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Abstract. Image-based modeling is rapidly increasing in popularity since cameras 
are very affordable, widely available, and have a wide image acquisition range 
suitable for objects of vastly different size. In this paper we describe a novel im-
age-based modeling system, which produces high-quality 3D content automatical-
ly from a collection of unconstrained and uncalibrated 2D images. The system es-
timates camera parameters and a 3D scene geometry using Structure-from-Motion 
(SfM) and Bundle Adjustment techniques. The point cloud density of 3D scene 
components is enhanced by exploiting silhouette information of the scene. This 
hybrid approach dramatically improves the reconstruction of objects with few vis-
ual features. A high quality texture is created by parameterizing the reconstructed 
objects using a segmentation and charting approach, which also works for objects 
which are not homeomorphic to a sphere. The resulting parameter space contains 
one chart for each surface segment. A texture map is created by back projecting 
the best fitting input images onto each surface segment, and smoothly fusing them 
together over the corresponding chart by using graph-cut techniques. Our evalua-
tion shows that our system is capable of reconstructing a wide range of objects in 
both indoor and outdoor environments. 

 
1 INTRODUCTION 
 
A key task in mobile robotics is the exploration and mapping of an unknown envi-
ronment using the robot’s sensors. SLAM algorithms can create a map in real time 
using different sensors. While the resulting map is suitable for navigation, it usual-
ly does not contain a high quality reconstruction of the surrounding 3D scene, e.g., 
for use in virtual environments, simulations, and urban design.  
 
High quality reconstructions can be achieved using image input and conventional 
modeling systems such as Maya, Lightwave, 3D Max or Blender. However, the 
process is time-consuming, requires artistic skills, and involves considerable train-
ing and experience in order to master the modeling software. The introduction of 
specialized hardware has simplified the creation of models from real physical ob-
jects. Laser scanners can create highly accurate 3D models, but are expensive and 



 

have a limited range and resolution. RGBD sensors, such as the Kinect, have been 
successfully used for creating large scale reconstructions. In 2011 the Kinect-
Fusion algorithm was presented, which uses the Kinect depth data to reconstruct a 
3D scene using the Kinect sensor like a handheld laser scanner [Newcombe et al. 
2011]. Since then a wide variety of new applications have been proposed such as 
complete 3D mappings of environments [Henry et al. 2012]. The Kinect is very 
affordable, but has a very limited operating range (0.8 - 3.5m), a limited resolution 
and field-of-view, and it is sensitive to environmental conditions [Oliver et al. 
2012]. Reconstruction 3D scenes from optical sensor data has considerable ad-
vantages such as the low price of cameras, the ability to capture objects of vastly 
different size, and the ability to capture highly detailed color and texture infor-
mation. Furthermore optical sensors are very light weight and have a low energy 
consumption, which makes them ideal for mobile robots, such as small Unmanned 
Aerial Vehicles (UAVs).  
 
This paper proposes a novel system that employs a hybrid multi-view image-based 
modeling approach coupled with a surface parameterization technique as well as 
surface and texture reconstruction for automatically creating a high quality recon-
struction of 3D objects using uncalibrated and unconstrained images acquired us-
ing consumer-level cameras. In contrast to previous works we combine both cor-
respondence-based and silhouette-base reconstruction techniques, which improves 
reconstruction results for featureless objects and objects with concave regions. 
These classes of objects often pose great difficulty for algorithms using only a 
single approach. As the result, our solution is able to produce satisfactory results 
with higher resolution for a much larger class of objects.  
The system performs 3D reconstruction using the following steps: 
 

1. Camera parameter estimation and scene geometry generation 
2. Increase the density of the obtained point cloud by exploiting object’s 

silhouette information 
3. 3D surface reconstruction 
4. Surface parameterisation and texture reconstruction 

 
The remainder of this paper is structured as follows. In section 2, we review relat-
ed work in the field of image-based modeling. Section 3 presents the design of our 
solution. Results are discussed in section 4. In section 5 we conclude the paper and 
discuss directions for future research. 

 
2 PREVIOUS WORKS 
 
3D image-based reconstruction algorithms can be classified and categorized based 
on the visual cues used to perform reconstruction, e.g., silhouettes, texture, shad-
ing or correspondence. Amongst them, shape-from-silhouette and shape-from-
correspondence have proven to be the most well-known and successful visual 



 

cues. Classes of reconstruction methods exploiting these visual cues can offer a 
high degree of robustness due to their invariance to illumination changes [Hernan-
dez et al. 2008]. 

 
Shape-from-silhouette algorithms obtain the 3D structure of an object by estab-
lishing an approximate maximal surface, known as the visual hull, which progres-
sively encloses the actual object. Shape from silhouette-based methods can pro-
duce surprisingly good results with a relatively small number of views, but have 
problems with complex object geometries, such as concave regions [Grauman et 
al. 2003; Matusik et al. 2000; Nguyen et al. 2012]. Most techniques extract silhou-
ette contours [Baumgart 1974] and then derive a 3D geometry from them, e.g. by 
computing the intersection of silhouette cones [Martin et al. 1983]. Efficiency can 
be improved by using an octree representation of the visual hull [Chien et al. 
1984]. [Grauman et al. 2003] use a Bayesian approach to compensate for errors in-
troduced as the result of false segmentation.  
 
The literature in image-based modelling describes several complete systems, but 
only for a limited range of applications.  [Fruh et al. 2003] create textured 3D 
models of an entire city by using a combination of aerial imagery, ground color, 
and LIDAR scans, which makes the technique unpractical for consumer applica-
tions.  Xiao et al. [Xiao et al. 2008] presented a semi-automatic image-based ap-
proach to reconstruct 3D façade models from a sequence of photographs. Quan et 
al. present a technique for modeling plants [Quan et al. 2006]. The algorithm re-
quires manual interaction and makes assumptions about the geometry of the re-
constructed object (e.g. leaves). 
 
3 DESIGN 
 
3.1 Algorithm Overview 
 
In order to recover the scene geometry, our system automatically detects and ex-
tracts points of interest such as corners (edges with gradients in multiple direc-
tions) in the input images. The points are matched across views and changes of 
their relative position across multiple images are used to estimate camera parame-
ters and 3D coordinates of the matched points using a Structure from Motion 
technique. The method requires that input images partially overlap. 

 
Feature matching is achieved using an incremental approach starting with a pair or 
images having a large number of matches, but also a large baseline. This is to en-
sure that the 3D coordinates of observed points are well-conditioned. The remain-
ing images are added one at a time ordered by the number of matches [Cheng et 
al. 2011; Snavely et al. 2006]. The Bundle Adjustment technique is subsequently 
applied to refine and improve the solution. 

 



 

The density of the obtained scene geometry is enhanced by exploiting the silhou-
ette information in the input images. The end result of this stage is a dense point 
cloud of the scene to be reconstructed. A 3D surface mesh is obtained by interpo-
lating the 3D point cloud. The surface is then parameterized and a texture map is 
obtained by back projecting the input images and fusing them together using 
graph-cut techniques. Fig. 1 depicts several stages of the reconstruction process. 
 
3.2 Camera Parameter Estimation 

The objective of this stage is to recover the intrinsic and extrinsic parameters of 
each view. This is accomplished in two steps: First, salient features are extracted 
and matched across views. Second, the camera parameters are estimated using 
Structure-from-Motion and Bundle Adjustment techniques. In our system we use 
the SIFT feature detector [Lowe 1999; Lowe 2004]. 
 

 
 

Fig. 1 Stages of the reconstruction process. 
 
Once features have been detected and extracted from the input images, they are 
matched in order to find pairwise correspondences between them. This is achieved 
by using a distance metric to compute the similarity of each feature of a candidate 
image with features of another image. A small distance signifies that the two key 
points are close and thus similar. However, a small distance does not necessarily 
mean that the points represent the same feature. For instance, the corners of win-
dows of a building look similar regardless of whether two photos show the same 
or different parts of the building. In order to accurately match a key point in the 
candidate image, we identify the closest and second closest key point in the refer-
ence image using a nearest neighbor search strategy. If their ratio is below a given 



 

threshold, the key point and the closest matched key point are accepted as corre-
spondences, otherwise the match is rejected [Lowe 1999; Lowe 2004]. 
 
At this stage, we have a set of potentially matching image pairs, and for each pair, 
a set of individual feature correspondences. For each pair of matching images, we 
compute the Fundamental Matrix using the RANSAC algorithm. Erroneous 
matches are eliminated by enforcing epipolar constraints. Scene geometry and the 
motion information of the camera are estimated using the Structure-from-Motion 
technique [Cheng et al. 2011; Snavely et al. 2006; Szeliski 2006], and are further 
refined using Bundle Adjustment. 
 
3.2 Scene Geometry Enhancement 
 
At this stage, we have successfully acquired both the camera parameters and the 
scene geometry. Due to the sparseness of the scene geometry, the surface and tex-
ture reconstruction frequently produce artefacts. Most previous works approached 
this problem by constraining the permissible object types or requiring manual 
hints for the reconstruction process. However, these requirements breach our goal 
of creating an easy-to-use system capable of reconstructing any type of object 
where shape and texture properties are correctly captured by the input photos. 
 
We improve the reconstruction results by exploiting the silhouette information to 
further enrich the density of the point cloud: First, the silhouette information in 
each image is extracted using the Marching Squares algorithm [Lorensen et al. 
1995], which produces a sequence of all contour pixels. To construct a visual hull 
representation of the scene using an immense silhouette contour point set will in-
evitably increase computational costs. In order to avoid this, the silhouette contour 
data is converted into a 2D mesh using a Delaunay triangulation, and the mesh is 
simplified using a mesh decimation algorithm [Melax 1998]. This effectively re-
duces the number of silhouette 
contour points. A point cloud representing the visual hull of the scene is obtained 
using a technique presented by [Matusik et al. 2000].  
 
3.3 Surface Reconstruction 
 
At this stage we have successfully obtained a quasi-dense 3D point cloud, which 
in the next step needs to be approximated by a smooth closed surface (without 
holes) that represents the underlying 3D model from which the point cloud was 
obtained. We tested several surface reconstruction techniques including the power 
crust algorithm [Amenta et al. 2001],  -shapes [Edelsbrunner 1995], and the ball-
pivoting algorithm [Bernardini et al. 1999]. We decided to employ the Poisson 
Surface Reconstruction algorithm [Kazhdan et al. 2006], since it produces a closed 
surface and works well for noisy data. In contrast to many other implicit surface 
fitting methods, which often segment the data into regions for local fitting and 



 

then combine these local approximations using blending functions, Poisson sur-
face reconstruction processes all the sample points at once, without resorting to 
spatial segmentation or blending [Kazhdan et al. 2006]. 
 
 
 
3.3 Texture Reconstruction 
 
A high-resolution texture for the reconstructed 3D object is obtained by parame-
terizing the 2D mesh and computing a texture map. 
 
a) Surface Parameterization: We tested surface parameterization algorithms pro-
vided by existing libraries and tools, such as Blender. We found that they required 
manual hints, only worked for objects homeomorphic to a sphere, or created a sur-
face parameterization using many disconnected patches. The latter result is unde-
sirable since it creates visible seams in the reconstructed texture, and since 
it makes post-processing steps, such as mesh reduction, more difficult. 
 
In order to use the resulting 3D models in a large variety of applications and pro-
fessional production pipelines, we need a texture map which consists of a small 
number of patches, which ideally correspond to geometric features (which can be 
maintained in a post-processing step such as mesh reduction). The Feature-based 
Surface Parameterization technique by Zhang et al. fulfils these criteria [Zhang et 
al. 2005]. The algorithm consists of three stages: 
 
1. Genus reduction: In order to identify non-zero genus surfaces, a surface-based 
Reeb graph [Reeb 1946] induced by the average geodesic distance [Hilaga et al. 
2001] is constructed. Cycles in the graph signify the existence of handles/holes in 
the surface, i.e., the surface is not homeomorphic to a sphere. Examples are donut 
and teacup shaped objects. The genus of the surface is reduced by cutting the sur-
face along the cycles of the graph. The process is repeated until there are no more 
cycles.  
 
2. Feature identification: Tips of surface protrusions are identified as leaves of 
the Reeb graph. The features are separated from the rest of the surface by con-
structing a closed curve. 
 
3. Patch creation: The previous two steps segment the surface into patches which 
are homeomorphic to a disk. Patches are “unwrapped” using discrete conformal 
mappings [Eck et al. 1995]. The algorithm first positions the texture coordinates of 
the boundary vertices, and then finds the texture coordinates of the interior verti-
ces by solving a closed form system. Distortions are reduced by using a post-
processing step, which optimizes the position of interior vertices’ texture coordi-
nates by first computing an initial harmonic parameterization [Floater 1997] and 
then applying a patch optimization technique [Sander et al. 2002]. 
 



 

The image on the left of Fig. 2 illustrates the resulting parameterization of our 
Rooster model. Each disk in the 2D texture map corresponds to a surface segment 
of the 3d model. 
  
b) Texture Generation: The texture map for the parameterized surface is computed 
in three steps: 
 

        
 

Fig. 2 The Rooster model: The segmented 3D model and the corresponding texture atlas    

(left) and the reconstructed texture obtained by projecting and fusing input photographs 

(right). 
 
1. Identify regions of input images: The objective of this step is to compute for 
each patch of the texture map (the disks in the second image from the left in Fig. 
2) pixel colors, which accurately represent the surface colors of the 3D object at 
the corresponding points. This is achieved by projecting the corresponding surface 
patch, one triangle at a time, onto all input images where it is visible. We call the 
resulting section of the input image the back projection map and we call the result-
ing mapping between surface triangles and input image regions the back-
projection mapping. The projection is only performed if the angle between a trian-
gle’s normal and the ray shooting from the triangle’s centroid to the estimated 
camera position of the input image is larger than 90O. 
 
2. Texture map computation: The image regions defined by the back projection 
map define the color information for the corresponding patch of the texture map. 
Using back projection mapping and the surface parameterization we can compute 
for each triangle of the surface mesh a mapping from the input image to the tex-
ture’s parameter space. The algorithm is repeated for all patches of the recon-
structed surface texture region and yields a set of overlapping textures covering 
the object. 
 
3. Minimize seams between overlapping textures: Seams between overlapping 
textures are minimized by using a graph cut algorithm [Kwatra et al. 2003]. We 
investigated different parameters settings for image fusion applications and found 
that Kwatra et al.’s cost function (gradient weighted color distance) in combina-
tion with the RGB color space and the L2 norm works well for most applications 
[Clark et al. 2012]. 
 



 

The rightmost image in Fig. 2 shows the texture map obtained by back projection 
surface patches onto the input images and the resulting textured 3D model. Re-
gions where no texture information was recovered are indicated in red. A typical 
reason is that users forget to make photos of the underside of the imaged object. In 
this case the Poisson surface reconstruction will still create a smooth surface inter-
polating the gaps in the point cloud, but no texture is available since that part of 
the surface is not shown on any input image. Fig. 3 illustrates the level of detail 
obtainable with our texture reconstruction process.  
 

 
 

Fig. 3 Texture reconstruction by computing vertex colors and interpolating them (left) and 

the texture obtained using our approach (right). Note that both images show the neck sec-

tion of the rooster in Fig. 2. The cracks in the image on the right reflect accurately the ap-

pearance of the object’s material. 

 
4 RESULTS 
 
We tested our image-based modeling system using more than 40 data sets of both 
indoor and outdoor scenes, and of objects of different scale. Our system produces 
qualitatively good results for both uniformly colored and feature-poor objects, and 
for objects with concave regions and moderately complex geometries. The size of 
our test datasets varied from as few as 6 images to hundreds of images. All input 
images were acquired with a simple consumer-level handheld camera, including a 
Smartphone camera. The average computation time varies between 12 minutes to 
10 hours. Our system fails for objects which have viewpoint dependent surface 
appearance, e.g., refractive and reflective materials within complex environments. 
The following paragraphs present three examples of our results. 
 
4.1 Horse Model 
 
The dataset consists of 37 images of a wooden horse model. The images were ac-
quired outdoors on a sunny day and have a resolution of 2592 x 1944 pixels. Three 
of the images are shown on the left of Fig. 4. The original object has a very 
smooth, reflective and shiny surface with few distinctive visual features. The re-
sulting reconstructed model, shown on the right of Fig. 4, is of excellent quality 
and bears a high resemblance to the original object. The resulting model consists 



 

of 329,275 polygons and requires approximately 5 hours and 12 minutes on an In-
tel Quad Core i7 with 6GB RAM. 
 

         
 

Fig. 4 Three out of 37 input images of the horse model data set (left) and the resulting recon-

structed 3D model (right). 
 
4.2 Miniature House Model 
 
This dataset consists of 27 images of a replica of the famous house in Alfred 
Hitchcock’s movie “Psycho”. The images have a resolution of 2592 x 1944 pixels 
and were acquired with a consumer-level SONY DSCW18 camera under complex 
lighting condition (multiple spotlights and diffuse lights). The model’s surface has 
a complex shape with many small features and holes. 
 
The resulting reconstructed object (right hand side of Fig. 5) consists of 208,186 
polygons and has an acceptable visual quality. The detailed fence-like structure on 
top of the roof and the tree leaves could not be accurately reconstructed since they 
were too blurry in the input images. Hence neither the shape-from correspondence 
approach, nor the shape-from-silhouette approach could create a sufficiently high 
number of points for capturing the 3D geometry. The computation time of this da-
ta set was 4 hours 21 minutes on an Intel Quad Core i7 with 6GB RAM 
 

 
 
Fig. 5 One of 27 input images of a miniature house model (left) and the resulting reconstruct-

ed 3D model (right). 



 

4.3 Elephant Model 

 
The elephant model consists of 21 images as illustrated on the left of Fig. 6. The 
images have a resolution of 2592 x 1944 pixels and were acquired with a consum-
er-level SONY DSCW180 camera in an indoor environment with relatively low 
light setting. The object has a complex surface geometry with many bumps and 
wrinkles, but few distinctive textural features. The resulting 3D reconstruction, 
shown on the right of Fig. 6, has 198,857 faces and is of very good quality. The 
texture and surface geometry of the object contain surprisingly accurate surface 
details. This example illustrates that our system performs well for objects with 
dark, rough surfaces and under relatively poor lighting conditions with large illu-
mination variations and shadowing. The reconstruction process took almost 3 
hours to complete on an Intel Quad Core i7 with 6GB RAM. 

  

 
 

Fig. 6 Two out of 21 input images of the elephant model data set (top) and the resulting 3D 

reconstruction (bottom). 
 
5 CONCLUSIONS AND FUTURE WORK 
 
We have described a novel image-based modelling system creating high quality 
3D models fully automatically from a moderate number (20-40) of camera images. 
Input images are unconstrained and uncalibrated, which makes the system espe-
cially useful for low-cost and miniature mobile robots. In contrast to laser scan-
ners our system also works for shiny and dark objects. The system still has some 
drawbacks which need to be addressed in future research. Missing regions in the 



 

texture map occur if the input images do not cover the entire object. We are cur-
rently working on texture inpainting techniques to fill these regions [Bertalmio et 
al. 2000; Perez et al. 2003].  
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