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Abstract

Discrete 2D survey data is common in the areas of business, science and
government. Visualisation is often used to present such data. The best
form of visualisation depends on how the visualisation is to be used. In
this paper we present a study of interpolation and approximation tech-
niques for creating visualisations of 2D survey data to be used to present
the data to a non-technical audience. We use and modify techniques from
the fields of computer-aided design, medical imaging and scientific visu-
alization and we evaluate and compare their suitability for interpolation
of the data.

Keywords: Interpolation methods, survey data, recon-
struction methods, visualization

Note: Colour versions of the images in this ar-
ticle can be found at http://www.cs.auckland.ac.nz/
˜burkhard/Research/InVis2004

1 Introduction

Discrete 2D survey data is common in many real-world
applications. An example is a 2D grid with one axis being
the income of a person (in steps of, say, NZ$ 10000) and
the other axis being the happiness of a person on a scale,
say, from 0 to 10. If � people are surveyed the relationship
between income and happiness can be revealed by count-
ing for each grid-point the number of people falling into
that category and by visualizing these values with colour
or height values.

Traditionally discrete data has been visualized with
discrete graphical primitives such as bar charts or discrete
colour maps. However, the lack of visual continuity makes
it difficult to perceive relationships and patterns in the data
and also makes it harder to encode additional information
dimensions.

In order to find a solution to this problem we looked at
the fields of scientific and biomedical visualization. Many
scientific data sets are given by discrete sample values and
must be transformed into continuous data before trans-
formation. This type of data transformation is an exam-
ple of data enrichment and can be accomplished by using
interpolation techniques such as scattered data interpola-
tion (Hoschek & Lasser 1992) or finite element interpo-
lation (Burnett 1987). When dealing with 3D scalar data
the problem is often referred to as volume reconstruction.
Optimal reconstruction functions for specific application
areas such as volume rendering are an ongoing topic of
research (e.g., (Marschner & Lobb 1994, Moorhead II &
Zhu 1995, Möller, Müller, Kurzion, Machiraju & Yagel
1998, Mueller, Möller & Crawfis 1999)). Reconstruction
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of vector and tensor data is more complicated. A tech-
nique based on spectral analysis has been suggested by
Aldroubi and Basser (Aldroubi & Basser 1999).

In this paper we present, evaluate, and compare differ-
ent interpolation methods from the fields of scientific visu-
alization, biomedical imaging and computer-aided design
and we apply them to discrete 2D survey data. The pre-
sented work is the result of a research project performed
for an international consulting company. We motivate the
various methods introduced in this work by using as exam-
ple a data set of similar type to that used in our consulting
work. We list the advantages and drawbacks of each inter-
polation method and as a result of our analysis we suggest
one interpolation method as the preferred solution.

2 Visualisation Requirements

The data to be visualised comes from a particular kind of
survey that might be carried out in some organisation. The
survey consists of statements to which respondents answer
on a scale of “strongly disagree” to “strongly agree”. The
statements relate to various aspects of the current state of
the organisation and how it operates. The raw data con-
sists of the number of respondents in each category for
each statement. The purpose of the survey is to help the
organisation understand aspects of itself and to help with
planning, and so the results are presented to some part of
the organisation, typically representatives of upper man-
agement.

This context has certain implications on the kind of
data to be visualised, and the properties the visualisations
should have. The data represents subjective responses,
rather than objective measurements. This means that,
while the results are discrete by virtue of how they are pro-
vided, the “truth” they represent is not as obvious as the
numbers themselves may imply. For example, a person
might be unable to decide between “agree” and “strongly”
degree but can’t choose a value in the middle of these two
answers. Similarly two people might have different def-
initions of the word “agree”. On the other hand there is
a clear boundary between “agree” and “disagree”. This
suggests that using the discrete values directly in the visu-
alisation may be misleading.

There is another reason for considering continuous ap-
proximations. The intended audience of the visualisations
is interested in trends, and getting an overview of the or-
ganisation. Our client has extensively used 2D visualisa-
tions of data and the experience is that continuous visu-
alisations are more “visually pleasing” than discrete ones,
and so work best for this kind of audience. Generally,
when choosing between visualisations for this audience,
the preference is for the more visually pleasing ones.

Any form of interpolation produces artifacts in the re-
sult. For example, some forms are “more pointy” than
others, some will produce curves that go through the sam-
ple points whereas others will not, and all handle bound-
ary conditions differently. Correctly interpreting a visual-
isation requires some understanding of the consequences



of these artifacts. Our intended audience will generally
not be knowledgeable in such things are interpolation arti-
facts, and so we must avoid techniques with artifacts that
result in “obviously wrong” visualisations. A specific ex-
ample of this is techniques that produce negative results —
the audience will be aware that there cannot be a negative
number of people selecting a certain answer in a survey.
Another example is the “degree of smoothness”. Since
our sample grid is relatively small we do not want to have
excess smoothing since it might lead to potentially mis-
leading results. On the other hand a limited degree of
smoothing is desirable since it leads to a visually more
pleasing surface, and reduces noise in the data.

Finally, in anticipation of planned development of the
survey, our client has requested that we explore the use of
three-dimensional visualisations of the data.

The data sets used in our research consist of a two-
dimensional grid where each coordinate is an integer in
the range ���������	� . The data was obtained from a range
of survey questions with answers ranging from “strongly
disagree” (-3), to “neutral” (0), to “strongly agree” (+3).
Each survey record represents a point in a 2D grid that
is pictured in figure 1 (a). Since the extreme values ( ���
and � ) on either axis characterize the surveyed group of
people into 4 distinct categories, a visually more pleas-
ing representation is obtained by distorting the grid so that
the axes are the diagonals of the data domain. Figure 1
(b) shows that each quadrant of the resulting coordinate
system represents one of the before mentioned categories.
We have changed the labels used in this and later figures
at the request of our client. For this presentation, we use
just ‘A’,‘B’,‘C’ and ‘D’.
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Figure 1: Data grid for discrete two-dimensional survey
data before (a) and after (b) distortion which aligns coor-
dinate quadrants with categories in the survey data.

3 Interpolation Methods

This section presents an overview of popular interpolation
and reconstruction methods from the fields of scientific vi-
sualization, biomedical visualization and computer-aided
design, and shows how they can be applied to our data set.

The two-dimensional interpolation methods we con-
sidered can be classified as either scattered data interpo-
lation, finite element interpolation, parametric spline sur-
faces or reconstruction filters. These represent increasing
restrictions on the structure of the sample points. Scat-
tered data interpolation has no restriction on the structure
of the data points, and generally produces, for a 2D grid of
sample points, a surface that interpolates each of the sam-
ple values. The interpolation is usually global, that is, a
change in a sample value can effect the shape of the entire
surface. The finite element techniques essentially “stitch
together” small pieces of surface into one large surface.
An important issue with them is ensuring that the joins are
sufficiently smooth. Finite element interpolation uses the
data points to form a tessellation of the domain and the
interpolation takes place only over each tile, that is, the
interpolation only takes into account data points that are

neighbours. Reconstruction filters are a simple way to re-
construct a function from a regular grid of sample points.
The size and shape of a reconstruction filter determine the
speed and smoothness of the reconstruction. Since the ge-
ometry of the grid is required to be regular the same re-
construction filter can be used for all data points, which
makes it possible to efficiently compute a reconstructed
surface approximating the sample point values.

3.1 Scattered Data Interpolation

Scattered data interpolation reconstructs a con-
tinuous function 
����� from sample points� �������
��������������
	���������������������
	� � � , where in our case
each �! is a 2D grid coordinate (Hoschek & Lasser 1992).
One of the earliest and most popular class of scattered
data interpolation methods are variations of the Shepard
method (Shepard 1968) in which the interpolated function
is defined as
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where 
)! are the sample values and ' ! are weighting func-
tions based on the distance to the grid points. This means
that every interpolated point is the weighted sum of every
sample point. The method is a global method and hence
computational expensive. Furthermore adding one more
point requires a recomputation of all weighting function,
though this is not a drawback in our application where
the grid size is fixed. The main drawback of the Shep-
ard method is that the interpolant is in general not partic-
ularly smooth. Therefore we consider instead two other
approaches for scattered data interpolation.

The solution to the scattered data interpolation prob-
lem with the help of radial basis functions has the form
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where
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The univariate basis functions , ��. ! ����9� are non-negative
functions of the distance .:!9���� of the point  to the sample
point �! . The low-dimensional polynomial 1 3 ���� guar-
antees that a sampled polynomial function with the de-
gree ; can be exactly reproduced ( + !<">= , i=1,. . . ,N)
(Dyn 1989, Alfeld 1989). The unknown coefficients are
obtained from the interpolation constraints
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which ensure that the surface goes through the sample
points, and from the ; additional conditions

�$
!�%���+ ! 1

6 �� ! �#"@= for A�"CB����������9; (2)

The resulting linear system of DE/F; equations
can easily become badly conditioned (Hoschek & Lasser
1992). A solution based on preconditioning the matrix has
been suggested in (Dyn 1989). Carr et al. propose instead
a modification that makes it possible to model large data
sets consisting of million of data points (Carr, Beatson,
Cherrie, Mitchell, Fright, McCallum & Evans 2001, Carr,
Beatson, McCallum, Fright, Lennan & Mitchell 2003).
More information about radial basis functions is found in
(Dyn, Leviatan, Levin & Pinkus 2001).

For our application we choose the radial basis function

, ��G�!H�#"IG �!0J�KML G�! with G�!0"I.N!9����



The resulting interpolant minimises the bending energy of
a thin plate interpolating the sample points and is also
called Duchon’s Thin Plate Spline (Hoschek & Lasser
1992).

3.2 Finite Element Interpolation

The geometry of a finite element model is described by
a set of nodes and a set of elements, which have these
nodes as vertices. The nodal coordinates are interpolated
over an element using interpolation functions. Curvilinear
elements can be defined by specifying nodal derivatives
(Burnett 1987).

In our application the cells of the regular grid can be
considered as finite elements. In this case an interpolation
of the geometry is not necessary and the finite element in-
terpolation functions are used only to interpolate the sam-
ple values over the grid cells.
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Figure 2: Cubic Hermite-Linear Lagrange interpolation of
sample values at the corners of a square element.

As an example consider the cubic Hermite-linear La-
grange interpolation over a quadratic element shown in
figure 2. Assumed we define local coordinates � ! such
that a grid cell corresponds to a unit square in the local
coordinates ( =���� � ��� � � B ). The value of some func-
tion 
 over the element is then specified by interpolating
the variables 
)! linearly in the given parameter direction.
In our example we assume that additionally derivatives in��� -direction

���	���
��� ! ����" B������������:� are specified at the el-

ement vertices. In this case a cubic Hermite interpolation
is performed in that direction.
The cubic Hermite-linear interpolation of 
 over the entire
2D parameter space is then defined by the tensor products
of the interpolation functions in each parameter direction:
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where � �)�����*" B �"� , and �5�������#"#�

are the one-dimensional linear Lagrange basis functions,
and� �� �����*" B � ��� � /�$�� � � � �� �����#"%����� � B�� �� �� �����*"&� � ��� �'$������ � �� �����#"%� � ��� � B��
are the one-dimensional cubic Hermite basis functions.

In general we can express the interpolation of a vari-
able as 
��)( �*" $ !�* + 
 +!-, +! ��(8� (3)

where 
 +! are scalar field values and their partial deriva-
tives (if any) at each vertex and , +! are appropriate inter-
polation functions.

3.3 Reconstruction Filters

For a regular grid of sample values the interpolation prob-
lem can be stated as a convolution with a reconstruction
filter. Let us denote the two-dimensional sample values
by 
 ! 6 and the corresponding grid points by  ! 6 . Then the
reconstructed function is defined by
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where . ���� is the reconstruction filter. Separable filters
can be written as . ���� " .10 ��24� .30 ��4�� and allow a more
efficient computation of the reconstructed function.

A useful family of reconstruction filters are the � -th
degree B-Spline filters that can be defined by box filter-
ing a square pulse function. Let 5 denote the convolution
operator, i.e.,

�)675 . ����24�5"98�:; : 6 ��< � . ��2 �=< � .><
and ? � ��24� the square pulse function (0-th degree B-
Spline) defined by

? � ��24�*"A@ B ��=��CBD�E2�� =��CB= otherwise

Higher order reconstruction filters can be obtained by
repeatedly convolving this function with the square pulse
function. The most common B-Spline filters are the linear
B-Spline filter

? � ��2 �*" �F? � 5G? � ����24�5" @ BE��= � BD�H2�� = � B= otherwise

the quadratic B-Spline filter

? � ��2 �*" ��? � 5�? � ����24� "JIKKL KKM
N �O/P-�RQ�ST � BM� B���2VU ��= � B�� �"2 � ��= � B���2VU = � BN �RO ; �RQ�ST = � B��H2WU<B��CB= otherwise

and the cubic B-Spline filter? � ��2 � " �F? � 5X? � ����24�
" IKKKL KKKM

�Y�Z 2 � /�[�2 � /@B/$�2�/]\_^E�V$��E2WU � B�Y Z ���`2 � �a[�2 � /'� ^ � Bb�E2WU =�Y Z �`2 � �a[�2 � /'�!^ =c�H2WU<B�Y Z ��2 � /�[�2 � � B/$�2�/]\_^EBb�H2WUd$= otherwise

The linear, quadratic and cubic B-Spline filter are illus-
trated in figure 3.
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Figure 3: Graphs of the linear B-Spline filter (solid line),
the quadratic B-Spline filter (dashed line) and the cubic
B-Spline filter (dotted line).

Another popular cubic reconstruction filter is the
Catmull-Rom spline (Catmull & Rom 1974) that is de-
fined as

� ��24� " IKKKL KKKM
�Y Z �`2 � /@B/B�2 � /E$��>2�/IB	$ ^ �V$��E2WU � B�Y Z ���`2 � � B/B�2 � /][_^E� Bb�E2WU =�Y Z ��2 � � B/B�2 � /][ ^ =c�H2WU<B�Y Z ���`2 � /@B/B�2 � �'$��>2�/IB	$ ^ Bb�H2WUd$= otherwise

and is pictured in figure 4. In contrast to the quadratic and
the cubic B-Spline filter the Catmull-Rom filter smooths
the data while still interpolating the sample points.
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Figure 4: Graph of the Catmull-Rom spline.

3.4 Parametric Spline Surfaces

A parametric spline surface can be defined as

� ���M���(�*" $ ! , !����M���(� � !
where

�
	 � ��3 !�� ���3�� O � � and ��	 � � 3 !�� ��� 3�� O �
and �M��� are the parameters of the surface, , ! ���M���(� are the
basis functions (interpolation functions) and � ! are con-
trol points or other control parameters such as coordinate
curve tangents. If the control points � ! are homogeneous
the spline is called rational.

The arguably most important parametric splines are
Non-uniform rational B-Splines (NURBS) that are the in-
dustry standard tool for the representation and design of
geometry (Piegl 1991, Farin 1995). A NURBS surface is
defined as

� ���M���(�#" $ !
$
6 ? +! ������?��6 ���(�����M���(� � !

where

��	 � � 3 !�� ��� 3�� O	�H� and ��	 � � 3 !�� ��� 3�� O)�
and ? +! are one dimensional non-uniform B-Splines of de-
gree � that can be recursively defined by the Cox-de Boor
algorithm (de Boor 1972)
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The knotvector � � ��� � ����������� 3 ; � forms the parameter inter-
val for the � parameter. The basis functions and knotvector
for the � parameter are defined similarly.

For our interpolation problem we can use NURBS sur-
faces by using the sample point coordinates �����HAN� as knots
and by using the sample point values as control points. If
the grid points are uniformly spaced and we choose � -th
degree B-Spline basis functions then we obtain a � -th de-
gree B-Spline reconstruction filters as introduced in sub-
section 3.3. The advantage of the NURBS representation
is that we can also use non-uniform grids. For our appli-
cation we choose another useful property of the NURBS
interpolation. If we multiply the first and last knot for a
� -th degree non-uniform B-Spline ��� /?B�� times then the
B-Spline will interpolate its endpoints (Hoschek & Lasser
1992).

Figure 5: VRML file of a height field constructed from a
2D survey and viewed with the Cortona VRML viewer.

4 Results

We have implemented the scattered data interpolation and
reconstruction filter techniques discussed above. The im-
plementation is in Java, and produces VRML as output.
We chose VRML as our output medium due to require-
ments of our client, specifically the ability to provide the
visualisations on web pages, while still retaining some
level of interactivity, such as changing the viewing an-
gle. By using VRML, any presentations can be done with-
out the need to install a Java runtime, which simplifies
the client’s setup. A VRML viewer does need to be in-
stalled, but doing so is significantly easier than Java. The
viewer we use is Cortona by Parallel Graphics (Parallel
Graphics Inc. 2002). An example is shown in figure 5.
The viewer provides several different navigations options
such as “walking”, “flying” and “exploring”. Additional
features such as restoring the default view, fitting the visu-
alization into the window and changing rendering param-
eters are also available.



To demonstrate the different techniques, we use an ex-
ample survey data set with 40 survey records. The data is
transformed into an ����� grid as shown in figure 1. Each
grid point is associated with an integer that represents the
number of respondents choosing that answer in the survey.
The resulting data set is visualized in figure 5 as a height
field.

4.1 Scattered Data Interpolation

As an initial attempt to solve the interpolation problem for
discrete 2D survey data we use the radial basis functions
described in subsection 3.1 with

, ��G�! �#"@G �! J&K�L G�! with G�!�" .M!�����
and 13������*" 7 � / 7 � 2 / 7 �where  " ��2��4 � are the coordinates of the 2D sample
point grid shown in figure 1. Since we have ����� sam-
ple points and ; " � polynomial coefficients the con-
straints 1-2 result in a linear system of 52 equations that
can be efficiently solved using an LU solver with partial
pivoting (Press, Vetterling, Teukolsky & Flannery 1992).
The resulting visualization is shown in figure 6. Adding
the height field in figure 5 into the visualization shows that
the method exactly interpolates sample points. The result-
ing surface is very smooth and visually pleasing. How-
ever, in some regions the surface becomes negative, which
indicates an impossible result since we can’t have a nega-
tive number of people choosing a certain answer in a sur-
vey.

Figure 6: The 2D example survey data interpolated with
radial basis functions.

4.2 Reconstruction Filters

In this subsection we present the results obtained by using
various reconstruction filters. Figure 7 shows the visu-
alization obtained by using a Catmull-Rom spline recon-
struction filter. The surface is again smooth and interpo-
lates the sample point values. In addition it can be seen
that the surface is less “pointy”, i.e., its curvature at the
peaks of the sample points is lower then for the interpo-
lation obtained using radial basis functions. However, the
surface has again negative regions with is due to the fact
that the reconstruction filter shown in figure 4 has negative
values.

Negative surface values can be avoided by using B-
Spline reconstruction filters. Since the B-Spline basis
functions lie between zero and one and sum up to one for
any point (Hoschek & Lasser 1992) the interpolated sur-
face will always lie in the convex hull of the sample points.

Figure 7: The 2D example survey data interpolated with a
Catmull-Rom spline reconstruction filter.

Figures 8- 10 show the visualizations obtained with a bi-
linear, biquadratic and a bicubic B-Spline reconstruction
filter.

Figure 8: The 2D example survey data interpolated with a
bilinear B-Spline reconstruction filter.

It can be seen that the bilinear reconstruction filter in-
terpolates the sample point values whereas the higher or-
der filters do not. The degree of smoothing increases with
an increase in the degree of the reconstruction filter. This
is due to the definition of the B-Spline reconstruction fil-
ters that were defined by repeatedly box-filtering a square-
pulse function.

As we observed in section 2, there is an inherent uncer-
tainty in the sample values, and so it is not strictly neces-
sary to interpolate the sample point values. We also men-
tioned that we would prefer more smooth to less smooth.
Nevertheless, the higher order filters, while being more
smooth, will also produce surfaces that are further from
the sample points, and we must also avoid visualisations
that are misleading.

Our conclusion is that the support (extent) of the
smoothing filter should be at most equal to the length of
the “agree” and “disagree” sections of the sample grid
axes. The quadratic B-Spline filter has a support of three
units (-1.5 to 1.5) that is equal to half the length of an axes
of our sample grid (-3 to 3) and it gives therefore in our
opinion a suitable trade-off between smoothing and data
accuracy.

Note that the interpolation with reconstruction filters
is efficient since the reconstruction filters have a finite
support. Computing a surface point using � -th degree
B-Spline reconstruction filters requires the addition of



Figure 9: The 2D example survey data interpolated with a
biquadratic B-Spline reconstruction filter.

Figure 10: The 2D example survey data interpolated with
a bicubic B-Spline reconstruction filter.

��� / $M� �?���</ $�� products of sample points and filter
functions.

4.3 Parametric Spline Surfaces

In order to complete our comparison of different classes of
interpolation methods we have also implemented a bicu-
bic NURBS surface. Endpoint interpolation is achieved by
multiplying the first and the last sample point four times so
that the knotvector is -3,-3,-3,-3,-2,-1,0,1,2,3,3,3,3. Since
four knot intervals define one B-Spline basis function
this knot vector gives us nine basis functions. How-
ever, we have only 7 sample values in each parameter
direction (sample values are defined for the grid point��� ���V$ ����������� ). We therefore also multiply the first and
last sample point value in each parameter direction.

The resulting surface is visualized in figure 11. Com-
paring this image with the bicubic B-Spline filter in fig-
ure 10 it can be seen that the surface now interpolates
the sample points over the boundary of the domain. The
volume under the surface is, however, different. In some
sense, the B-Spline filters produce volumes that are the
same as the original sample points (figure 5), and so for
this reason we prefer them.

Figure 11: The 2D example survey data interpolated with
a bicubic endpoint-interpolating NURBS surface.

5 Conclusion

We have briefly surveyed interpolation techniques from
the fields of scientific visualization, biomedical imaging
and computer-aided design for two-dimensional data, with
the aim to identify the most suitable technique to apply
to our particular set of requirements. These requirements
prefer visually pleasing over accurate representations, and
prefer not to have representations with artifacts that are
obviously invalid. We have implemented a number of
these techniques to allow our client to evaluate them.

Based on these requirements, we concluded the bi-
quadratic B-Spline reconstruction filter suited our pur-
poses best. While it does not exactly interpolate the sam-
ple points, it does so well enough and the sample points
themselves cannot be regarded as exact. It also provides
surfaces that are not negative, thus avoiding distracting ar-
tifacts for the non-technical audience. Finally, it provides
a surface that is sufficiently smooth to be visually pleas-
ing. When presented with the different solutions our client
was indeed most happy with this choice. This solution
has been trialled by our client and reports that participants
were happy with it.

This investigation has raised a number of interesting
questions about the use of interpolation techniques for in-
formation visualisation that we wish to pursue. We ini-



tially did not consider the finite element interpolation for
implementation, since the standard implementation does
not provide smoothing between grid cells. However, we
now think that variations of this method might enable
us to get more control over the smoothing process while
maintaining the constraint that surfaces are non-negative.
Whether such finite element interpolation methods are
useful for the field of information visualisation remains
to be seen.
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