the sign of the scalar field at
the cube’s vertices. Each edge with vertex values of different sign is assumed
to intersect the isosurface once. The intersection point is approximated by
linearly interpolating the scalar field values between the vertices.

Since there are eight vertices in each cube and two values, positive and
negative, there are 28 = 256 ways the surface can intersect the cube. Lorensen
and Cline use symmetries to reduce the number of patterns to 15 which are
shown in figure 1.

QO O p—
A T | w
| =) L [
NP Ig -7
/o—— 0 Vet k) «*
4 13

O

£

T ; T I T ; .V‘ i ’v‘ 7 Ai% o Positive vertex
|/ T <7
GO L P T T - e
O O & K 1 v Po]ygon
? > 8 11 14
.".” e iy aaa.
I E SE ==
"o o 5 A’ /I'-—— ﬂ. .ﬁ?
. 6 9 12 15

Figure 1: Triangulated Cubes.

The algorithm can be summarized as

e Scan two adjacent slices and create cubical cells between them.

!The cases 12 and 15 are reflective with respect to the xy-plane. This leaves 14 topo-
logically distinct patterns (22 without inversed patterns) [LVGS80].

e Calculate an 8-bit index for the cube from the sign of the eight scalar
field values at the cube vertices.

e Using the index, look up the list of edges forming triangles from a
precalculated table.

e Using the scalar field values at each edge vertex linearly interpolate the
isosurface intersection.

The main disadvantage of the algorithm is that some patterns in figure 1
are topologically ambiguous as noted by van Gelder and Wilhelms [vGW94,
pages 343 — 344]. This may produce a surface with a hole as pointed out by
Diiurst [Diiu88] (see figure 2).

O Positive vertex

® Negative vertex

</ Polygon

Figure 2: A hole in the polygonization because of a face ambiguity.

a
) o b)
10 p11 plO p” ..

O Positive vertex

@® Negative vertex
% Intersection point

Polygon edge
Poo Po1 P00 Po1

Figure 3: An ambiguous face.

Nielson and Hamann [NH91a] present a solution to the problem. They
recognize that the ambiguities in the cube patterns are caused by ambiguous

6

faces of the cube. Figure 3 shows a face with an ambiguous connection of
its edge intersections. The authors achieve a disambiguation by bilinearly
interpolating the scalar field p over the face:

Bls.t)= (1—s,9) (p(Poo) P(Por)) (1t—t) 1)

p(po) p(p11)

The topology of the isosurface of the bilinear interpolant is determined
by interpolant’s value at the intersection of its asymptotes %h:qwa =0 and
dt 15=5« = ¥

p(Poo)p(p11) — p(P10)p(Po1) 2)
p(poo) + p(p11) — p(Po1) — p(P10)

Figure 4 shows the bilinear interpolant for a face with the scalar field
values p(poo) = p(p11) = 0.75 and p(po1) = p(p1o) = —1.25. The bilinear
interpolant at the intersection of its asymptotes is B(S,, T,) = —0.25. Since
the value has the same sign as p(po1) and p(p1o) the isosurface of the bilinear
interpolant (the bold curves in the figure) can not cross the diagonal Po1pr0-

B(S4,Ty) =

Figure 4: The bilinear interpolant over a face with its isosurface (face inter-
section) and its asymptotes 4Z|,—z, =0 and 4Z|,_s, = 0.

The authors take the isosurface of the bilinear interpolant as an approxi-
mation to the isosurface of the scalar field p. If the value B(S,, T,) is negative
the topology of figure 3 (a) is correct, otherwise the topology of (b) is correct.

Mackerras shows that the test with equation 2 can be replaced by sorting
the four intersection points along one coordinate [Mac92|. The first pair and
the last pair of the sorted points are connected.

The number of possible topologically different triangulations for a pattern
from figure 1 depends on its number of ambiguous faces. As an example
consider the pattern 4, where only the front face is ambiguous. The two
possible triangulations are shown in figure 5.

a) ..
O Positive vertex

® Negative vertex
</ Polygon

Figure 5: Two topologically different triangulations for an ambiguous pat-
tern.

The above presented method of Nielson and Hamann is in the spirit of
the original Marching Cubes algorithm (i.e., no additional sample points are
necessary) but considerably more complicated. The pattern 14 in figure 1,
e.g., has 6 ambiguous faces and therefore 26 = 64 topologically different
triangulizations, which however, similar to the Marching Cubes table can
be reduced to 10 distinct cases. Another disadvantage is that some of the
patterns can only be triangulized by inserting an extra point.

The Marching Cubes algorithm can be simplified by keeping all 255 pat-
tern in memory and accesing them directly [HH92, Mac92]. This saves the
time for computing the correct pattern in figure 1. The resulting memory
overhead is on insignificant on modern machines.

Several interesting modifications of the Marching Cubes algorithm exist.
Montani et al. [MSS94] discretize the Marching Cubes algorithm to facilitate
a mesh reduction postprocessing step (see subsection 5.2). Gallagher and
Nagtegaal [GN89] generalize the Marching Cubes algorithm for irregular grids
of sample points as often occur in finite-element analysis. They use bicubic

8

polynomials to approximate the isosurface and polygonize the bicubic patches
only for rendering. Howie and Blake [HB94] provide the same generalization,
but use a cell propagation method to approximate the isosurface with triangle
strips. They do not solve the ambiguity problem but instead fill the holes
resulting from discontinuities between adjacent cells.

3.2 Data Structure for Soft Objects

Wyvill, McPheeters and Wyvill report a polygonization method designed
for soft objects [WMW86b, WMW86a, WWMS87, BW90| but which can be
readily applied to polygonize general isosurfaces.

The authors construct a polygon mesh in two distinct stages. In a first
step they partition the space occupied by the isosurface with a three dimen-
sional cubic grid. In the original application the authors start with a set of
seed cubes, at least one for every disconnected component. Starting at the
seed cubes, they track the surface by cell propagation: if a cube is inter-
sected by the isosurface the process continues for each cube neighboring an
intersected face. A hash table is used to prevent cells being revisited during
recursion.

In general for a given scalar field and an isovalue a set of seed cubes is
not known and therefore the whole grid must be scanned.

In the second stage the authors deal only with cubes that are intersected
by the surface. They construct a local polygonal approximation to the iso-
surface by linearly interpolating the intersection points of the isosurface with
the edges of the cube. The intersection points on a face are connected to give
polygon edges. Ambiguities are resolved by considering the center point of a
face. The scalar field value at the center is estimated as the average of the
vertex values of a face. Figure 6 illustrates the seven possible cases.

This calculation is consistent across adjacent cubes with shared edges.
By tracing the natural successors of each polygon edge the authors construct
topological polygons. Since the resulting topological polygons are in general
not planar the authors divide them into triangles by connecting each polygon
vertex to the central average of the topological polygon.

I:I I:I | |
O Positive vertex
@ Negative vertex
%k Intersection point
Polygon edge

Figure 6: Seven different cases for connecting intersection points.

3.3 Adaptive Polygonization of Implicitly Defined Sur-
faces

Hall and Warren [HW90] report an adaptive polygonization method that
performs a tetrahedral subdivision of space. The authors maintain a tetra-
hedral honeycomb of space at all time. A polyhedral subdivision of space
forms a honeycomb if every face is shared by at most two polyhedra. Because
the recursive subdivision of a single tetrahedron might cause the honeycomb
property to be lost, the method partially subdivides the neighbors of that
tetrahedron to maintain the property. The adaptive subdivision algorithm
decides independently for each tetrahedron in the honeycomb whether it
should be recursively subdivided. The algorithm defers processing of tetra-
hedra not recursively subdivided until it has considered all tetrahedra. It
then makes a second pass through the list of unsubdivided tetrahedra. For
each tetrahedron, the algorithm checks each edge to see if it must be sub-
divided. The faces and polyhedra are then split according to the number of
subdivided edges of each face.

In the second stage of the algorithm for each polyhedron the isosurface
inside it is approximated by polygons. The authors determine first for each
edge of a polyhedron the intersection point with the isosurface by succes-

10

sive linear interpolation. The resulting intersection points are connected by
one or two triangles. To ensure continuity the authors compute the edge
intersections once and store them into a hash table.

3.4 Polygonization of Implicit Surfaces

Bloomenthal [Blo88| detects an isosurface by partitioning the domain of the
implicit function with an octree, which may either converge to the surface
or track it. The polygonal surface approximation is derived from the octree.
Bloomenthal reports three steps:

e Spatial partitioning: Bloomenthal considers two methods for sampling
the implicit surface. The first method represents the implicit surface
as an octree, which is a hierarchical partitioning of space formed by
subdivision of cubes, beginning with a cube that bounds the surface.
The octree converges to the surface by subdivision of those cubes that
intersect the surface. A disadvantage is that small surface details may
be missed by a large cube, resulting in a premature termination in
the subdivision of the cube. This drawback is overcome by the second
method which tracks the surface by cell propagation. This is the same
technique as used by Wyvill et al. (see subsection 3.2).

In both cases, the author evaluates the scalar field p at each of the
cell’s vertices. Only those cells that intersect the surface are retained
in the partitioning. Bloomenthal determines the intersection points of
the cell’s edges with the isosurface by root search. To ensure continuity
between polygons Bloomenthal refers to Wyvill’s method of storing the
intersection points in a hash table. Alternatively he suggests keeping
for each cell eight pointers to its vertices. As new cells are created,
they must point correctly to shared vertices.

e Adaptive refinement of the octree: Bloomenthal improves the estima-
tion of the surface by subdividing those cubes containing elements of
high curvature.

e Polygonization of the octree nodes: The final surface approximation
is obtained by polygonizing the octree nodes (final subdivision cells).

11

For each cube to be processed, the intersection points are ordered,
forming a convex polygon whose sides are each embedded in a cube
face [WMW86b]; the process is local to each cube. Bloomenthal intro-
duces a simple algorithm, illustrated in figure 7 to perform the three-
dimensional ordering of intersection points. The ordering begins with
any intersection point on the cube and proceeds towards the positive
vertex and then clockwise about the face to the right until another
intersection point is reached.

(O Positive vertex

| @ Negative vertex

3P

*k Intersection point

\\

— Topological polygon

= Direction of search

I
I
I
I
I

7

Figure 7: Algorithm to order vertices.

The (topological) polygons resulting from this method are decomposed
into triangles. Note that the adaptive subdivision may destroy the honey-
comb property of the spatial partition. Bloomenthal ensures continuity be-
tween subspace polygons, by tracking the edges of the topological polygon
along the more highly divided face (the light grey vertices in figure 8). He
resolves ambiguities by taking the central average as an additional sample.

12

\ |
\ \ GO D ﬁ
L %
e —F—1=
2 2
{/ ;/
Y L
s s

% Intersection points of back cube

Additional intersection points of (subdivided) front cube
[] Shared face

— Polygon edge of back cube
Polygon edge of (subdivided) front cube

Figure 8: To guarantee continuity Bloomenthal forms polygon edges by al-
ways tracking along the more highly divided face.

13

4 Analysis of Polygonization Algorithms

In this section we analyze the methods presented above and extract a common
framework. Three aspects are found:

1. Polyhedral subdivision of space
2. Subspace polygonization (approximating the isosurface inside a cell)

3. Ensuring continuity

4.1 Space Subdivision

During subdivision of space most methods maintain a honeycomb, the 3D
analog of a tessellation. The honeycomb guarantees that linear functions
defined over a polyhedron form a continuous surface.

The simplest honeycomb used is an array of cubes (e.g., [LC87, WMW86b]).
Bloomenthal [Blo88, BW90] and Ning and Hesselink [NH91b| use an octree
to achieve an adaptive subdivision based on cubes.

As noted by Bloomenthal [Blo88] vertex locations and face planes are
computed more simply if the cells are identical and similarly oriented. In
three dimensions, the only such cell that fills space is the cube. Also it
enjoys a number of rotational symmetries, and divides into eight similarly
oriented cubes. Note though, that a honeycomb can be maintained only by
dividing all cubes of the array. Bloomenthal [Blo88] avoids this problem by
tracking the isosurface approximation along the more highly divided face.

An additional disadvantage of a cubical cell is that its positive and nega-
tive vertices can not be separated by a single plane. This may lead to ambigu-
ities during the second stage of the corresponding polygonization algorithm
and may ultimately result in discontinuities for the polygonized surface (see
subsection 3.1).

In contrast, the vertices of a tetrahedron can always be separated by a
single plane, thereby avoiding ambiguities during the polygonization. Also
a tetrahedron can be subdivided into tetrahedra without subdividing its
faces. This allows for a local subdivision of a tetrahedral honeycomb. The
use of tetrahedral subdivision for an adaptive polygonization is discussed in
[HW90].

14

An easy tetrahedral subdivision is achieved by using a grid of cubes and
dividing each cube into 5 [PT90, HW90, DK91, NFHL91, GH95| or 6 tetra-
hedra [KDK86, NFHLI1]. André Guéziec and Robert Humme [GH95] sug-
gest a compact data structure and efficient look-up tables for tetrahedra
resulting in an fast and topologically correct polygonization method. If the
five-tetrahedral decomposition is chosen it must be mirrored between face
adjacent cubes. A resulting problem is, that if linear interpolation is used a
spiky surface approximation may result as figure 9 shows.

O Positive vertex
® Negative vertex
% Intersection point

Polygon edge

/ Isosurface

Figure 9: An isosurface intersection with a cubic cell (a) is approximated
using linear interpolation (b). Decomposing the cell into five tetrahedra
leads to a spiky approximation. Part (c) of the pictures shows half a spike.
The full spike becomes visible if mirroring the cube at its front face. The two
possible decompositions into six tetrahedra (d) and (e) lead to a smoother
approximation.

The six-tetrahedral decomposition does not share this problem and can
be consistently applied to all cells, which will be an advantage for parallel
execution. Bloomenthal [Blo88| subdivides a cube into 12 tetrahedra by
taking the cell’s center as an additional sample.

A general tetrahedral subdivision in n-space is commonly called Delau-
nay triangulation. Bowyer [Bow81] gives an efficient solution which is used

15

by Petersen et al. [PPW87]. A comprehensive bibliography of Voronoi dia-
grams, the dual of Delaunay triangulation, and related structures is given by
Aurenhammer [Aur91].

It is interesting that the existing literature hardly mentions the use of
a space subdivision with general polyhedra. Wiinsche achieves such a sub-
division in a specialized case with BSP trees [Wiin96|. General polyhedra
have the advantage that every polyhedral partition of space can easily be
transformed into a honeycomb. The transformation is done by subdividing
each face that faces more than one polyhedral face. After the subdivision of
the face the resulting object is still a polyhedron, but has several coplanar
faces. Figure 10 gives an example.

|
|
~T1T 1 - —
|

\
\I_____

\

\

|

\

I

|

|

I

I — el —
-~ TL=T - -7 -

Figure 10: Transforming a polyhedral subdivision into a honeycomb.

4.2 Subspace Polygonization

The second step of a polygonization methods approximates the isosurface
inside a polyhedral cell by polygons Two different methods of this subspace
polygonization step are used by the reviewed algorithms.

Lorensen and Cline [LC87] use a binary classification of the cells’ vertex
values to index a precomputed table yielding a set of polygons for the cell.
The polygon vertices are given by the intersection points of the cell’s edges
with the isosurface. The other methods first precompute these intersection
points and use them to determine the isosurface intersection with each face.
By tracing the resulting edges topological polygons are formed. In a final
step the topological polygons are divided into planar polygons.

16

The subspace polygonization can be simplified and disambiguated by de-
composing a cube into tetrahedra. Several authors [NB93, Nie95, GH95]
report that this decomposition produces 150% — 250% more triangles then
the original Marching Cubes method. Bloomenthal [Blo94] shows this with
a graphical example.

4.2.1 Computing intersection points

All reviewed polygonization methods compute intersection points of the cells’
edges with the isosurface. An intersection point exists if the scalar field has
opposite sign at the end points of the edge.

If binary vertex values are used or exactness is not important the in-
tersection point is most easily approximated as the midpoint of the edge
(e.g., [MSS94]). A more exact method is to use linear interpolation (e.g.,
[LC87, WMW86b]). Bloomenthal [Blo94] shows that this can produce ragged
unnatural approximations.

If the sample values are computed from a known underlying function,
an alternative to simple interpolation is to employ a root search. This is
computationally more expensive but leads to a better polygonization for
smooth functions. Here a potential problem exists if an edge has multiple
isosurface crossings. A unique edge isosurface intersection is achieved by
computing each intersection point once and then referring to it by pointers
or by a hash table [Blo88].

If the dataset is available only as a discrete grid of sample values the un-
derlying function must be approximated by using some form of interpolation.
Marschner and Lobb [ML94] discuss a wide range of possible interpolation
methods (“reconstruction filters”). This technique can be understood as
generalization of the above mentioned linear interpolation of the intersection
point.

Linear interpolation (or using the midpoint) has the advantage that it is
symmetric, which means neighboring cells, sharing the same edge, share the
same intersection point. However, even in this case computing an intersection
point only once is advisable for efficiency reasons [WMW86b].

Note that linear interpolation does not work if two adjacent cells have
collinear edges of different lengths. However, polyhedral subdivisions with
this property are not common since they are prone to various discontinuity

17

problems [Wiin96.

4.2.2 Forming a topological polygon

Topological polygons are most easily formed by tracing the natural successor
of an edge. For an efficient implementation Wyvill [WMW86b] gives a poly-
gon edge an orientation and stores it in an array indexed by its start point.
The end point gives than the index for the start point of the next edge.

Bloomenthal connects intersection points by tracing along the cell bound-
aries [Blo88]. This method was explained in subsection 3.4 (see figure 7).

In both cases the orientation of a polygon edge is such that its start point
lies between a negative and positive vertex if traversing the face vertices in
anticyclic order (see also [Wiin96]).

Savchenko and Pasko [SP95] use the edge intersections to form a connec-
tion graph. The cycles in this graph give the topological polygons.

If unoriented polygon edges are used the resulting topological polygon
might be falsely oriented. However, it is easy to check the sign of an out-
side vertex and change the orientation of the polygon if necessary. Doi and
Koide use a determinant test for tetrahedral cells [DK91], which Guéziec and
Hummel replace by a look-up table [GH95].

4.2.3 Subdividing a topological polygon

The subdivision of a topological polygon is usually not unique. The easiest
solution is to triangulate the topological polygon with its center [WMW86D,
Wiin96]. Wallin [Wal91] connects two consecutive edges of the polygon to
form triangles, removes them from the polygon, and applies the procedure
recursively to the remaining polygon until he encounters a triangle on the
cell boundary. Then he connects the remaining vertices to their center. Ning
and Bloomenthal present a short discussion of triangulation of topological
polygons [NB93]. Two good triangulation criteria to obtain a smooth surface
are given in [CSYL88] and [Mat94].

Finally for the Marching Cubes algorithm the triangulation of a topolog-
ical polygon is defined implicitly by the triangulated cubes shown in figure 1.

18

4.3 Ensuring Continuity

The third aspect of a polygonization algorithm is to guarantee surface con-
tinuity. We identify three places at which continuity is an issue: on shared
edges, on shared faces and inside a cell.

All reviewed algorithms proceed by ensuring the following sufficient con-
ditions in this sequence:

1. Cells that meet at a common edge share a common intersection point.
2. Cells that meet along a common face share common polygon edges.

3. The subspace polygonization inside a cell is continuous, i.e., every poly-
gon edge inside a cell is shared by a neighbored polygon.

The first condition can always be fulfilled (for a honeycomb) by comput-
ing the edge intersections by linear interpolation (subsection 3.1). Another
approach, taken by the other three presented algorithms, is to precompute
edge intersections only once and use them for all cells sharing that edge.

Given condition one, the second condition is trivially fulfilled for a tetra-
hedral honeycomb (subsection 3.3). For a non-tetrahedral honeycomb there
may be more than two intersection points, leading to ambiguities. Wywvill
et al. (subsection 3.2) solve the ambiguities explicitly by taking the central
estimate of a face (see figure 6 case 6 and 7). Wiinsche shows that this
method can also be used for general convex polyhedra. However, in this case
the center of all intersection points with the face edges must be used for
disambiguation [Wiin96].

Lorensen and Cline overlook ambiguities in their original implementation,
which results in possible discontinuities. Howie and Blake [HB94] fill the
resulting hole (see figure 2) with two triangles. Since ambiguities are not
resolved the resulting surface is not unique. Also for every ambiguous face
the neighboring cell must be checked for a hole.

Nielson and Hamann [NH91a| present a better solution which is based on
bilinear variation of p on an ambiguous face. Their disambiguation criterion
was further simplified by Mackerras [Mac92] (see subsection 3.1). Matveyev
gives a topologically correct approximation to the isosurface obtained by
trilinear interpolating over the cell. Natarajan also uses a trilinear interpolant
and reports a 20 % slower execution time than the original Marching Cubes
algorithm [Nat91].

19

A simple solution to solve ambiguities on a face is to use the central
estimate of the face [WMW86b, Wal91]. Baker [Bak88, Bak89] and Kalvin
[Kal91] assume 6 adjacency for the positive vertices, and therefore always
connect negative vertices. The same method is chosen by Lorensen [Lor96|
and Oh and Park [OP96]. Their approach gives 6 additional configurations
to the 14 original Marching Cubes configurations.

Kalvin reports that this method is best applied to binary and segmented
volumes and is usually faster than methods based on resampling and inter-
polation [Kal92].

Van Gelder and Wilhelms show that disambiguation based on linear in-
terpolation can fail for a quadratic scalar field. They suggests a compu-
tationally rather expensive tricubic interpolation or two different gradient
heuristics [vGW94].

Wiinsche solves ambiguities for arbitrary convex faces by resampling at
the center of the intersection points with the face edges [Wiin96].

Bloomenthal (subsection 3.4) offers a different solution. His subdivision
does not have the honeycomb property. However, he knows that two faces
facing each other are either the same or one is the subdivision of the other.
By always computing the isosurface intersection for the more highly divided
face he gains continuity.

Polygonization methods guaranteeing a surface without artifacts such as
holes are called topologically consistent. Polygonization methods using a dis-
ambiguation that matches some assumed interpolant are called topologically
correct.

At this point the four reviewed algorithms result in a set of contours lying
on the cell faces. Condition one guarantees that they form closed topological
polygons. All of the above algorithms conclude by dividing the topological
polygons into planar polygons (triangles), maintaining the third continuity
condition.

The properties of the reviewed algorithms are summarized in table 1. The
original and modified Marching Cubes algorithm are listed here separately.

4.4 Quality Criteria

Quality criteria for polygonization algorithms are usually dependent on the
application. However, van Gelder and Wilhelms [vGW94] suggest a set of

20

Lorensen & Cline Nielson et al. Wyvill et al. Hall & Warren Bloomenthal

(subsection 3.1) (subsection 3.1) (subsection 3.2) - (subsection 3.3) (subsection 3.4)

Type of cells Cubes Cubes Cubes Tetrahedra Cubes

1 Honeycomb Yes Yes Yes Yes No

Adaptive subdivision No No No Yes Yes

Discretized input Yes Yes Yes No No

Ambiguities Yes No No No No

2 Continuous surface No Yes Yes Yes Yes

Computation of linear linear linear root search root search
intersection points interpolation interpolation interpolation (regula falsi)

Continuity at Interpolates Interpolates Compute edge Compute edge Compute edge

shared edge shared edge shared edge intersections intersections intersections

linearly linearly only once only once only once

3 Continuity at (no continuity) Has honeycomb Has honeycomb Has tetrahedral Computes face

shared face and resolves and resolves honeycomb intersections

ambiguities

ambiguities

only once

Disambiguation

(not resolved)

bilinear
variation

central estimate

(no ambiguities)

form tetrahedra
with cell center

Table 1: Comparison of the reviewed polygonization algorithms.

desirable features of a general-purpose polygonization method. We will re-
peat them here because it is interesting to see how our analyzed algorithms

fulfill them:

. The algorithm should yield a continuous surface. Each polygon edge

should be shared by exactly two polygons or lie in an external face of
the entire volume.

. The isosurface should be topologically correct when the underlying

function is “smooth enough”.

. The isosurface produced should be neutral with respect to positive and

negative sample data values (relative to threshold). Multiplying the
samples (and threshold) by —1 should not alter the surface.

. The algorithm should not create artifacts not implied by the data, such

as bums and holes.

. The algorithm should be fast.

. The isosurface should be a continuous function of the input data. A

small change in the threshold value or some data value should produce
a small change in the isosurface.

We think the last point is difficult to quantify, since it can not be fulfilled
if the underlying scalar field undergoes a topological change. Instead in an
attempt to capture the notion of algorithmic “elegance” we take the feature

21

6. The algorithm should be easy to understand (and therefore easy to
implement).

Table 2 shows which quality criteria the presented algorithms fulfill. The
classification of the implementation difficulty should be understood as a rel-
ative measure and is just our rough estimation based on our own experience.

Quality 1. Lorensen & Cline 2. Nielson et al. 3. Wyvill et al. 4. Hall & Warren 5. Bloomenthal
criteria (subsection 3.1) (subsection 3.1) (subsection 3.2) (subsection 3.3) (subsection 3.4)
1. Continuous No Yes Yes Yes Yes
surface
2. Topologically Yes Yes Yes Yes Yes
correct®
3. Neutral to No® No Yes (unknown)¢
sample values
4. Free from No Yes Yes Yes Yes
artifacts
5. Speed Van Gelder and Wilhelms [vGW94] (unknown) (unknown)
report similar speed for 1. and 3.
6. Implementation casy | medium_ | medium hard hard

%But what is “smooth enough”?
bCase 12 in figure 1.
¢With some extra effort this property can be achieved.

Table 2: Quality criteria of the reviewed polygonization algorithms.

We conclude this section with some remarks regarding adaptive subdivi-
sion. Adaptive subdivision results from the desire to approximate the isosur-
face both accurately and efficiently. This means the polygonization method
must sample the function closely. In the process the algorithm may sample
heavily in areas where the function is nearly linear. The solution is to sam-
ple adaptively, i.e., sampling more closely near highly curved portions of the
surface. This is achieved by recursively subdividing a cell if the isosurface
within the cell is more than some user-defined tolerance away from being
planar.

5 Optimization Techniques

All above described polygonization methods subdivide a scalar field into
cells. The resulting grid can consist of millions of cells and the resulting
polygonization can consists of hundreds of thousands of polygons. Three

22

optimization objectives exists: first it is desirable accelerate the polygoniza-
tion method. Subsection 5.1 introduces three classes of speed-up methods
which follow different goals. Secondly, for a real-time interactive display of
the polygonization, it is necessary to reduce the number of polygons. This
can be achieved by a mesh optimization technique as a post-processing. Sub-
section 5.2 describes several techniques classified by their design objective.
Finally parallelization is an increasingly important optimization goal since
modern supercomputers are often highly parallel. Some recent results are
summarized in subsection 5.3.

5.1 Speed-up Techniques

Conventional polygonization methods subdivide a scalar field p into O(n)
cells and visit them all. For large volumes these methods become increasingly
inefficient, since the number of intersected cells for a 2-manifold isosurface
is O(n?). Van Gelder and Wilhelms [vGW94] report that between 30% and
70% of the time spent in isosurface generation is spent examining empty cells.

Several methods have been proposed to remedy this situation. We sub-
divide them into three classes:

1. Information based methods use information about the scalar field to
avoid traversing cells that are not intersected by the isosurface.

The most common information based method is cell propagation (also
called contour tracing) [AFH80, WMW86b, KDK86, Blo88, DLTW90,
Blo94, TK94, HB94]. This algorithm needs seed cells intersecting the
isosurface and follows the isovalues over the cell boundaries. In order to
extract the complete isosurface one seed cell must be known for every
disconnected component of the isosurface.

Artzy et al. [AFHS80] obtain seed cubes by user input. Bloomenthal
[Blo94] assumes a connected isosurface and finds a seed cube by random
search. Wyvill et al. [WMW86b| assume a scalar field defined by a
special geometric model. Each component of their model is enclosed
by the isosurface. The authors find a seed cube for every disconnected
component of the isosurface by casting a ray from every component
of the underlying model. Howie and Blake [HB94] optimize the cell

23

propagation technique further by producing triangle strips whenever
possible during the propagation. The authors report that triangle strips
are more compact in storage and are rendered 2.1 to 2.2 times faster
than the corresponding discrete triangles.

Wiinsche [Wiin96| polygonizes a scalar field defining a quasi-convolu-
tionally smoothed object. He uses the information about the underlying
geometric object to define a BSP tree to subdivide the scalar field and
to extract all cells intersected by the isosurface.

2. Adaptive methods use a coarse and fast initial subdivision and refine
it only where the surface is interesting. Fine surface details might be
missed by the initial subdivision step.

Bloomenthal [Blo88, BW90| constructs an initial cubic mesh by octree
subdivision or surface tracking (see subsection 3.4). He subdivides a
cube based upon object characteristics, such as tangency and curvature.

Hall and Warren [HW90] construct an initial tetrahedral grid which on
subdivision remains a honeycomb property at all times. The subdivi-
sion criteria is an estimate of the surface curvature.

Beier [Bei90] uses a Marching Cubes style algorithm with a rather
coarse cubic grid. The resulting triangles are subdivided by dividing
its edges. For edges that are relatively flat, i.e., the angle between
the normals in its end point is small, the edge midpoint is chosen.
Otherwise a new point on the isosurface is calculated.

3. Preprocessing methods examine all cells in a preprocessing step and
store information about the subdivision in a suitable data structure.
The information is used in the isosurface extraction step to avoid vis-
iting non-intersected cells. The isosurface extraction step is therefore
usually an information based method. Preprocessing methods often
have a large memory overhead but prove useful if several isosurfaces
must be found in a scalar field.

Itoh and Koyamada [IK94, IK95| construct an extrema graph for the
scalar field p. For each isosurface value the extrema graph is used to
find a number of seed cells. The isosurface is then be extracted by cell
propagation. The authors report a speed up of 2 — 10 compared with
Doi and Koide [DK91].

24

Giles and Haimes [GH90] form two ordered cell lists in a preprocess by
sorting the cells’” maximum and minimum values. For each isosurface
value they determine an active cell list containing intersected cells. If
a new isosurface value is specified only the active cell lists must be
updated. The algorithm exploits space coherence and is efficient if the
isosurface value changes smoothly.

Gallagher [Gal91] groups the cells according to their range of scalar
values and subdivides each group according to the cell’s minimum value.
For each isosurface value only subgroups of the resulting data structure
are visited. The algorithm is sensitive to clustering and performs best
if the scalar field values are evenly distributed.

Shen and Johnson [SJ95] order the cells by minimum and maximum
values and identify for a given isovalue the minimum and maximum
index of the intersected cells in the ordered lists. If a new isosurface is
chosen only a part of the cell list must be visited depending on the new
isovalue and the current minimum and maximum index. The minimum
and maximum index are updated for each new isovalue. This part of
the algorithm is called the sweep algorithm and performs best if the
isosurface value changes smoothly. To improve worst case performance
the authors recursively subdivide the list of cells into subgroups at
different levels according to their range of vertex values. For each level
the sweep algorithm is then only applied to the subgroup containing
the isovalue.

Wilhelms and van Gelder [Wv(G92] use an octree for faster isosurface
extraction. In a preprocessing step they store at each node the min-
imum and maximum vertex values found in that node’s subtree. For
isosurface extraction only branches are explored with the isosurface
value between the minimum and maximum value of the branch.

Livnat, Shen, and Johnson [LSJ96] give an excellent overview of pre-
processing methods. They classify the methods into algorithms that
decompose the geometric space, i.e., the cells, and algorithms that de-
compose the value space, i.e., the range of voxel values. (see table 3 for
examples).

Algorithms decomposing the value space have the advantage that the
underlying geometric structure is of no importance and therefore the

25

approach also works well for unstructured grids. Livnat et al. recognize
that the search in value space is equivalent to a search in two dimen-
sions. To find cells intersected by the isosurface it is sufficient to know
the minimum and maximum vertex value of a cell. These values define
a point in a 2-D space, the so-called span space. Figure 11 shows the
span space for an isovalue c in grey shade and the cells as black dots
according to their minimum and maximum vertex values.

max, : .
H . //
® H s/
E ° 2
(] 1 /
E ., 7/
] 7
Teie)
© W/
.............. e
L]) / E
7
/ '
L) / '
o/
/
7
L/ >
/ v
. c min

Figure 11: Search over a span space.

The authors now find a nearly optimal speed up method by subdividing
the span space with a Kd-tree (see [Ben75]). If n is the number of cells
in a given subdivision of space, and k is the number of intersected
cells, then the preprocessing step, i.e., subdivision with the Kd-tree,
takes O(nlogn) time and for any given isovalue the intersected cells are
found in at most O(y/n+k) time. Note that the latter time complexity
is for most cases optimal, since a 2-dimensional surface in 3-D space
usually intersects O(n?) cells and O(y/n + n3) = O(n3)

5.1.1 Comparison

We conclude this section with a comparison of preprocessing methods. Most
of our results are taken directly from Livnat et al. [LSJ96]. Again n gives

26

the number of cells, and k the number of cells intersected by the isosur-
face. Table 3 differentiates the algorithms introduced above by the following
criteria:

1. Type of the search space. As explained above a preprocessing method
decomposes and searches either the geometric space or the value space.

2. Is the method suitable for an unstructured grid?
3. Time complexity of the preprocessing step.

4. Time complexity of a search operation to identify all cells intersected
by an isosurface. For methods which only find seed cells (e.g., [IK94])
this also includes a O(k) term reflecting the minimal time needed for
cell propagation.

5. Space complexity of the preprocessing step.

6. Can coherence between isosurfaces be exploited?

Search | Unstruc. tpreprocessing tsearch Space | Coherence

space grid exploited

[IK94] Geometric Yes | O(n) best case | O(n3) best case O(n) No
O(n) worst case

GH90) Value Yes O(nlogn) | O(n) worst case O(n) Yes

Gal91] Value Yes | O(n) best case | O(n) worst Case O(n) No

SJ95) Value Yes O(nlogn) O(n) O(n) Yes

WvG92] | Geometric No O(nlogn) O(klog %) | O(nlogn) No
worst case

[LSJ96] Value Yes O(nlogn) O(v/n+k) O(n) No®

2The authors offer a neighborhood search as an extension to their method, which

exploits coherence between isosurfaces, but mention several disadvantages of this approach.
Table 3: Classification of preprocessing methods.
The above results indicate that subdividing the value search space might

give better results than subdividing the geometric search space. Many pre-
vious solutions in the former category, however, were difficult to understand

27

and to implement. The solution from Livnat et al. [LSJ96] seems to represent
the most efficient solution without being too complex.

5.2 Mesh Reduction Techniques

Large meshes are common in computer graphics, for example when using de-
vices such as CT, MRI, range cameras, or satellite data. Since large meshes
put a strain on storage capacity, communication, and rendering hardware
a mesh reduction algorithm must often be applied. The chosen technique
depends on the application. Whereas some techniques aim only to eliminate
small and badly shaped polygons, other technique try to achieve a maximum
reduction of polygons. Often the user wants to get a fast preview of the mesh
with the choice of increasing resolution (multiresolution surface meshing) or
the user wants to see only selected parts of the model in a higher resolution
(local level-of-detail control). The latter technique is used in digital terrain
modeling where far away objects can be approximated less accurately to im-
prove rendering speed. An introduction into mesh reduction techniques is
given by Schroeder [Sch95] and a short overview and classification is con-
tained in [Red96]. We identify five classes of mesh reduction techniques:

I. Polygon merging combines coplanar or nearly coplanar polygons into
bigger ones. The original topology of the mesh is not changed.

Hinker and Hansen [HH93] merge nearly coplanar polygons and retrace
their boundary to eliminate collinear edges. The resulting polygons
are triangulated. The so=called Geometric Optimization algorithm is
best suited for objects with gradually changing gradient. The authors
mention that the algorithm is parallelizable and that its runtime is
dominated by a O(nlogn) function.

Kalvin and Taylor [KT96] employ a similar technique but additionally
limit the approximation error. The authors start with an initial seed
face and employ a greedy strategy to merge it with bordering faces.
The borders of the resulting superfaces are then straightened and the
resulting faces are triangulated. Kalvin and Taylor claim that their
algorithm is more efficient than Hinker and Hansen’s because they em-

28

ploy a O(n) greedy strategy to merge n faces in contrast to Hinker and
Hansen’s O(nlogn) merge step.

Reddy [Red96] suggests a perceptually-driven polygon reduction. The
algorithm collapses certain vertices so that they become co-linear with
two neighboring vertices and then merges nearly coplanar polygons.
The resulting color of a new polygon is found by an area-weighted av-
eraging of the RGB colors of each component polygon. The error mea-
sure for the vertex collapse is an approximation to the human Contrast
Sensitivity Function which considers both size of a polygon and surface
curvature. The author segments the model into subvolumes such that
only small details are eliminated.

I1. Modified isosurface extraction modifies the polygonization method
such that a simplified or optimized mesh reduction technique can be em-
ployed as a postprocessing step. We present here three algorithms that
produce a surface topologically identical to the surface produced by
the (modified) Marching Cubes algorithm with a distance error smaller
than grid size. A fourth method employs a specialized data structure
for a simplified mesh optimization step.

Montani et al. [MSS94] achieve a simplified merging of coplanar faces
by changing the isosurface extraction of the Marching Cubes algorithm
step in a way that it produces coplanar polygons for nearly planar
surface areas. The resulting algorithm is called Discretized Marching
Cubes. The authors extract the isosurface with a Marching Cubes al-
gorithm but allow only a finite number of positions for the edge iso-
surface intersections. For example, if a binary discretization is chosen
the isosurface can intersect an edge only at its midpoint. The sub-
space polygonization therefore generates faces which lie on a finite set
of planes (13 for the binary approach), thus allowing simple merging
of the output faces into large coplanar polygons. The authors report
that the merge step takes about 85% of computation time and that a
reduction of polygons of up to 90% is achieved.

Oh and Park [OP96] also apply a modified Marching Cubes algorithm.
They classify the configurations of the Marching Cubes approach into
types according to the orientation of the produced faces. Surface
patches in neighboring cubes of the same type are merged to produce

29

fewer and larger triangles. However, the authors mention that not all
possible faces are merged because the processing order is sometimes in-
consistent with the merging direction of the cubes. The authors report
execution time that is about 25% slower than the original Marching
Cubes algorithm and a triangle reduction of about 50%, with compa-
rable image quality.

Miiller and Stark [MS93] present a Marching Cubes algorithm with
inherent mesh reduction. They take as input a cuboidal regular grid
and recursively subdivide the cuboid until a grid cell is reached. At each
step they compute an isosurface approximation for the current cuboid
by taking its eight vertex points and indexing the Marching Cubes
table. If the isosurface approximation for a subsequent subdivision
is topologically different inside a cuboid from the current isosurface
approximation the new approximation replaces the current one. Cracks
between boxes of different resolution are prevented by sharing polygon
edges between adjacent cells. It is interesting to note that the authors
choose here the polygon edge on the least subdivided face if that is
topologically correct and only otherwise take the polygon edges on the
most subdivided face (as in figure 8). Note that this method is not an
adaptive speed-up method, like for example the octree partitioning of
Bloomenthal (see subsection 3.4), since the recursion always proceeds
to cell level.

Kalvin et al. [KCHNO1] use a winged-edge data structure to encode the
polygonized surface. The polygonization algorithm grows the isosurface
slice by slice, in what seems to be a rather complicated process. In a
second step the authors merge coplanar faces meeting at a common
vertex. The authors report that the winged edge data structure not
only guarantees fast and topologically consistent face merging but it
also allows efficient manipulation and measuring of the surface.

Cignoni et al. [CFM*94] achieve a polygonal approximation of an iso-
surface by computing a multiresolution tetrahedralization of the un-
derlying scalar field p. The local resolution of the tetrahedralization
depends on the gradient of the scalar field and a distance measure.
Each level of the tetrahedralization is used to define a polygonal ap-
proximation of the isosurface with a Marching Cubes like algorithm
e.g., [DK91, GH95] thereby defining a multiresolution mesh.

30

I11. Polygon elimination deletes polygons by collapsing their vertices to
single points.

Moore and Warren [MW91, MW92| provide a mesh reduction algo-
rithm for polygonization methods using a polyhedral subdivision. Their
method is only valid for triangle meshes but can be extended to general
polygon meshes. The motivation of the authors is that badly shaped
(thin) polygons often cause undesirable shading artifacts in lightning
models and degrade further processing steps (e.g., as input to a finite
element method). The aim is to improve the quality of the polygonal
mesh without changing its approximation error. The authors record
during the subspace polygonization for each triangle vertex the closest
cell vertex, called a satellite. A postprocessing step deletes all triangles
that have two or three vertices with the same satellite (thin and small
triangles, respectively). Mesh vertices with an identical satellite are
replaced by the average position of the corresponding satellites. Moore
and Warren report a polygon reduction of 40% — 60%.

Bernd Hamann [Ham94] orders the set of triangles of a mesh by consid-
ering the curvature at the mesh vertices. He then iteratively replaces
a triangle with a point given as the origin of a bivariate interpolant.
The definition of the bivariate function depends on the local geometry
of the mesh, such that, for example, a triangle on the boundary of the
mesh is replaced by a point on the boundary. The hole resulting from
the triangle removal is retriangulated with the new point.

Reddy [Red96] reports two commercial systems in this class. The GE-
NIE system removes polygons which projection on the screen lies under
a given area threshold [Kem93]. The Viper system displays large tri-
angles first and eliminates small triangles if the system becomes over-
loaded [Hol91].

IV. Vertex or edge elimination deletes vertices or edges and retriangu-
lates the resulting holes.

Schroeder et al. [SZL92] removes vertices that pass a minimum dis-
tance (planarity) criterion. The resulting holes are triangulated with
a recursive polygon splitting algorithm, which aims for triangles with
maximum aspect ratio. The authors also ensure that the topology of
the mesh is preserved and they identify sharp edges and corners that

31

must be retained such that the resulting geometry closely resembles the
original. Note that the minimum distance criterion measures only the
deviation of the new mesh from the old mesh.

Cohen et al. [CVM™96] remove vertices from the mesh and attempt to
fill the resulting hole by retriangulation. The authors bound the max-
imum error of the approximation by restricting it to a Simplification
Envelope (two modified offset surfaces). They additionally suggest a
global algorithm, which finds all three tuples of vertices (candidate tri-
angles) that lie between the offset surfaces. The algorithm orders the
candidate triangles in decreasing order and builds a triangulation with
a greedy method (see [Var94] for details). The authors claim to achieve
a much improved solution for the same error bound if compared with
[LDW94, EDD*95].

Hoppe et al. [HDD"93a] collapse, swap, and split edges in order to op-
timize the mesh. They use an energy function over a mesh to minimize
both the distance of the approximating mesh from the original, as well
as the number of approximating vertices. In [HDD'93b| the authors
prove that their implementation does not change the topological type
of a mesh. To achieve a mesh reduction Hoppe et al. first randomly
sample the original mesh with additional sample points at boundary
edges and then add these points to the original vertex set.

Hoppe [Hop96| presents Progressive Meshes. A mesh is simplified with
an edge collapse operation similar to [HDD%93a]. A multiresolution
mesh is then stored as a base mesh with a number of detail records
inverting the edge collapse operations. A soft transition between ap-
proximations is achieved by a special morphing operation. The goal of
the optimization procedure is not only to preserve the geometry of the
original mesh but also the overall appearance defined by its attributes
such as color, normals, and texture coordinates. Hoppe achieves this
goal by using an energy metric such that an edge collapse for an edge
with different attributes has a low priority. A modification of this al-
gorithm [Hop97] allows view-dependent refinement based on view frus-
tum, surface orientation, and screen-space geometric error. Popovic¢
and Hoppe [PH97] generalize the Progressive Meshes to Progressive
Simplicial Complexes which use a more general base model and allow
topological changes in the refinement resulting in a better fidelity.

32

Ronfard and Rossignac [RR96] propose a fast multiresolution scheme
for triangulated polyhedra. The authors merge vertices by moving one
end point of an edge onto the other. Edges are ordered according to a
local error function based on the maximum distance of one end point of
the edge to the planes of the polygons containing the other end point of
the edge. In order to collapse edges in the right order they are stored in
a heap data structure. The authors make some adjustments to merge
vertices without changing the shape of the object, but intentionally
allow the object topology to change. Ronfard and Rossignac estimate
the complexity of their method is Ny log? 1]\\]’—2 for bringing the number
of vertices down from N to Ny.

Algorri and Schmitt [AS96] reduce the number of vertices in a mesh
by collapsing edges: each edge is replaced by a vertex at its center.
The authors use a planarity-threshold for the dihedral angle between
two adjacent triangles to identify geometric features such as corners
and regions of high curvature. The identified features are represented
by characteristic lines and define clusters in which the mesh is subse-
quently locally reduced. In a last step the edges of the characteristic
lines are reduced by using a collinearity-threshold for the angle between
two edges. The advantage of using clusters is that retriangulation op-
erations are locally bounded and also that the geometry and topology
of the mesh is preserved. The authors mention that for many object a
decimation limit of 80% — 90 % applies because otherwise dense mesh
objects with little surface characteristics such as a dense sphere lose
their global shape characteristic.

V. Mesh Approximation approximates the polygonization with a coarser
one using some error criteria. The original polygonization is used only
as an error measure.

DeHaemer and Zyda [DZ91] assume a mesh obtained from a regular
grid of sample points. The authors fit trial polygons through a subset
of the corners of the mesh and recursively subdivide them into two
or four subpolygons until they lie within a given tolerance level to the
original mesh. Edges of neighboring polygons are likely to not coincide.
The resulting gap is either filled with a polygon (being nearly orthog-
onal to the original polygons!) or extra vertices are inserted resulting

33

in non-planar polygons. Both methods lead to shading artifacts. The
authors suggest as a criterion for subdividing polygons a hybrid tech-
nique by either subdividing at the location of the maximum error or at
the location of the maximum curvature.

Turk [Tur91] distributes a set of points on a mesh by point repulsion,
with density weighted by estimates of local curvature. The old vertices
and new points are triangulated such that each polygon of the original
model is tiled with the new points lying on it. He then removes the
old vertices and uses a greedy triangulation to fill the resulting holes.
Several constraints guarantee that the resulting triangulation does not
change the surface topology. If a topology preserving triangulation is
not possible the old vertex is retained. The method is best suited for
models with curved surfaces and is less suited for models with sharp
corners.

VI. Multiresolution Wavelet Analysis is used to decompose a simple
function into a low resolution part and so-called wavelet coefficients
necessary to recover the original function. To apply multiresolution
analysis to mesh reduction the mesh is expressed as parametric func-
tion. The low resolution part of the function gives then a reduced
mesh in which the new vertices are weighted averages of the original
vertices. This technique is popular for multiresolution surface mesh-
ing. An introduction to wavelets for computer graphics is given by
[SDS95a, SDS95b, SDS96].

Multiresolution wavelet analysis for mesh reduction was original intro-
duced by Lounsbery et al. [Lou94, LDW94|. The authors present a new
class of wavelets based on subdivision surfaces which can be applied to
functions on arbitrary topological domains. The input meshes, how-
ever, must have subdivision connectivity, i.e., they are obtained from
a base mesh by recursive 4-to-1 splitting. Eck et al. (see below) over-
comes this shortcoming. Lounsbery et al. provide also an algorithm to
switch smoothly between models of different resolution by treating the
wavelet coefficients as continuous function of the viewing distance.

Eck et al. [EDD"95] describe how multiresolution analysis can be ap-
plied to approximate an arbitrary mesh. The authors first approximate
an arbitrary mesh M by a mesh M7 that has subdivision connectiv-

34

ity and then convert M7 to a multiresolution representation using the
methods of Lounsbery et al. . The method provides a guaranteed max-
imum error to the original mesh.

Gross, Gatti, and Staadt [GSG96, GGS95] present a method for reg-
ular surface grids. They transform the initial surface data grid into a
quadtree structure and then use a wavelet transform to decide which
vertices to remove. The resulting quadtree cells are retriangulated us-
ing a table look up. The authors achieve a local level-of-detail control
by filtering the wavelet space with a Gaussian ellipse.

Certain et al. [CPD*96] deal with complex colored meshes and use
separate multiresolution representations for geometry and color that
are combined only at display time. The authors use the wavelet trans-
form of Lounsbery [Lou94, LDW94] to decompose the shape and color
functions into a low resolution base mesh and correction terms at in-
creasing resolution (wavelet coefficients). An efficient algorithm and
data structure is used to construct higher resolution approximations
from the base mesh at interactive rates.

5.2.1 Comparison

We have now introduced a variety of mesh reduction techniques. Unfortu-

nately the literature gives only a few direct comparisons of above methods.

In order to convey better understanding of the presented methods we first

classify the algorithms according to nine criteria and then summarize some

evaluations and comparisons which we have found in the existing literature.
QOur criteria for a classification are:

1. Does the algorithm achieve the approximation with a given number of
vertices or polygons (bounded number approzimation)?

2. Does the algorithm achieve the approximation with a given maximum
error of € (bounded € approzimation)? Note that in this case the error
is usually measured according to the removal criterion (point 9.).

3. Does the algorithm provide multiresolution surface meshing to obtain
meshes of different resolution?

35

4. Does the algorithm provide a geomorph to interpolate smoothly be-
tween models?

5. Does the algorithm use a subset of the original mesh vertices (vs. re-
sampling)?

6. Does the algorithm preserve the mesh topology? Note that in general
topological changes are not desired. However, in order to achieve a
coarse approximation a controlled change of the topology can be de-
sirable. Consider for example a metal plate with many small holes. If
viewed from a far distance an approximation of the plate without holes
is sufficient. Methods which allow a controlled change of the topology
are marked with an asterix.

7. Does the algorithm allow a local level-of-detail control? This is useful
if only selected parts of a model must be approximated in detail.

8. Does the algorithm work for arbitrary meshes (i.e., for a triangular
2-manifold mesh)?

9. Which error measure/removal criteria is used: 1. Distance measure
2. Polygon size 3. Surface curvature (estimated by normal angle) 4.
Wayvelet coefficient.

The results of classifying the presented algorithms with these criteria are
shown in table 4.

The mesh optimization algorithm from Hoppe et al. [HDD'93a] and the
mesh decimation method from Schroeder et al. [SZL92] currently appear the
most popular. This is probably due to the fact that they are relative simple
and also have had time to become established. A lot of recent research has
gone into multiresolution wavelet analysis (group VI. in our classification)
and the results look very promising.

Schroeder [Sch95] suggests that “Re-tiling” [Tur92] is best for curved,
round objects and that “Mesh Optimization” [HDD'93a] appears to give
best results, but is much too slow for large meshes. The author mentions that
“Mesh Decimation” [SZL92] and “Geometric Optimization” [HH93| appear
to be fastest and that the best approach is probably to mix a high-speed
algorithm with the optimization approach.

36

Criteria

1. 2. 3. 4. 5. 6. 7. 8. 9.

HH93 No | No| No| No | Yes | Yes | No | Yes 3

L KT96 Yes | No| No | No | Yes | Yes | No | Yes | 143
Red96] No| No| No| No | Yes | Yes | No | Yes | 3+2
MSS94] No | No| No| No| Yes | Yes | No | No 3

II. | [OP96 No | No| No| No| Yes | Yes | No | No 3
MS93 No| No| No| No| No| Yes | No| No 1
Kal91] No | No| No| No| Yes | Yes | No | No 3
CFM'94] | Yes | No | Yes | No | Yes | No | No | No 1

III. | [MWO1] No| No| No| No| No| Yes | No| No 2
Ham94] Yes | Yes | No | No| No | Yes | No | Yes 3
SZL92] Yes | No| No| No | Yes | Yes | No | Yes 1
CVMT96] No | Yes | No | No | Yes | Yes | Yes | Yes 1

IV. | [HDD*93a] | Yes | No | No | No | No | Yes | No | Yes 1
Hop96] Yes | No | Yes | Yes | No | No* | Yes | Yes 1
RR96] Yes | Yes | Yes | No | Yes | No* | No | Yes 1
AS96] No| No| No| No| No| Yes | No | Yes 3

V. | [DZ91] No|Yes | No| No| No| No| No| No | 1+3
Tur91] Yes | No| No | Yes | No | Yes | No | Yes -
LDW94] Yes | Yes | Yes | Yes | No | Yes | No | No 4

VI. [[EDD"95] | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes 4
GSG96| Yes | Yes | Yes | No | Yes | Yes | Yes | No 4
CPD"96] | Yes | Yes | Yes | Yes | No | Yes | No | Yes 4

Table 4: Comparison of mesh reduction techniques.

37

Kalvin gives a listing of execution times of different algorithms for dif-
ferent meshes on different machines [KT96]. As the author suggests a direct
comparison of the results is not possible, but the indications are that “Super-
faces” [KT96], “Mesh Decimation” [SZL92], and “Geometric Optimization”
[HH93]| are relatively fast and that “Mesh Optimization” [HDD*93a] is rel-
atively slow.

It is worth noting that in order to achieve an extreme reduction of the
mesh size a change of the topology might be necessary. A typical example is
a plate with many small holes. Table 4 shows that only two algorithm allow
a controlled change of the mesh topology.

Note that any incremental mesh reduction algorithm (e.g., [HDD"93a] or
[SZL92]) can be transformed to generate a multiresolution mesh with local
level-of-detail control. De Floriani et al. [FMPBO97] achieve this by encoding
a set of mesh fragments and a partial order defined on such fragments. The
partial order is described as a directed acyclic graph. Two special nodes, a
source with no incoming arcs and a drain with no outgoing arcs, correspond
to the highest and lowest resolution mesh, respectively. A mesh of the desired
resolution is defined by cutting the graph in a suitable way.

David Luebke and Carl Erikson [LE97] suggest a framework for any mesh
optimization algorithm based on vertex collapse operations to obtain a ro-
bust view-dependent simplification of polygonal scenes. The authors cluster
vertices together in a tree structure and extract from this only those polygons
important for the current view point. Subtrees defining a volume occupy-
ing a screen-space smaller than a user defined tolerance are collapsed and
degenerated polygons are filtered out.

5.3 Parallel Algorithms

Nowadays many high performance computers have multiple CPUs. In order
to fully use the available computing power of such a machine a polygonization
algorithm must be parallelized. We give here a short collection of available
literature describing parallelized polygonization algorithms.

Hansen and Hinker [HH92] present a SIMD implementation of the Mar-
ching Cubes algorithm. To avoid complications with communication the
algorithm processes each voxel independently by assigning it a virtual pro-
cessor. The authors report superlinear speed-up if the ratio of virtual to

38

physical processors increases, which is due to improved efficiency. They also
mention that the time spent in each virtual processor is constant regardless
of the number of polygons in a cell.

Mackerras [Mac92] uses an MIMD implementation of the Marching Cubes
algorithm, which is based on an efficient serial implementation. The volume is
partitioned into contiguous blocks. Every processor is allocated one or more
blocks and runs a serial Marching Cubes code on it. The author reports a
speed up larger than the number of processors and suggests that this is due
to cache effects.

Guéziec and Humme [GH95] describe a parallel polygonization algorithm
based on the decomposition of a cubic cell into 5 tetrahedra. The authors
perform the subspace polygonization by table indexing and present a cod-
ing scheme which allows to store vertex information local to the tetrahedra
without duplications.

Savchenko and Pasko [SP95] present an algorithm for a transputer net-
work with a toroidal architecture, which has the advantage that the maximal
distance between two processors is of order O(y/n). The authors use a sample
grid of cubic cells and divide the cells between processors. For each cell the
isosurface intersection with the edges is computed by linear interpolation.
The intersection points are used to form a connection graph. Face ambigu-
ities are resolved with the bilinear interpolant over the face. The cycles in
the connection graph give the polygonal patches used to approximate the
isosurface.

6 Conclusion

We have reviewed four polygonization methods in detail and extracted three
common aspects: polyhedral subdivision of space, subspace polygonization
and achievement of continuity. These aspects were discussed using the re-
viewed polygonization methods and numerous alternative algorithms as ex-
amples.

This part of our work might form a good basis for the development of
new both specialized and general polygonization algorithms.

We then gave a set of quality criteria and classified the reviewed polygo-
nization methods accordingly.

39

Not surprisingly there is no optimal polygonization method, but the
method of choice usually depends on the application. In general a com-
promise must be made between speed, accuracy and correctness and imple-
mentation complexity. The Marching Cubes algorithm and its variants seem
to be the most popular methods. Some ambiguities of the original Marching
Cubes algorithm can be remedied by introducing additional complexity.

Using a tetrahedral decomposition might simplify the implementation but
leads to fragmentation and in certain cases to a spiky approximation. If seed
cubes for the isosurface are known a surface tracking method such as the
algorithm from Wyvill et al. is recommended for improved speed.

In the second part of our work we showed briefly the need for improve-
ments of both the speed and the result of a polygonization algorithm. We
discussed several techniques to improve the speed of finding an isosurface ap-
proximation, classified them into three classes and compared them. We then
looked into the problem of optimizing a polygonal mesh. Several methods
were introduced, classified into six classes, and compared.

As a whole our work provides an overview of polygonization methods
and optimization techniques used in the scientific community. We hope that
our work forms a good basis for the decision making about which method to
implement and we hope that our results will prove helpful for the development
of new both specialized and generalized polygonization algorithms.

References

[AFH80] Ehud Artzy, Gideon Frieder, and Gabor T. Herman. The theory,
design, implementation, and evaluation of a three-dimensional
surface detection algorithm. In Computer Graphics (SIG-
GRAPH ’80 Proceedings), pages 2-9, July 1980.

[AG87] Eugene L. Allgower and Stefan Gnutzmann. An algorithm
for piecewise linear approximation of implicitly defined two-

dimensional surfaces. SIAM Journal of Numerical Analysis,
24(2):452 — 469, April 1987.

[AS96] Maria-Elena Algorri and Francis Schmitt. Mesh simplifica-
tion. In Jarek Rossignac and Frangois Sillion, editors, Com-

40

[Aur91]

[Bak88|

[Bak8o]

[Bei90]

[Ben75]

[BF95]

[BHR*94]

[Bli82]

puter Graphics Forum (Eurographics ’96), volume 15, pages C77
— C86. Eurographics Association, University Press, Cambridge,
UK, 1996. Futoroscope - Poitiers, France August 26 — 30, 1996,
ISSN 0167-7055.

Franz Aurenhammer. Voronoi diagrams - a survey of a fun-
damental geometric data structure. ACM Computing Surveys,
23(3):345 — 405, September 1991.

H. Harlyn Baker. Building, visualizing, and computing on sur-
faces of evolution. IEEE Computer Graphics and Applications,
8(4):31 — 41, July 1988.

H. Harlyn Baker. Building surfaces of evolution: The weaving

wall. International Journal of Computer Vision, 3(1):51 — 71,
May 1989.

Thaddeus Beier. Practicel uses for implicit surfaces in anima-
tion. In SIGGRAPH ’90, course notes #23 - Modelling and
Animating with Implicit Surfaces, pages 20-1 — 20-11. ACM

SIGGRAPH, August 1990. Held in Dallas, Texas, 6 — 10 Au-
gust.

Jon Louis Bentley. Multidimensional binary search trees used
for associative search. Communications of ACM, 18(9):509 —
516, 1975.

Jules Bloomenthal and Keith Ferguson. Polygonization of Non-
Manifold implicit surfaces. In Robert Cook, editor, SIGGRAPH
’95 Conference Proceedings, Annual Conference Series, pages
309-316. ACM SIGGRAPH, Addison Wesley, August 1995.

Manfred Brill, Hans Hagen, Hans-Christian Rodrian, Wladimir
Djatschin, and Stanislav V. Klimenko. Streamball techniques
for flow visualization. In D. Bergeron and A. Kaufman, edi-
tors, Proceedings of Visualization 94, pages 225 — 231. IEEE,
Computer Society Press, 1994.

James F. Blinn. A generalization of algebraic surface drawing.
ACM Transactions on Graphics, 1(3):235 — 256, July 1982.

41

[Blo88]

[Blo94]

[Bow81]

[BSO1]

[BW90]

[CFM*94]

[CLL*88]

[Col90]

[CPD+96]

Jules Bloomenthal. Polygonization of implicit surfaces.
Computer-Aided Geometric Design, 5(4):341 — 355, November
1988.

Jules Bloomenthal. An implicit surface polygonizer. In Paul S.
Heckbert, editor, Graphic Gems, volume IV, chapter IV.8. Aca-
demic Press, Cambridge, MA 02139, 1994.

A. Bowyer. Computing dirichlet tesselations. The Computer
Journal, 24(2):162 — 166, May 1981.

Jules Bloomenthal and Ken Shoemaker. Convolution surfaces.
Computer Graphics, 25(4):251 — 256, July 1991.

Jules Bloomenthal and Brian Wyvill. Interactive techniques
for implicit modeling. Computer Graphics, 24(2):109 — 116,
March 1990. Special Issue on 1990 Symposium on Interactive
3D Graphics.

P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and
R. Scopigno. Multiresolution modeling and visualization of vol-
ume data based on simplicial complexes. In Proceedings ACM
Symposium on Volume Visualization’9j. ACM, October 1994.
URL: http://disi.unige.it/ftp/person/PuppoE/PS/ACM-
VV94 .ps.gz.

H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Crawford, and
B. C. Teeter. Two algorithms for the three-dimensional recon-
struction of tomograms. Medical Physics, 15(3):320 — 327, 1988.

Steve Colburn. Solid modeling with global blending for machin-
ing dies and patterns. SAE technical paper series, SAE Interna-
tional, 400 Commonwealth Drive, Warrendale, PA 15096-0001
U.S.A., April 1990. 41st Annual Earthmoving Industry Confer-

ence.

Andrew Certain, Jovan Popovié¢, Tony DeRose, Tom Duchamp,
David Salesin, and Werner Stuetzle. Interactive multiresolution
surface viewing. In Holly Rushmeier, editor, SIGGRAPH 96

42

[CSYLS8S]

[CVM+96]

[DHY3]

[DKO1]

[DLTW0]

[Diiugs]

[DZ91]

Conference Proceedings, Annual Conference Series, pages 91-98.
ACM SIGGRAPH, Addison-Wesley Publication Company Inc,
August 1996. Held in New Orleans, Louisiana, 04-09 August
1996.

B. K. Choi, H. Y. Shin, Y. I. Yoon, and J. W. Lee. Triangulation
of scattered data in 3D space. Computer-Aided Design, 20(5):239
— 248, 1988.

Jonathan Cohen, Amitabh Varshney, Dinesh Manocha,
Greg Turk, Hans Weber, Pankaj Agarwal, Frederick P.
Brooks, Jr., and William Wright. Simplification en-
velopes. In Holly Rushmeier, editor, SIGGRAPH 96 Con-
ference Proceedings, Annual Conference Series, pages 119-
128. ACM SIGGRAPH, Addison Wesley, August 1996. Held
in New Orleans, Louisiana, 04-09 August 1996, URL:
http://www.cs.unc.edu/"geom/envelope.html.

Thierry Delmarcelle and Lambertus Hesselink. Visualizing sec-
ond order tensor fields with hyperstreamlines. IEEE Com-
puter Graphics and Applications, 13(4):25 — 33, 1993. URL:
http://www.nas.nasa.gov/NAS/TechReports/RelatedPapers
/StanfordTensorFieldVis/CGA93/abstract.html.

A. Doi and A. Koide. An efficient method of triangulating equi-
valued surfaces by using tetrahedral cells. IEICE Trans. Com-
mun. Elec. Inf. Syst., E-74(1):214 — 224, January 1991.

David P. Dobkin, Silvio V. F. Levy, William P Thurston, and
Allan R Wilks. Contour tracing by piecewise linear approxima-
tions. ACM Transactions on Graphics, 9(4):389 — 423, October
1990.

Martin J. Diiurst. Additional reference to “marching cubes”.
Computer Graphics, 22(2):72, April 1988. Letter.

Michael De Haemer, Jr. and Michael J. Zyda. Simplification of
objects rendered by polygonal approximations. Computers and
Graphics, 15(2):175-184, 1991.

43

[EDD*95]

[FMPB97]

[Gal9l]

[GGS95]

[GHOO]

[GHOS]

[GN8Y]

Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe,
Michael Lounsbery, and Werner Stuetzle. Multiresolution anal-
ysis of arbitrary meshes. In Robert Cook, editor, SIGGRAPH
95 Conference Proceedings, Annual Conference Series, pages
173-182. ACM SIGGRAPH, Addison Wesley, August 1995.
Held in Los Angeles, California, 06-11 August 1995, URL:
ftp://ftp.cs.washington.edu/tr/1995/01/UW-CSE-95-01-
02.d.

L. De Floriani, P. Magillo, E. Puppo, and M. Bertolotto. Mul-
tiresolution representation and reconstruction of triangulated
surfaces. In Proceedings 3rd International Workshop on Visual
Form, May 1997. URL: http://disi.unige.it/ftp/person/
MagilloP/PS/iwvf-97.ps.gz Also appeared in a longer version
as Technical Report N. PDISI-96-26.

Richard S. Gallagher. Span filtering: An optimization scheme
for volume visualization of large finite element models. In Gre-
gory M. Nielson and Larry Rosenblum, editors, Proceedings of
Visualization 91, pages 68 — 75, Los Alamitos, California, Oc-
tober 1991. IEEE, Computer Society Press.

Markus H. Gross, Roger Gatti, and Oliver G. Staadt. Fast mul-
tiresolution surface meshing. In Gregory M. Nielson and Deb-
orah Silver, editors, Proceedings of Visualization 95, pages 135
— 142, Los Alamitos, California, 1995. IEEE, Computer Society
Press.

M. Giles and R. Haimes. Advanced interactive visualization for
CFD. Computer Systems in Engineering, 1(1):51 — 62, 1990.

André Guéziec and Robert Hummel. Exploiting triangulated
surface extraction using tetrahedral decomposition. IEEE

Transactions on Visualization and Computer Graphics, 1(4):328
— 342, December 1995. ISSN 1077-2626.

Richard S. Gallagher and Joop C. Nagtegaal. An efficient 3-
D visualization technique for finite element models. Computer
Graphics, 23(3):185 — 194, July 1989.

44

[GSG96]

[Ham94]

[HB94]

[HDD*93a]

[HDD+93b)

[HHS87]

[HHO1]

[HH92]

Markus H. Gross, Oliver G. Staadt, and Roger Gatti. Efficient
triangular surface approximations using wavelets and quadtree
data structures. IEEE Transactions on Visualization and Com-
puter Graphics, 2(2):130 — 143, June 1996.

Bernd Hamann. A data reduction scheme for triangulated sur-
faces. Computer-Aided Geometric Design, 11(2):197 — 214, 1994.

C. T. Howie and E. H. Blake. The mesh propagation algo-
rithm for isosurface extraction. Computer Graphics Forum (Eu-
rographics °94), 13(3):C65 — C74, 1994.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzel. Mesh optimization. In Computer Graphics
Proceedings ’93, pages 19 — 26. ACM SIGGRAPH, 1993. URL:
ftp://ftp.cs.washington.edu/tr/1993/01/UW-CSE-93-01-
01.PS.Z.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzel. Mesh optimization. TR 93-01-01, Univer-
sity of Washington, Department of Computer Science and En-
gineering, January 1993. URL: http://cs-tr.cs.washington
.edu:80/Dienst/UI/2.0/Describe/ncstrl.uwash_cse’2fTR-
93-01-01 .

Christoph Hoffmann and John Hopcroft. The potential method
for blending surfaces and corners. In Gerald E. Farin, editor,
Geometric Modelling: Algorithms and New Trends, pages 347
— 365, Philadelphia, 1987. Society for Industrial and Applied
Mathematics.

Josef Hoschek and Erich Hartmann. G™~!-functional splines for
modeling. In Hans Hagen and D. Roller, editors, Geometric
Modeling - Methods and Applications, pages 185 — 211. Springer
Verlag, 1991. Based on lectures presented at an international
workshop held in Boblingen, Germany in June 1990.

Charles D. Hansen and Paul Hinker. Massively parallel isosur-
face extraction. In Proceedings of Visualization 92, pages 77

45

[HH93]

[HLO2]

[Hol91]

[Hop96]

[Hop97]

[HW90]

— 83, Los Alamitos, California, October 1992. IEEE, Computer
Society Press.

P. Hinker and C. Hansen. Geometric optimization. In G. M.
Nielson and D. Bergeron, editors, Proceedings of Visualization
’93, pages 189 — 195, Los Alamitos, California, 1993. IEEE,
Computer Society Press.

Josef Hoschek and Dieter Lasser. Fundamentals of Computer
Aided Geometric Design, chapter 14, pages 572 — 601. AK Peters
Ltd., Wellesley, MA 02181, second edition, 1992.

Richard L. Holloway. Viper: A quasi-real-time virtual-worlds
application. UNC technical report no. tr-92-004, Department of
Computer Science, University of North Carolina, Chapel Hill,
NC, December 1991. URL: ftp://ftp.cs.unc.edu/pub/publi
cations/techreports/92-004.tar.

Hugues Hoppe. Progressive meshes. In Holly Rush-
meier, editor, SIGGRAPH 96 Conference Proceedings, An-
nual Conference Series, pages 99-108. ACM SIGGRAPH,
Addison-Wesley Publication Company Inc, August 1996.
Held in New Orleans, Louisiana, 04-09 August 1996, URL:
http://www.research.microsoft.com/research/graphics/
hoppe/pm_sig96_bw.ps.gz.

Hugues Hoppe. View-dependent refinement of progressive
meshes. In SIGGRAPH 97 Conference Proceedings, An-
nual Conference Series, pages 189-198. ACM SIGGRAPH,
Addison-Wesley Publication Company Inc, August 1997.
Held in Los Angeles, California, August 03-08, 1997, URL:
http://www.research.microsoft.com/research/graphics/
hoppe.

Mark Hall and Joe Warren. Adaptive polygonization of implic-
itly defined surfaces. IEEE Computer Graphics and Applica-
tions, 10(5):33 — 42, November 1990.

46

[TK94]

[TK95]

[Kal91]

[Kal92]

[KCHN91]

[KDKS86]

[Kem93]

[KT96]

[LC87]

Takayuki Itoh and Koji Koyamada. Isosurface generation by
using extrama graphs. In R. Daniel Bergeron and Arie E. Kauf-
man, editors, Proceedings of Visualization ’94, pages 77 — 83,
Los Alamitos, California, October 1994. IEEE, Computer Soci-
ety Press.

Takayuki Itoh and Koji Koyamada. Automatic isosurface prop-
agation using an extrema graph and sorted boundary cell lists.

IEEE Transactions on Visualization and Computer Graphics,
1(4):319 — 327, December 1995.

Alan D. Kalvin. Segmentation and surface-based modeling of
objects in three-dimensional biomedical images. PhD thesis, New
York University, New York, 1991.

Alan D. Kalvin. A survey of algorithms for constructing sur-
faces from 3D volume data. Research report rc 17600 (#77606)
1/16/92, IBM Research Division, T.J. Watson Research Center,
Yorktown Heights, NY 10598, January 1992.

Alan D. Kalvin, C. B. Cutting, B. Haddad, and M. E. Noz.
Constructing topologically connected surfaces for the compre-
hensive analysis of 3D medical structures. SPIE, 1445 Image
Processing:247 — 259, 1991.

A. Koide, A. Doi, and K. Kajioka. Polyhedral approximation
approach to molecular orbit graphics. J. Molec. Graph., 4:149 —
156, 1986.

A. Kemeny. A cooperative driving simulator. In Proceedings
of the International Training Equipment Conference and FExhi-
bition, pages 67 — 71, 1993. London, UK, 4-6 May 1993.

Alan D. Kalvin and Russell H. Taylor. Superfaces: Polygonal
mesh simplification with bounded error. IEEE Computer Graph-
ics and Applications, 16(3):64-77, May 1996. ISSN 0272-1716.

W. Lorensen and H. Cline. Marching cubes: A high resolu-
tion 3D surface construction algorithm. Computer Graphics,
21(4):163 — 169, July 1987. Proceedings of SIGGRAPH.

47

[LDW94]

[LE97]

[Lob96]

[Lor96]

[Lou94|

[LSJ96]

[LVG80]

[Mac92]

Michael Lounsbery, Tony DeRose, and Joe Warren. Multireso-
lution analysis for surfaces of arbitrary topological type. Tech-
nical report 93-10-05b, Department of Computer Science and
Engineering, University of Washington, January 1994. URL:
ftp://cs.washington.edu/pub/graphics/TR931005.ps.Z.

David Luebke and Carl Erikson. View-dependent simplification
of arbitrary polygonal environments. In SIGGRAPH 97 Con-
ference Proceedings, Annual Conference Series, pages 199-208.
ACM SIGGRAPH, Addison-Wesley Publication Company Inc,
August 1997. Held in Los Angeles, California, August 03-08,
1997.

Richard Lobb. Quasiconvolutional smoothing of polyhedra. The
Visual Computer, 12(8):373 — 389, 1996.

Bill Lorensen. Extracting surfaces from medical volumes. In Vol-
ume Visualization: Principles and Practice. ACM SIGGRAPH,
1996. SIGGRAPH 96, Course Notes #34.

Michael Lounsbery. Multiresolution Analysis for Surfaces of Ar-
bitrary Topological Type. PhD thesis, Department of Computer
Science and Engineering, University of Washington, September
1994. URL: ftp://cs.washington.edu/pub/graphics/Louns
Phd.ps.Z.

Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson.
A near optimal isosurface extraction algorithm using the span
space. IEEE Transactions on Visualization and Computer
Graphics, 2(1):73 — 84, March 1996.

S. Lobregt, P. W. Verbeek, and F. C. A. Groen. Three-
dimensional skeletonization: Principle and algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI-2(1):75 — 77, January 1980.

Paul Mackerras. A fast parallel marching-cubes implementa-
tion on the Fujitsu AP1000. Technical report, Department of
Computer

48

[Mat94]

IML94]

[MS93]

[MSS94]

[Mur91]

[MWO91]

[MW92]

[Nat91]

Science, Australien National University, August 1992. URL:
http://cs.anu.edu.au/techreport/1992/TR-CS-10.ps.gz.

Sergey V. Matveyev. Approximation of isosurface in the march-
ing cube: Ambiguity problem. In R. Daniel Bergeron and Arie E.
Kaufman, editors, Proceedings of Visualization ’94, pages 288 —
292, Los Alamitos, California, October 1994. IEEE, Computer
Society Press.

S. R. Marschner and R. J. Lobb. An evaluation of reconstruction
filters for volume rendering. In R. Daniel Bergeron and Arie E.
Kaufman, editors, Proceedings of Visualization 94, pages 100
107, Los Alamitos, California, October 1994. IEEE, Computer
Society Press.

Heinrich Miiller and Michael Stark. Adaptive generation of sur-
faces in volume data. The Visual Computer, 9(4):182 — 199,
January 1993.

C. Montani, R. Scateni, and R. Scopigno. Discretized marching
cubes. In D. Bergeron and A. Kaufman, editors, Proceedings
of Visualization 94, pages 281 — 286. IEEE, Computer Society
Press, 1994.

Shigeru Muraki. Volumetric shape description of range data
using “blobby model”. Computer Graphics, 25(4):227 —235, July
1991. Proceedings of SIGGRAPH '91.

Doug Moore and Joe Warren. Mesh displacement: An improved
contouring method for trivariate data. Technical report tr91-
166, Rice University, Houston, Texas, September 1991.

D. Moore and J. Warren. Compact isocontours from sampled
data. In D. Kirk, editor, Graphic Gems III, pages 23 — 28.
Academic Press, 1992.

Balar K. Natarajan. On generating topologically correct isosur-
faces from uniform samples. Tech. Rep. HPL-91-76, Software
and Systems Laboratory, Hewlett-Packard Co., Page Mill Road,
Palo Alto, Ca., June 1991.

49

[NB93]

[NFHL91]

[NHO1a]

[NHO1b]

[Nie95]

[OPY6]

[PHO7]

[PPW87]

Paul Ning and Jules Bloomenthal. An evaluation of implict sur-
face tilers. IEEE Computer Graphics and Applications, 13(6):33
— 41, November 1993.

G. M. Nielson, T. A. Foley, B. Hamann, and D. A. Lane. Vi-
sualization and modelling of scattered multivariate data. IFEFE
Computer Graphics and Applications, 11(3):47 — 55, May 1991.

Gregory M. Nielson and Bernd Hamann. The asymptotic de-
cider: Resolving the ambiguity in marching cubes. In Gre-
gory M. Nielson and Larry Rosenblum, editors, Proceedings of
Visualization 91, pages 83 — 91, Los Alamitos, California, Oc-
tober 1991. IEEE, Computer Society Press.

Paul Ning and Lambertus Hesselink. Adaptive isosurface gener-
ation in a distortion-rate framework. In SPIE Proceedings Con-
ference 1459, pages 11 — 21, February 1991.

Gregory M. Nielson. Modeling and visualizing volumetric and
surface-on-surface data. In SIGGRAPH ’95 - course notes #
30, pages 35 — 101. ACM SIGGRAPH, 6 — 11 August 1995,
Los Angeles, California, August 1995. An updated version has
appeared in ”Focus on Visualization”, H. Hagen, H. Mueller, G.
M. Nielson, editors, Springer, ISBN 3-540-54940-4, pp. 191-242.

Kwang-Man Oh and Kyu Ho Park. A type-merging algorithm
for extracting an isosurface from volumetric data. The Visual
Computer, 12(8):406 — 419, 1996.

Jovan Popovi¢ and Hugues Hoppe. Progressive simpli-
cial complexes. In SIGGRAPH 97 Conference Proceed-
ings, Annual Conference Series, pages 217-224. ACM SIG-
GRAPH, Addison-Wesley Publication Company Inc, August
1997. Held in Los Angeles, California, August 03-08, 1997, URL:
http://www.research.microsoft.com/research/graphics/
hoppe.

Carl S. Petersen, Bruce R. Piper, and Andrew J. Worsey. Adap-
tive contouring of a trivariate interpolant. In Gerald E. Farin,

a0

[PT90]

[PvW94]

[Red96]

[RR96]

[Sch95]

[SDS95a]

[SDS95b)

[SDS96]

editor, Geometric Modelling: Algorithms and New Trends, pages
385 — 395, Philadelphia, 1987. Society for Industrial and Applied
Mathematics.

Bradley A. Payne and Arthur W. Toga. Surface mapping brain
functions on 3D models. IEEE Computer Graphics and Appli-
cations, 10(2):41 — 53, February 1990.

F. H. Post and J. J. van Wijk. Visual representation of vec-
tor fields: recent developments and research directions. In
L. J. Rosenblum et. al., editor, Scientific Visualization: Ad-
vances and Challenges, pages 367 — 390. Academic Press, 1994.

M. Reddy. SCROOGE: Perceptually-driven polygon reduction.
Computer Graphics Forum, 15(4):191 — 203, October 1996. ISSN
0167-7055.

Rémi Ronfard and Jarek Rossignac. Full-range approximation
of triangulated polyhedra. In Jarek Rossignac and Francois Sil-
lion, editors, Computer Graphics Forum (Eurographics 96), vol-
ume 15, pages C67 — C76. Eurographics Association, University
Press, Cambridge, UK, 1996. Futoroscope - Poitiers, France
August 26 — 30, 1996, ISSN 0167-7055.

William J. Schroeder. Polygon reduction techniques. Course
notes # 30, ACM SIGGRAPH, 1995.

Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin.
Wavelets for computer graphics: A primer, part 1. IEEE Com-
puter Graphics and Applications, 15(3):76-84, May 1995.

Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin.
Wavelets for computer graphics: A primer, part 2. IEEE Com-
puter Graphics and Applications, 15(4):75-85, July 1995.

Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin.
Wavelets for Computer Graphics - Theory and Applications. The
Morgan Kaufmann Series in Computer Graphics and Geometric

Modelling. Morgan Kaufmann Publishers, Inc., San Francisco,
California, 1996.

o1

5J95]

[SP95]

[SZL92]

[Tur91]

[Tur92]

[Var94]

[vGW94]

[Wal91]

[War89)]

Han-Wei Shen and Christopher R. Johnson. Sweeping simplices:
A fast iso-surface extraction algorithm for unstructured grids. In
Gregory M. Nielson and Deborah Silver, editors, Proceedings of
Visualization 95, pages 143 — 150, Los Alamitos, California,
October 1995. IEEE, Computer Society Press.

V. V. Savchenko and A. A. Pasko. Parallel polygonization of
implicit surfaces on transputers: algorithm, time performance
evaluation and rendering results. In H. Arabnia, editor, Trans-
puter Research and Applications 7 (NATUG-7, Proceedings of
the Seventh Conference of the North American Transputer Users
Group), pages 22-30. IOS Press, 1995.

William J. Schroeder, Jonathan A. Zarge, and William E.
Lorensen. Decimation of triangle meshes. In Edwin E. Cat-
mull, editor, Computer Graphics (SIGGRAPH ’92 Proceedings),
volume 26, pages 65 — 70, July 1992.

Greg Turk. Generating textures on arbitrary surfaces using
reaction-diffusion. Computer Graphics, 25(4):289 — 298, 1991.
(SIGGRAPH '91).

Greg Turk. Re-tiling polygonal surfaces. In Edwin E. Catmull,
editor, Computer Graphics (SIGGRAPH ’92 Proceedings), vol-
ume 26, pages 55—64, July 1992.

Amitabh Varshney. Hierarchical geometric approximations.
Ph.d. thesis tr-050-1994, University of North Carolina, Chapel
Hill, NC 27599-3175, 1994. URL: ftp://ftp.cs.unc.edu/pub/
publications/techreports/94-050.ps.Z.

Allen van Gelder and Jane Wilhelms. Topological considera-
tions in isosurface generation. ACM Transactions on Graphics,
13(4):337 — 375, October 1994.

A. Wallin. Constructing isosurfaces from CT data. IEEE Com-
puter Graphics and Applications, 11(6):28 — 33, November 1991.

Joe Warren. Blending algebraic surfaces. ACM Transactions on
Graphics, 8(4):263 — 278, October 1989.

52

[WMWS86a]

[WMWS6b]

[Wiin96]

(WvG92]

[WWMS87]

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Animating
soft objects. The Visual Computer, 2(4):235 — 242, August 1986.

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. A data
structure for soft objects. The Visual Computer, 2(4):227 — 234,
August 1986.

Burkhard C. Wiinsche. A fast polygonization method for quasi-
convolutionally smoothed polyhedra. Master’s thesis, University
of Auckland, August 1996. URL: http://www.cs.auckland.ac
.nz/~bwue001/Thesis/thesis.pdf.

Jane Wilhelms and Allan van Gelder. Octrees for faster isosur-
face generation. ACM Transactions on Graphics, 11(3):201 —
227, July 1992.

Geoftf Wyvill, Brian Wyvill, and Craig McPheeters. Solid textur-
ing of soft objects. IEEE Computer Graphics and Applications,
7(12):20 — 26, December 1987.

93

