
Fast Spatially Controllable Multi-Dimensional
Exemplar-Based Texture Synthesis and Morphing

Felix Manke and Burkhard Wünsche

University of Auckland, Dept. of Computer Science, Graphics Group, Private Bag 92019,
Auckland, New Zealand

fman020@aucklanduni.ac.nz, burkhard@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/˜burkhard

Abstract. Texture synthesis and morphing are important techniques for effi-
ciently creating realistic textures used in scientific and entertainment applications.
In this paper we present a novel fast algorithm for multi-dimensional texture syn-
thesis and morphing that is especially suitable for parallel architectures such as
GPUs or direct volume rendering (DVR) hardware. Our proposed solution gen-
eralizes the synthesis process to support higher than three-dimensional synthesis
and morphing.
We introduce several improvements to previous 2D synthesis algorithms, such as
new appearance space attributes and an improved jitter function. We then mod-
ify the synthesis algorithm to use it for texture morphing which can be applied
to arbitrary many 2D input textures and can be spatially controlled using weight
maps. Our results suggest that the algorithm produces higher quality textures than
alternative algorithms with similar speed. Compared to higher quality texture syn-
thesis algorithms, our solution is considerably faster and allows the synthesis of
additional channels, such as transparencies and displacement maps, without af-
fecting the running time of the synthesis at all. The method is easily extended to
allow fast 3D synthesis and we show several novel examples and applications for
morphed solid 3D textures.
Overall the presented technique provides an excellent trade-off between speed
and quality, is highly flexible, allows the use of arbitrary channels, can be ex-
tended to arbitrary dimensions, is suitable for a GPU-implementation, and can be
effectively integrated into rendering frameworks such as DVR tools.

1 Introduction

Texture mapping is one of the most important techniques for increasing the realism of
a 3D scene by providing fine surface details. Exemplar-based 2D texture synthesis is
a powerful tool to generate large textures from a single input example. Texture mor-
phing as an extension creates coherent transitions between entirely different materials
with a quality and flexibility that cannot be achieved using simple blending techniques.
The applications of texture morphing are manifold and include terrain rendering, scien-
tific visualization, the creation of transitions in animal fur and between biomedical or
geological materials, and the simulation of aging processes.

3D solid textures have the advantage that, in contrast to 2D textures, objects can be
”carved” out of a 3D material resulting in more realistic results. Since the acquisition of

3D textures is difficult, the synthesis and morphing of solid textures from 2D exemplars
is very important. However, the task is extremely challenging and usually requires long
computation times.

In this paper, we present a new fast algorithm for exemplar-based 2D texture mor-
phing and higher-dimensional texture synthesis and morphing. After presenting the
method for generating morphed 2D textures from 2D exemplars, we extend the algo-
rithm to support 3D solid texture synthesis and morphing from the 2D input. A gen-
eralization to higher-dimensional texture morphing is followed by an evaluation of our
method and comparison with Kopf et al.’s algorithm [10].

Our texture morphing algorithm is based on Lefebvre and Hoppe’s pixel-based tex-
ture synthesis algorithm [13], a real-time approach implemented on the GPU by utiliz-
ing the parallel synthesis scheme proposed by L. Wei [26]. In a second publication the
authors introduce the appearance space, a high-dimensional space that carries much
more information per pixel than only color [14]. Its information richness allows us to
perform a very robust texture morphing between exemplars of different nature.

Because of the close relationship we will give a brief summary of the original syn-
thesis algorithm for only one input exemplar in section 3. We then discuss our exten-
sions for texture morphing of arbitrary many input exemplars in 2D (section 4), 3D
(section 5), and higher dimensions (section 6). In section 7 we discuss our results and
conclude with an outlook on future research in section 8.

2 Related Work

Texture synthesis and texture morphing are closely related fields in which numerous
different algorithms have been proposed. Procedural techniques for both 2D and 3D tex-
ture synthesis [19, 24, 28, 29] proofed to be hard to control and, compared to exemplar-
based methods, limited in the variety of materials that can be modeled. Parametric
exemplar-based methods, as proposed in [7, 3, 20, 2], rely on models of global statis-
tical properties which serve as constraint function while matching statistics of the input
and target texture. Though extensions for 3D synthesis have been made [7, 4], para-
metric models are usually only successful in synthesizing homogeneous and stochastic
exemplars. Mixing properties of different textures is possible, but for texture morph-
ing not enough spatial control is offered. Patch-based methods paste random patches of
the exemplar into the output texture and optimize the transitions between overlapping
patches [21, 5, 12]. While these methods could probably be extended to use 3D texture
patches as input, there is no straightforward way to generate 3D textures from 2D input
patches. In fact, we believe it is questionable whether such techniques can be used to
create texture morphing of acceptable quality at all (though Kwatra et al. placed flower
textures onto a grass texture and optimized the grass seams [12]).

In contrast, by processing one pixel at a time pixel-based methods [6, 27, 1, 13] of-
fer a control that is fine enough to allow high-quality texture synthesis and morphing in
2D, 3D, and even higher dimensions. A successful 3D synthesis has been shown by L.
Wei [25, 26]. Finally, optimization-based approaches use the local similarity measures
of pixel neighborhoods to define a global texture energy function that is minimized [11].
Recently, Kopf et al. demonstrated that energy-based methods can be used for 3D syn-

thesis [10], though the synthesis times of up to 90 minutes are rather slow and a GPU
implementation is non-trivial. Another specialized solution for synthesizing 3D com-
posite materials based on stereology theories (the analysis of 2D cross-sections of 3D
volumes) has been proposed by Jagnow et al. [9].

Algorithms specifically for 2D texture morphing have also been developed. L. Wei
used his pixel-based method to create transitions between two exemplars [26]. How-
ever, the synthesis quality within the transition area decreased significantly. Liu et al.
proposed a pattern-based approach that uses ideas of image morphing in order to gen-
erate metamorphosis sequences [15]. Both Zhang et al. and Tonietto and Walter used
texton maps to support a pixel-based texture morphing [30, 23]. Unfortunately, all three
publications show results only for very similar input exemplars, which makes it diffi-
cult to assess the quality of the approaches. Matusik et al. utilized a simplical complex
model to build a neighborhood graph of input exemplars [18]. Though examples with
several input textures are given, the approach relies on a texture database and is ex-
plicitly designed for similar textures only. To our knowledge, texture morphing in three
dimensions using exemplars of very different irregularly textured materials has not been
shown by anyone before.

3 Lefebvre and Hoppe’s 2D Texture Synthesis

As most pixel-based methods, the algorithm proposed in [13, 14] performs an iterative
optimization to minimize the difference of the synthesis result to the original exem-
plar, where the distance is measured using the sum of squared differences (SSD) of
local neighborhoods. A standard multi-resolution approach is pursued by computing a
Gaussian pyramid E of the exemplar and creating an “empty” pyramid S for the syn-
thesis result. The synthesis is performed from the coarsest to the finest resolution, first
establishing low frequencies and then defining the fine details.

A key difference of the algorithm to other methods is that S does not store image
colors, but pixel coordinates into the exemplar E, which facilitates a GPU implementa-
tion. To pass the synthesis result of a coarse level Si−1 to a finer level Si an upsampling
of the coordinates is performed that distributes the value of Si−1(P) (that is, a coordi-
nate into Ei) to four child pixels in Si. In the correction phase, the synthesis error is
minimized by searching the pixel coordinate Q with the best-matching local neighbor-
hood NEi(Q) in the exemplar for the neighborhood NSi(P) around Si(P). The correction
phase is accelerated using sub-passes, each of which optimizes only selected pixels, and
k-coherence search [22] based on pre-computed candidate sets.

The texture synthesis can greatly benefit from using an appearance space [14],
where pixels encode texture characteristics in addition to color. The high-dimensional
appearance vectors are projected into a low-dimensional space defined by the first n
principal components obtained from a principal component analysis (PCA). In tests we
found that usually more than 95% of the total variance of an exemplar is explained by
the first 8 components.

4 Our 2D Texture Morphing Algorithm

When dealing with texture morphing we have to synthesize a texture based on several
input exemplars. The result should reflect the nature of all exemplars, though the in-
fluence of each input can vary spatially. To control the spatial influence of each of the
m exemplars, we use scalar weight maps of the size of the synthesized texture S. Each
weight map W j encodes the weight of the exemplar E j per position P ∈ S. To ensure
a correct morphing, we normalize the weight maps so that ∑

m
j=1 W j(P) = 1. Note that,

when specifying only one input exemplar, our algorithm behaves like a standard texture
synthesis algorithm.

In the following, we will present the extensions we made for every single step of the
original synthesis algorithm. Because the coordinate upsampling remains unchanged
and is performed on each S j

i individually, we do not include it in the discussion. Note
that the modifications necessary for texture morphing still allow an implementation on
parallel architectures.

4.1 Initialization

The initialization of the exemplars themselves remains unchanged, because they are
independent from each other. For every weight map W j that is associated with each ex-
emplar, we additionally compute a Gaussian pyramid. Because the algorithm is based
on manipulating exemplar coordinates rather than colors (and coordinates cannot be
averaged or merged), we need a separate synthesis pyramid S j for every exemplar. In-
stead of initializing S j

−1 with zero coordinates, we find the following initialization more
intuitive (where se j is the size of E j):

S−1(P) = P mod se j .

This better reflects how the algorithm proceeds, especially when only a few pyramid
levels are used.

4.2 Coordinate Jitter

Similar to the upsampling the coordinate jitter is also independent for each exemplar
and could be carried over unchanged. However, the plot of Lefebvre and Hoppe’s func-
tion Ji(P) for different combinations of H and r (see figure 1 (left)) shows that Ji(P)
always returns zero for randomness r < 0.5. In addition, for r = 1 the probability of
Ji(P) = 0 is twice as high as for Ji(P) = −1 and Ji(P) = 1. We therefore propose the
following equation that behaves more intuitive (see also figure 1 (right)):

Ji(P) =
⌊

j +
(

kx

ky

)⌋
, where

j = H(P) · lerp(0.5,1,ri),

kx|y =
{

lerp(0.5,2/3,ri) if jx|y ≥ 0
1− lerp(0.5,2/3,ri) otherwise,

lerp(a,b, t) = a+ t(b−a).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Value Hash-function H(P)

R
an

do
m

ne
ss

 r

(a) The original Jitter-Function

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Value Hash-function H(P)

R
an

do
m

ne
ss

 r

(b) Our proposed Jitter-Function

Fig. 1. Plots of the result of different jitter functions Ji(P).
Left: The original jitter function proposed in [13]. Right:
Our improved jitter function. Color encoding: Blue =−1,
Magenta = 0, Yellow = 1.

Fig. 2. Several 2D exemplars de-
fine different views of the solid
texture being synthesized. Adopted
from [25].

4.3 Correction Phase

In the correction phase the best-matching pixel for a synthesis pixel P is searched in the
exemplar. However, now Si(P) must represent all input exemplars, weighted according
to the weights W j

i (P). For the original 2D synthesis algorithm the neighborhood of P in
the synthesis level Si can be defined as the set:

NSi(P) = {Ei(Q) | Q = Si(P+∆N)}, ∆N ∈N , (1)

where ∆N takes the values of offset vectors from the neighborhood’s center to all pixels
in the neighborhood as defined by the set N of all offsets:

N = {δ | (P+δ) ∈ N(P)}.

For the texture morphing of multiple exemplars, we extend the neighborhood gath-
ering as follows:

NSi(P) = {C(i,P+∆N)}, ∆N ∈N , (2)

C(i,X) =
m

∑
j=1

W j
i (X) ·E j

i (Q), Q = S j
i (X).

C(i,X) is the synthesized color in level i at location X and is‘ the weighted average of
all exemplar levels. Given the synthesis neighborhood NSi(P) the best-matching pixel
is searched for in each of the exemplars E j

i and S j
i (P) where NSi(P) is the same for all

m synthesis levels S j
i (P):

Si(P) = argmin
Q∈Ei

SSD(NSi(P),NEi(Q)). (3)

5 3D Texture Synthesis and Morphing

In the following, we will discuss how to generate textures with an additional spatial
dimension and how to morph between different materials. As illustrated in figure 2,

several input exemplars are considered as being different views of the solid texture cube
that is to be synthesized [25, 10]. During the synthesis, the algorithm tries to generate
a 3D texture that reflects the characteristics of all views. The close relationship to 2D
texture morphing in terms of the use of multiple exemplars was already mentioned by
L. Wei [25]. To create smooth transitions between entirely different materials within
the solid texture cube, exemplar views need to be specified for each material. For 3D
morphing the weight maps are used as in the 2D morphing to define the spatial influ-
ence of the materials. Our algorithm gives a unified tool for supporting 3D synthesis
or morphing at the same time. It is not always necessary or appropriate to specify all
three exemplars. Sometimes, for example when a material exhibits dominant directional
features, it is better to define only two views [25].

The jitter step is not affected by our modifications, because the coordinates stored
in a synthesis level S j

i (P) are still defined in R2. A minor difference is that the jitter
function Ji(P) and the hash function H(P) now take 3D coordinates as input argument.

5.1 Initialization

In contrast to the 2D morphing, the synthesis pyramids S j and the weight maps W j are
solid texture cubes. In S j each voxel stores a 2D coordinate into the corresponding ex-
emplar E j. Because E j represents only one particular view onto the solid target texture,
the initialization of S j

−1 is modified in the following way:

S j
−1(P) = Pu,v mod se j ,

where u and v denote the two components of P ∈R3 to which E j is parallel.

5.2 Coordinate Upsampling

The coordinate upsampling cannot simply be extended by an additional dimension, be-
cause the synthesis pyramids still store 2D coordinates. Thus, we apply the 2D upsam-
pling for every second slice that is oriented parallel to the exemplar view and duplicate
the result for each subsequent slice:

S j
i (2 ·Pu,v|w +∆u,v) = S j

i (2 ·Pu,v|(w+1) +∆u,v) = (4)
(2 ·Si−1(P)+∆U) mod Se j ,

where w is even (w mod 2 = 0) and depicts the component of P that is orthogonal to
the view. ∆u,v describes a 3D vector with the same value in the u- and v-component as
∆U and w = 0.

5.3 Correction Phase

When performing neighborhood-matching during the correction we have to compare
neighborhoods around voxels in a 3D synthesis pyramid with neighborhoods of pixels
of a 2D input exemplar. We exploit that the exemplars are oriented orthogonally to

one of the principal axes of the solid cube that is synthesized. Since each exemplar
represents only the view in this direction, the synthesis pyramid for an exemplar only
needs to reflect the exemplar in that direction. Thus, we can align the 2D neighborhoods
NSi(P) to stand parallel to the exemplar, as it has also been proposed in [25, 10].

In consequence, we need to introduce several synthesis neighborhoods NSi|u,v(P),
one for each possible orientation of exemplars. Note that, as in the 2D morphing algo-
rithm, NSi|u,v(P) is a merged neighborhood that needs to represent all exemplars. Our
definition in equation 2 is also valid for the 3D synthesis, except that P ∈ S j

i is now
defined in R3. We therefore modify the definition to support oriented neighborhood
gathering in 3D solid textures:

NSi|u,v(P) = {C(i,P+∆N|u,v)}, ∆N|u,v ∈Nu,v, (5)

where ∆N|u,v gives the neighborhood offsets parallel to the current view (the w-component
of ∆N|u,v is set to 0). Notice the similarity to the upsampling step, which also depends
on the view’s orientation.

Interleaved correction for an improved convergence using sub-passes is still possible
in 3D synthesis and morphing. However, because of the additional dimension we now
have to define eight sub-passes as a pattern in a 23 cube.

5.4 A New Neighborhood

As discussed in section 3, the synthesis in the reduced appearance space makes it pos-
sible to use a very compact neighborhood consisting of only 4 corner pixels. However,
3D texture synthesis is a much more challenging problem. The algorithm generally has
to deal with little information that is available for generating a solid texture from the
2D exemplars. We found that the reduced neighborhood is not capable of preserving the
features of the input exemplars. Much better results can be achieved using a full 5×5
or even 7×7 neighborhood — of course at the expense of speed.

In order to improve the synthesis while keeping the computation time low we pro-
pose a new “half-reduced” neighborhood. The layout is shown in figure 3 (top). We still
average several pixel values to compute the values for the individual neighborhood val-
ues (shown on the bottom of the figure). Note that the new neighborhood, consisting of 9
points, is a superset of the neighborhood proposed in [14]. Figure 4 shows a comparison
of the results using different neighborhoods for 3D synthesis. Our new neighborhood is
much better capable of preserving feature coherence than the original four-pixel neigh-
borhood, which fails to produce acceptable results. The new neighborhood can also be
used for 2D texture synthesis and morphing. We found that 2D morphing results are
improved significantly for exemplars with large semantic features [16].

5.5 Synthesis and Morphing of Additional Channels

The synthesis and morphing based on texture coordinates makes it possible to restore
the exact location in the original exemplar for each pixel in the synthesized texture.

Fig. 3. Pixels used in our
half-reduced neighborhood
(top) and pixels for comput-
ing averaged values of the
neighborhood (bottom).

Fig. 4. Comparison of different neighborhoods used during the cor-
rection phase of the 3D texture synthesis. First column: Reduced
four-pixel neighborhood. Second column: Full 5×5 neighborhood
consisting of 25 pixels. Third column: Our new half-reduced neigh-
borhood consisting of 9 pixels.

Instead of a color image, the result of the synthesis is a map of texture coordinates that
is used to sample the exemplars and output the final image.

Using this map of texture coordinates, we are able to sample arbitrary input images,
and not only the color exemplar. Hence, additional channels — like alpha channels,
displacement maps, specularity maps, etc. — can be synthesized without affecting the
performance of the synthesis/morphing at all. This is an advantage over other methods
that do not keep track of the original pixel locations in the input exemplars.

6 Higher-dimensional Texture Synthesis

Our algorithm can theoretically be extended to support texture synthesis and morph-
ing in arbitrary dimensions using also higher-dimensional input exemplars. Though it
might already be hard to define what 4D texture morphing exactly means, a possible ap-
plication could be the synthesis of material properties that change spatially over time,
for example aging wood or rusted metal.

The idea for higher-dimensional synthesis generalizes the modifications we made
in the previous section. For a target dimension N and M-dimensional exemplars, each
exemplar defines a view onto an M-dimensional “face” of the synthesis texture, the
N−M remaining dimensions are not specified by this view.

The initialization of S−1 can be defined as S−1(P) = Px1,···,xM modse j . Similarly, the
coordinate upsampling needs to repeat the upsampled coordinates for N−M ”slices”.
The extensions of the jitter function to M dimensions are trivial. For optimizing the syn-

thesis during the correction phase the neighborhoods NSi|x1,···,xm need to be aligned with
the exemplar’s orientation, which can be achieved by defining the offsets in Nx1,···,xm ac-
cording to an M-dimensional neighborhood. An interleaved correction scheme would
specify a sub-pass pattern in a 2N-dimensional cube.

7 Results

We implemented our algorithm using C++ and execute it on the CPU in order to facili-
tate experimentation and integration into existing biomedical visualization software. As
exemplars we used 64×64 or 128×128 pixel textures. For the 2D morphing, the target
size is 512×512. Our generated solid textures have 1283 or 2563 voxels. We used the
appearance space attributes discussed in section 3 and projected the 150-dimensional
vectors onto the first eight components using the PCA implementation from [8]. Several
new appearance space attributes such as neighborhood variance and principal direction
of texture features were extensively tested. We found that RGB color, signed feature
distance, and gradient estimates are best with respect to visual quality and computa-
tional cost [16]. We performed two full correction passes per synthesis level. We used
the reduced or our half-reduced neighborhood for the 2D outputs, and the half-reduced
or a full 5×5 neighborhood for 3D synthesis and morphing.

Figure 5 shows some of our 2D morphing results with two exemplars to demonstrate
how the transition between structures is generated. Note how the algorithm gradually
defines a coherent transition of features and morphs between them, even if the exem-
plars are extremely different. Morphing examples with several exemplars and complex
weight maps are shown in figure 6.

Examples of our 3D synthesis, including one with an additional channel for dis-
placement mapping, are given in figures 7 and 8. As can be seen, the generated 3D
solid textures coherently reflect the characteristics of the materials. However, a smooth-
ing of the fine details can be observed — a problem that is common in solid texture
synthesis algorithms (compare for example to [26, 10]).

The charts in figure 9 illustrate how our algorithm performs using the settings stated
above, executed using one core of a 2.13 GHz Intel R© Core

TM
2 Duo CPU with 2 GB

RAM. The 2D morphing using two exemplars and a reduced neighborhood takes less
than 12 seconds on average. With our half-reduced neighborhood the timings are still
below 17 seconds. Our examples with three and four exemplars needed less than 18 and
25 seconds respectively for the morphing with a reduced neighborhood.

For 3D synthesis, even with a full 7×7 neighborhood (which we never use in prac-
tice) our algorithm needs no more than 15 minutes to synthesize a 1283 solid texture
cube, and 3D morphing with twice as many exemplar views takes less than 30 minutes.
The half-reduced neighborhood performs with little more than 5 minutes for 3D syn-
thesis and about 12 minutes for 3D morphing very fast while producing high-quality
results. For morphing solid textures with a resolution of 2563 voxels, our algorithm
needs between 110 minutes (half-reduced neighborhood) and 140 minutes (full 5×5
neighborhood). Note that doubling the target resolution leads to eight times as many
voxels in the solid cube. With an implementation on the GPU we expect a significant
performance boost, possibly by several orders of magnitude.

Fig. 5. 2D morphing results using two input exemplars and linear weight maps. The examples
illustrate how the morphing algorithm finds coherent transitions between the features.

Fig. 6. 2D morphing results using three and four input exemplars and complex weight maps.
Note that the weight maps are normalized and actually of the same size as the synthesized target
texture.

Fig. 7. 3D texture synthesis results. The generated solid textures have been used to render dif-
ferent 3D geometries. Bottom-right: Intensity values used as additional channel for displacement
mapping.

Fig. 8. 3D morphing results using two exemplars and linear weight maps. The last two examples
use a morphed texture of size 2563.

2D Morphing Performance

0
5

10
15
20
25
30
35
40
45

Reduced HalfReduced Full5x5 Full7x7
Synthesis Neighborhood

D
ur

at
io

n
[s

ec
on

ds
]

Exemplars 64x64 / 64x64

Exemplars 64x64 / 128x128

Exemplars 128x128 / 128x128

3D Synthesis Performance

0
100
200
300
400
500
600
700
800
900

Reduced HalfReduced Full5x5 Full7x7
Synthesis Neighborhood

D
ur

at
io

n
[s

ec
on

ds
]

Exemplar 64x64
Exemplar 128x128

3D Morphing Performance

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Reduced HalfReduced Full5x5 Full7x7
Synthesis Neighborhood

D
ur

at
io

n
[s

ec
on

ds
]

Exemplars 64x64 / 64x64

Exemplars 64x64 / 128x128

Exemplars 128x128 / 128x128

Fig. 9. Performance charts for our algorithm with different neighborhoods (without initialization
times). Left: 2D texture morphing with two exemplars; Middle: 3D texture synthesis with one
exemplar; Right: 3D texture morphing with two exemplars. The target texture size for the 2D
tests was 512×512 and for the 3D tests 1283.

Our algorithm has some limitations. As most pixel-based approaches the algorithm
has difficulties to synthesize or morph textures with large features or where the features
have a semantic meaning to humans. Problems also occur with near stochastic textures
such as clouds and slightly crumbled paper. Textures with features of very different
scale represent a particular problem for the morphing, because no common structures
can be found that could be morphed into each other. Currently, we are working on
texture morphing supported by frequency-dependent feature scaling (FDFS), a spatially
varying exemplar scaling based on the dominant frequency of the textures. Depending
on the frequencies of the exemplars and their weights W j(P) we compute a scaling
factor s(P) for each exemplar in order to locally match the feature sizes to each other.

7.1 Texture-enhanced Direct Volume Rendering

To further demonstrate the flexibility of the proposed morphing algorithm, we present
examples of a new methodology termed texture-enhanced DVR [17]. In traditional DVR
features of interest in a data set are classified by transfer functions (TF) that map data
values to colors and opacities. Texture-enhanced DVR enriches this pipeline by support-
ing textures for encoding materials and conveying additional information. A new type
of TF, called texture transfer function, maps from data values to weighting curves for
the input textures, and therewith provides the weights for a subsequent 3D texture mor-
phing step, which coherently morphs materials in transition zones. Figure 10 shows two
examples of texture-enhanced DVR. On the left we show how to exploit the synthesis
of additional channels (section 5.5) for screen-door transparency effects, the example
on the right illustrates the use of texture morphing on a single layer.

7.2 Comparison with Kopf et al.’s Algorithm

In figure 11, we compare the synthesis quality of our proposed algorithm with results of
the algorithm based on energy minimization recently presented by [10]. Disregarding
the different illumination settings, the results for the first two exemplars (”woodwall”
and ”animalskin”) appear to be of very similar quality. Our result for the ”woodwall”
texture seems to have more structure than Kopf et al.’s result, which looks rather smooth.
Although our result for ”animalskin” shows more variance in the size of the features, it

Fig. 10. Texture-enhanced Direct Volume Rendering uses textures to encode different materi-
als and convey additional information. Left: Screen-door transparency effects; Right: Encoding
imaginary materials using textures.

better reflects the structures within the blue spots. On the other hand, the boundaries be-
tween texture features look sharper in Kopf et al.’s solid texture, which can also be seen
in the right hand image, where features (the tomatoes) are more distinct and the green
leaves are not suppressed as much. However, our technique is significantly faster. In-
cluding the initialization, we need about 6 minutes when using the half-reduced neigh-
borhood and less than 9 minutes using the full 5×5 neighborhood. In contrast, Kopf
et al. reported up to 90 minutes required for the synthesis. Another advantage of our
method is that additional channels can be synthesized without affecting the running
time of the synthesis at all. In contrast, the cost of Kopf et al.’s method directly depends
on the number of channels in the exemplar. Furthermore, Kopf et al.’s algorithm does
not allow a straightforward implementation on the GPU, because a continuous update
of the histogram is required.

8 Conclusion and Future Work

We presented a new and fast exemplar-based texture morphing algorithm for two, three
and theoretically also higher dimensions as an extension of the pure 2D synthesis al-
gorithm proposed in [13, 14]. Because our modifications obey the design principles of
the original algorithm, our new contribution still allows an implementation on paral-
lel stream-processing hardware. Even without hardware acceleration our current CPU-
based implementation is already faster than comparable 3D synthesis methods.

The steps of the original algorithm have been generalized to support morphing
with arbitrary many exemplars and higher-dimensional synthesis. A more intuitive jit-
ter function and a new compact neighborhood suitable for fast 3D synthesis have been
introduced and its performance evaluated.

In the future we want to further improve the synthesis quality. Spatially varying
scaling based on the dominant frequency of the exemplars could support the morphing

Fig. 11. Comparison of our 3D texture synthesis (top row) using the half-reduced neighborhood
(left, right) and a full 5×5 neighborhood (center) with Kopf et al.’s (bottom row) algorithm
using the same input exemplars and target resolution (from http://www.johanneskopf.de/
publications/solid/results/index.html.)

to create better transitions between exemplars with structures of very different scale.
Another interesting feature is the synthesis and morphing along time-varying vector
and tensor fields.

References

1. ASHIKHMIN, M. Synthesizing natural textures. In Proceedings of I3D ’01 (2001), ACM
Press, pp. 217–226.

2. BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., AND WERMAN, M. Texture mixing
and texture movie synthesis using statistical learning. IEEE Transactions on Visualization
and Computer Graphics 7, 2 (2001), 120–135.

3. DE BONET, J. S. Multiresolution sampling procedure for analysis and synthesis of texture
images. In Proceedings of SIGGRAPH ’97 (1997), ACM Press, pp. 361–368.

4. DISCHLER, J.-M., GHAZANFARPOUR, D., AND FREYDIER, R. Anisotropic solid texture
synthesis using orthogonal 2d views. Computer Graphics Forum 17, 3 (1998), 87–95.

5. EFROS, A. A., AND FREEMAN, W. T. Image quilting for texture synthesis and transfer. In
Proceedings of SIGGRAPH ’01 (2001), ACM Press, pp. 341–346.

6. EFROS, A. A., AND LEUNG, T. K. Texture synthesis by non-parametric sampling. In
Proceedings of ICCV ’99 (1999), IEEE Computer Society, pp. 1033–1038.

7. HEEGER, D. J., AND BERGEN, J. R. Pyramid-based texture analysis/synthesis. In Proceed-
ings of SIGGRAPH ’95 (1995), ACM Press, pp. 229–238.

8. INTEL R© CORPORATION. Open Source Computer Vision Library. URL: http://
sourceforge.net/projects/opencvlibrary/ [checked: 07/24/2009].

9. JAGNOW, R., DORSEY, J., AND RUSHMEIER, H. Stereological techniques for solid textures.
ACM Transactions on Graphics (Proceedings of SIGGRAPH ’04) 23, 3 (2004), 329–335.

10. KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHINSKI, D., AND WONG, T.-
T. Solid texture synthesis from 2d exemplars. ACM Transactions on Graphics (Proceedings
of SIGGRAPH ’07) 26, 3 (2007), (2.1)–(2.9).

11. KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. Texture optimization for example-
based synthesis. ACM Transactions on Graphics (SIGGRAPH ’05) 24, 3 (2005), 795–802.

12. KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. Graphcut textures:
image and video synthesis using graph cuts. ACM Transactions on Graphics (Proceedings
of SIGGRAPH ’03) 22, 3 (2003), 277–286.

13. LEFEBVRE, S., AND HOPPE, H. Parallel controllable texture synthesis. ACM Transactions
on Graphics (Proceedings of SIGGRAPH ’05) 24, 3 (2005), 777–786.

14. LEFEBVRE, S., AND HOPPE, H. Appearance-space texture synthesis. ACM Transactions
on Graphics (Proceedings of SIGGRAPH ’06) 25, 3 (2006), 541–548.

15. LIU, Z., LIU, C., SHUM, H.-Y., AND YU, Y. Pattern-based texture metamorphosis. In
Proceedings of Pacific Graphics ’02 (2002), IEEE Computer Society, p. 184.

16. MANKE, F. Texture-enhanced direct volume rendering, July 2008. MSc thesis, Dept. of
Computer Science, University of Auckland, New Zealand.

17. MANKE, F., AND WÜNSCHE, B. Texture-enhanced direct volume rendering. In Proceedings
of GRAPP ’09 (Lisbon, Portugal, 2009), pp. 185–190.

18. MATUSIK, W., ZWICKER, M., AND DURAND, F. Texture design using a simplicial complex
of morphable textures. ACM Trans. on Graphics (SIGGRAPH ’05) 24, 3 (2005), 787–794.

19. PERLIN, K. An image synthesizer. In Proc. of SIGGRAPH ’85 (1985), ACM Press, pp. 287–
296.

20. PORTILLA, J., AND SIMONCELLI, E. P. A parametric texture model based on joint statistics
of complex wavelet coefficients. Int. Journal of Computer Vision 40, 1 (2000), 49–70.

21. PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. Lapped textures. In Proceedings of SIG-
GRAPH ’00 (2000), ACM Press, pp. 465–470.

22. TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND SHUM, H.-Y. Synthesis of bidi-
rectional texture functions on arbitrary surfaces. In Proceedings of SIGGRAPH ’02 (2002),
ACM Press, pp. 665–672.

23. TONIETTO, L., AND WALTER, M. Texture metamorphosis driven by texton masks. Com-
puters & Graphics 29, 5 (2005), 697–703.

24. TURK, G. Generating textures on arbitrary surfaces using reaction-diffusion. In Proceedings
of SIGGRAPH ’91 (1991), ACM Press, pp. 289–298.

25. WEI, L.-Y. Texture Synthesis by Fixed Neighborhood Searching. PhD thesis, Stanford
University, 2002.

26. WEI, L.-Y. Texture synthesis from multiple sources. In SIGGRAPH ’03: ACM SIGGRAPH
2003 Sketches & Applications (2003), ACM Press, pp. 1–1.

27. WEI, L.-Y., AND LEVOY, M. Fast texture synthesis using tree-structured vector quantiza-
tion. In Proceedings of SIGGRAPH ’00 (2000), ACM Press, pp. 479–488.

28. WITKIN, A., AND KASS, M. Reaction-diffusion textures. SIGGRAPH Computer Graphics
25, 4 (1991), 299–308.

29. WORLEY, S. A cellular texture basis function. In Proceedings of SIGGRAPH ’96 (1996),
ACM Press, pp. 291–294.

30. ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H.-Y. Synthesis of
progressively-variant textures on arbitrary surfaces. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH ’03) 22, 3 (2003), 295–302.

