
SOFTWARE INNOVATION AND ENGINEERING NEW ZEALAND 2007 1

Design Concepts for Flexible Hardware-accelerated
Direct Volume Rendering Frameworks

Felix Manke, Burkhard Wünsche

Abstract—Modern consumer graphics hardware develops at a
rapid pace. At present time, graphics cards allow the visualisation
of complex scenes and very large three-dimensional volumetric
data sets at interactive frame rates. The video game industry
certainly is the major driver of these developments, but research
areas like medicine, science or engineering also play an important
role, as data sets have to be explored interactively.

However, designing flexible and interactive rendering appli-
cations that can easily be extended and customised is still
a challenge, because of both the highly specialised graphics
processing pipeline and the need of maximal performance. In
this paper, we present solutions for the design of rendering
frameworks for visualising volumetric data sets that overcome
many of the restrictions and offer flexibility for developers and
users while maintaining interactive rendering performance.

Index Terms—Hardware-accelerated rendering, direct volume
rendering, GPU programming, rendering framework design.

I. INTRODUCTION

IN many scientific research areas three-dimensional (3D)
discrete data arrays need to be analysed. The amount and

complexity of data from simulations and measurements is
increasing exponentially. Visualization is an essential tool to
analyse and explore this overwhelming amount of data and to
communicate findings to professionals and laymen.

Modern graphics processing units (GPUs) make interactive
visualisations of volume data on consumer hardware possible
without introducing intermediate polygonal representations.
In recent years, the use of programmable graphics hardware
became more and more popular in graphics applications,
because it allows to implement custom “shader” programs
that define how an object is rendered. Even though specialised
high level programming languages simplify the development
of shader programs, GPU programming is still very restricted
and constrained and generally very different to conventional
CPU programming. For the sake of rendering speed, the highly
parallel SIMD stream processing pipeline of GPUs only allows
limited flexibility [1].

In the field of visualisation, new direct volume rendering
(DVR) algorithms have been developed that improve efficiency
and perception [2], [3], [4], [5]. For the purpose of demon-
strating their achievements, the researchers usually implement
specialised renderers which are not flexible enough to inter-
actively explore arbitrary volumetric data. Other publications
discuss more general rendering frameworks, but they are either
restricted to certain types of data [6], [7], not interactive [8] or
rather difficult to use [9]. So far, no framework design has been

Graphics Group, Department of Computer Science, The Univer-
sity of Auckland, New Zealand. E-mail: fman020@ec.auckland.ac.nz,
burkhard@cs.auckland.ac.nz.

Fig. 1. The stages of the DVR process. For multivariate data the pre-
processing and classification are usually more complex than for scalar data.

developed that supports the interactive exploration of arbitrary
volumetric data sets.

In this paper, we discuss the design of an interactive and
flexible framework for GPU-based direct volume rendering.
The aim is to support an easy integration of arbitrary data into
the rendering framework — regardless of its dimensionality
or representation (for example scalar, vector, or tensor data).
Moreover, user-defined visualisations of the internal structures
have to be possible. Here, our main focus is to develop
mechanisms that easily allow the derivation of new values out
of existing data and the combination of data sets. With the
proposed solutions, users can control the entire visualisation
of the data. Conventional tools usually only allow to change
predefined parameters. Generally, as much of the computation
as possible is to be performed on the GPU to benefit from its
enormous computational power.

II. THE DVR PROCESS

Figure 1 illustrates the steps that are performed in direct
volume rendering. At first, input data sets are loaded. When
dealing with multivariate data, meaningful entities often have
to be derived or data sets have to be combined. Note that
conventional visualisation tools usually only support to load
scalar volume data and to derive the gradient vector from it.
In the next step a “transfer function” is evaluated that maps
data values to colours and opacities. Objects in a data set
are differentiated by assigning different colours and opacities,
which happens at exactly this stage. During the rendering,
shading and illumination effects can be applied to achieve a
better perception of the three-dimensional structures. Finally,
the volume is projected onto the image plane and displayed.

III. REQUIREMENTS AND DESIGN OF A FLEXIBLE
RENDERING FRAMEWORK

A. Definition of Requirements
When comparing our research objectives with the DVR

process (figure 1) it becomes clear that flexibility is needed
at each stage of the process:



SOFTWARE INNOVATION AND ENGINEERING NEW ZEALAND 2007 2

Data initialisation stage: It has to be possible to integrate
and load arbitrary volume data sets and file formats. Addi-
tionally, the user must be able to derive whatever entities are
needed and to freely combine different data.

Classification stage: The framework must be flexible
enough to support any classification that is suitable for the
current domain and data set. The design of a transfer function
largely depends on the data values and entities selected as
input. Additionally, a reasonable classification of structures is
only possible with knowledge of the data.

Rendering stage: New DVR algorithms must be integrat-
able into the framework. More importantly, it must be possible
to define and switch between visualisation techniques so that
the user can emphasise different aspects of the data and
improve the visual perception.

B. Framework Extensibility

We can observe that both the integration of new data formats
and DVR algorithms are tasks for developers, since they have
to be done before a user can work with the framework.
Abstract classes are a good choice to allow different imple-
mentations by sub-classing, since thereby the application can
use the abstract data type without the need to know the actual
implementation.

However, during the initialisation of the application, objects
of specific sub-classes must be instantiated. Moreover, state
variables of these objects might have to be initialised according
to user settings. In a naive approach, the developer would
need to write code for creating and initialising objects for
each new sub-class. But clearly, this would lead to many
conditional code branches and, more importantly, would not
be very flexible and straightforward.

We derived a unified scheme that makes extending the
framework as easy as possible. The design is inspired by
reflective programming paradigms that some programming
languages support (for example Java and C# [10], [11]).

Figure 2 illustrates a generic template factory, designed
using the singleton and prototype design patterns. The factory
makes it possible to create new objects of a common base-
class using a unique identifier. Instances of sub-classes of the
base-class can be registered by passing both a prototype object
of this class and an identifier. Whenever a new object of a sub-
class has to be created, the factory clones the corresponding
prototype object. Developers can register new implementations
in a single line of code. Afterwards, a sub-class is instantiable
throughout the application without the need of knowing the
concrete data type.

Fig. 2. Principle of the generic template factory. A clone of a registered
prototype can be obtained by providing a corresponding identifier.

Fig. 3. Scheme of the parameter design pattern. For each property, the object
provides a parameter object that abstracts from the property’s data type using
a unified string representation.

In order to easily initialise objects at start-up, we developed
a unified design for initialising all possible state variables
that are accessible by properties (a pair of a Get... and
a Set... method). Two fundamental problems arise when
dealing with properties of unknown objects (as they may be
present in the framework due to sub-classing by developers):
The properties themselves are unknown (that is, their name or
signature) and their data type may differ.

To be able to initialise the properties of unknown objects we
introduce a design which we call parameter design pattern:
Every property is encapsulated by an object we call parameter.
It hides the data type using a standardised string representa-
tion. During initialisation, the application invokes the Set...
method of the parameter objects and passes a string, which
is then internally converted to the actual data type and the
property is set. The concept is illustrated in figure 3.

With these two concepts, the generic factory and the pa-
rameter design pattern, we are able to automatically instantiate
and initialise new implementations, even if the programming
language does not support reflective programming. Writing
additional code for the initialisation of all possible properties
of a new sub-class is not necessary.

C. Modularisation of the DVR Process

The most important user-specific aspects of the rendering
framework are the specification of data to load, the processing
of the data, and finally the specification of visualisation
techniques and shading effects. To achieve our goal of flex-
ibility, we rely on advanced GPU programming techniques.
To overcome the present restrictions we utilise features of the
high level shading language C for Graphics (Cg) [12]. None
of the other real-time shading languages is powerful enough
to suffice our requirements.

The derivation of new entities is to be done on the GPU in
order to achieve efficiency and to minimise data transfer time.
We call the Cg shader code blocks or modules that implement
this derivation operators. The main inputs of an operator are
volume data sets and the output is a texture object that holds
the derived values.

Note that loaded data is exclusively used by operators and
visualization effects, which both run on the GPU and therefore
will be implemented by the user as Cg shader programs.
Hence, to facilitate a practicable work with the framework, we
keep the specification of resources and the Cg shader definition
at the same location.

Further on, after analysing existing DVR application we
observed that the executed shader code can be separated into



SOFTWARE INNOVATION AND ENGINEERING NEW ZEALAND 2007 3

Fig. 4. The volume rendering module that manages the shader code and
resources.

code that is specific for a particular rendering algorithm (writ-
ten by developers) and code that is specific to a user-defined
rendering effect (written by the user and which might have
to be changed at runtime). To make arbitrary combinations
possible, we separate the two types of code physically and
conceptually.

Figure 4 shows that our framework contains a module that
assembles the Cg code of the DVR algorithm and the user’s
Cg shader code and manages the specified resources (volume
data sets or textures). During the initialisation, the compiled
Cg code is analysed using the Cg Core Runtime API, data sets
are loaded and operators executed.

By making use of interfaces — a well-known concept of
the object-oriented programming paradigm that actually only
Cg provides for GPU programming — the implementation
of visualisation techniques (which we call evaluators) is held
abstract and the user can define as many different evaluators as
desired using several implementations of the abstract interface.
The volume rendering module makes interactive switching
of evaluators possible. Without using interfaces, the entire
shader code would have to be duplicated for every custom
visualisation effect.

D. Components of the Framework

The main components of our rendering framework are
shown in figure 5. Besides the concepts and modules discussed
so far, the framework contains a controller object that controls
the entire program execution (initialisation, rendering and
termination). During the start, a configuration file is parsed. It
contains settings that specify global states of the application.
Further on, a renderer is introduced that renders all graphical
objects and updates the camera according to the user input.

IV. IMPLEMENTATION

To demonstrate the effectiveness and flexibility of our
framework and the discussed concepts, we developed a pro-
totype, implemented in C++ for maximal performance. As
already mentioned, we used Cg as shading language to benefit
from its advanced features. Basic mathematics for 3D graphics
is provided by Graphics 3D [13] which has the additional
advantage that it wraps the OpenGL 3D-API and provides an
object-oriented rendering framework. Further on, the Extensi-
ble Markup Language (XML) is used to specify the settings of
the application. A simple and minimalist open-source library,
TinyXml [14], is used to load and parse the XML files.

V. RESULTS

In three case studies we show how to define resources,
operators and evaluators. At first, we used a scalar Computed
Tomography (CT) scan of the head of the Visible Male (ac-
quired by [15], downloaded from [16]). Renderings of different
evaluators are shown in figure 6. Then, we used a CT and a
Positron Emission Tomography (PET) data set of a monkey
(acquired by [17], downloaded from [16]) to demonstrate how
to combine several volumes (see figure 7). In the third case
study, we procedurally generated a 3D vector field with an
operator and visualised it using an interactive 3D Line Integral
Convolution (LIC) technique (see figure 8).

Note that, besides the multitude of implemented evaluators
and besides implementing several different operators, the Cg
source code is very well structured and short (between two
and 16 lines per evaluator), because the Cg code for the DVR
algorithm is separated by making use of Cg’s interfaces.

For a detailed discussion of the design of our framework
and the results we outlined in this paper, please see [18].

VI. CONCLUSION AND FUTURE WORK

We have presented a modular and flexible framework for
interactive direct volume rendering of complex data sets. The
framework is entirely GPU-based and can be easily extended
by developers.

In contrast to existing applications and toolkits it is com-
pletely modular and the user can interactively derive new
entities and modify rendering and shading effects to explore
complex data sets. We use advanced mechanisms of the Cg
language to provide a flexibility that is usually difficult to
achieve on the specialised and restrictive graphics hardware.

In the future, our implementation could be further extended
to provide more functionality (for example, volume clipping).
Additionally, we want to make the framework more user-
friendly and provide a graphical user interface which offers
menus and dialogs for loading data, deriving entities with
operators, selecting shaders and effects or developing new
ones, for example by providing formula editors with GUI for
deriving new data sets.

Fig. 5. The main components of the volume rendering application. Note
that VolumeRenderingEffect combines Cg shaders and manages the
specified resources.



SOFTWARE INNOVATION AND ENGINEERING NEW ZEALAND 2007 4

Fig. 6. Different renderings of a CT data set. Top-left: Use of a basic 1D transfer function. Bottom-left: Additional diffuse lighting. Top-centre: Gradient
shading that shows the direction of the gradient vectors. Bottom-centre: Artistic shading that enhances the silhouette of rendered structures. Right: 2D transfer
function using the scalar data value and gradient magnitude.

Fig. 7. Combined rendering of a CT (top-left) and a PET (bottom-left) data
set of a monkey.

Fig. 8. Renderings of a 3D vector field. Left: Colour-encoded procedural
vector field (normalized vectors are mapped into RGB range [0, 1]3). Right:
Interactive LIC rendering. The opacity is proportional to the vector length.

REFERENCES

[1] D. Luebke, M. Harris, J. Krüger, T. Purcell, N. Govindaraju, I. Buck,
C. Woolley, and A. Lefohn, “GPGPU: general purpose computation on
graphics hardware,” in SIGGRAPH ’04: ACM SIGGRAPH 2004 Course
Notes. New York, NY, USA: ACM Press, 2004, p. 33.

[2] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl, “Inter-
active volume on standard pc graphics hardware using multi-textures
and multi-stage rasterization,” in HWWS ’00: Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware. New
York, NY, USA: ACM Press, 2000, pp. 109–118.

[3] J. Kniss, S. Premoze, C. Hansen, and D. Ebert, “Interactive translucent
volume rendering and procedural modeling,” in VIS ’02: Proceedings
of the conference on Visualization ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 109–116.

[4] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller, “Curvature-
based transfer functions for direct volume rendering: Methods and
applications,” in VIS ’03: Proceedings of the 14th IEEE Visualization
2003 (VIS’03). Washington, DC, USA: IEEE Computer Society, 2003,
p. 67.

[5] S. Röttger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser, “Smart
hardware-accelerated volume rendering,” in VISSYM ’03: Proceedings of
the symposium on Data visualisation 2003. Aire-la-Ville, Switzerland:
Eurographics Association, 2003, pp. 231–238.

[6] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, “A Simple and
Flexible Volume Rendering Framework for Graphics-Hardware–based
Raycasting,” in Proceedings of the International Workshop on Volume
Graphics ’05, 2005, pp. 187–195.

[7] S. Bruckner and M. E. Groller, “Volumeshop: An interactive system for
direct volume illustration,” IEEE Visualization 2005 (VIS 2005), p. 85,
2005.

[8] G. Kindlmann. (2003) Teem: Tools to process and visualize scientific
data and images. Website. [Online]. URL: http://teem.sourceforge.net/

[9] Kitware, Inc. (2007) The visualization toolkit. [Online]. URL:
http://public.kitware.com/VTK/

[10] Sun Microsystems, Inc. (2007) Reflection. [Online]. URL: http:
//java.sun.com/javase/6/docs/technotes/guides/reflection/index.html

[11] Microsoft Corporation. (2007) Reflection (c# programming
guide). [Online]. URL: http://msdn2.microsoft.com/en-us/library/
ms173183(VS.80).aspx

[12] R. Fernando and M. J. Kilgard, The Cg Tutorial: The Definitive Guide
to Programmable Real-Time Graphics. Boston, USA: Addison-Wesley,
2003.

[13] M. McGuire. (2007) G3d engine. Website. [Online]. URL: http:
//g3d-cpp.sourceforge.net

[14] L. Thomason. (2007) TinyXml. Website. [Online]. URL: http:
//sourceforge.net/projects/tinyxml/

[15] National Library of Medicine, National Institutes of Health. (2007)
The visible human project R©. [Online]. URL: http://www.nlm.nih.gov/
research/visible/visible human.html

[16] S. Röttger. (2006) The volume library. [Online]. URL: http:
//www9.informatik.uni-erlangen.de/External/vollib/

[17] Laboratory of Neuro Imaging, UCLA School of Medicine. (2007)
Monkey atlas. [Online]. URL: http://www.loni.ucla.edu/

[18] F. Manke, “A Modular GPU-based Direct Volume Renderer for
Visualising Scalar and Multi-dimensional Data,” Oct. 2007, CompSci
780 project report. [Online]. URL: http://www.cs.auckland.ac.nz/
∼burkhard/Reports/2007 S1 FelixManke.pdf


