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Abstract

Information visualisation has become increasingly important in science,
engineering and commerce as a tool to convey and explore complex
sets of information. This paper introduces a visualisation schema which
uses visual attributes as the principle components of a visualisation. We
present a new classification of visual attributes according to informa-
tion accuracy, information dimension and spatial requirements and ob-
tain values for the information content and information density of each
attribute. The classification applies only to the perception of quantita-
tive information and initial results of experiments suggest that it can not
be extended to other visual processing tasks such as preattentive target
detection.

The classification in combination with additional guidelines given in
this paper provide the reader with a useful tool for creating visualisations
which convey complex sets of information more effectively.

Keywords: information visualization, visual effectiveness,
visual perception, visual attributes, preattentive process-
ing

1 Introduction

Over the past century knowledge has risen exponentially
while human capacity to absorb information has stayed
constant. As a result it has become increasingly impor-
tant to maximise the information acquired from data while
minimizing the cost of interacting with it. Visualisation is
an attempt to achieve this goal by representing complex
sets of information by an image (the visualisation) which
enables the user to better understand and interpret the data.
The biggest challenge in visualizing information is that

the visualisation has to be displayed on a two-dimensional
screen using color as an additional output dimension. An-
imating a visualisation introduces an additional output di-
mension which is frequently reserved for the independent
time variable. Using the characteristics of human visual
perception it is possible to simulate additional output di-
mensions. A third spatial dimension is obtained by using
stereoscopic techniques or by using pictorial cues to sim-
ulate depth perception (see section 3).

2 The Visualisation Process
Traditionally the visualisation process has been repre-
sented by a pipeline which performs data encoding. We
take the perception and interpretation of the data into ac-
count and extend the traditional pipeline model by a data
decoding step as shown in figure 1.
The first stage of the data encoding step is the data

transformation stage that converts information into a form
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more suitable for visualisation. This can involve creation
of new quantities and subsets, data type changes, and
modeling operations (e.g., model a directory structure as
a tree). The subsequent visualisation mapping converts
the transformed data into graphical representations which
the rendering stage then displays on a screen or by print-
ing. Some authors (e.g., (Chi 2000, Ware, Chi & Goss-
weiler 2000)) prefer to subdivide the mapping stage fur-
ther into visual transformation (or data modelling) and vi-
sual mapping. However, in many applications these two
stages are combined and the parameters of a model (shape,
size, colour, texture) represent the encoded information
(Wünsche 2003b). The data decoding step describes how
visual information is perceived and processed and consists
of visual perception and cognition.

encoding decoding
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Figure 1: The visualisation process.
The encoding and decoding step of our schema are

connected via visual attributes such as shape, position,
and color, and textual attributes such as text and sym-
bols which themselves are represented by simple visual
attributes. A visualisation is effective if the decoding can
be performed efficiently and correctly. “Correctly” means
that perceived data quantities and relationships between
data reflect the actual data. “Efficiently” means that a
maximum amount of information is perceived in a min-
imal time.

3 Visual Attributes

The most basic visual attributes are line orientations,
color, transparency, position and size (Ferweda 1998,
Schiffman 1996, Davidoff 1991). All of these attributes
are determined in the initial visual processing step per-
formed by the brain.
While color is a basic visual attribute its perception

by the brain is a complex process. Using the concept
of trichromacy perceived colors can be represented as
weighted sum of three primary colors red, green, and
blue or more intuitively by the perceptual attributes hue,
brightness and saturation. The brain’s ability to locate
colors in this 3D space is limited and even color experts
have difficulties separating hue and lightness (Davidoff
1991). Color perception is wavelength dependent with
long wavelengths perceived easiest whereas short wave-
lengths are only identified where luminance is relative



high. Some hues such as yellow appear brighter than oth-
ers such as blue even if they have the same intensities
(Schiffman 1996).
Color perception is also influenced by surrounding col-

ors (color illusions). For example, a color patch is percep-
tually shifted by the color of adjacent patches (simultane-
ous contrast). If colors of different intensities meet, non-
existing intensity changes are perceived (Mach bands)
(Keller & Keller 1993). Prolonged exposure to a color
produces an afterimage of the complementary color which
can change perception of subsequent visual impressions.
Some black and white patterns can cause color sensations
(subjective colors) (Schiffman 1996).
The brain utilises low-level visual attributes for per-

forming more complex visual tasks such as the perception
of shape, Gestalt, and depth which together are referred
to as spatial vision (Ferweda 1998). Other higher order
tasks are figure-ground perception and texture perception.
The involved visual attributes are called high-level visual
attributes.
Texture is perceptually characterised by its spatial

frequency, contrast and orientation (Schiffman 1996).
Recognition of feature patterns is accomplished using
primitive textural features (textons) such as length, width
and orientation with line segment orientation being partic-
ularly important. Pattern detection is orientation depen-
dent and is influenced by adaption (familiarity) (Ferweda
1998).
Shape information is directly derived from luminance,

motion, binocular disparity, color, and texture, with lumi-
nance yielding shadow and subjective (illusory) contour
information (Davidoff 1991). Shape perception is dom-
inated by the curvature of the silhouette contour (figure-
ground boundary) and 3D surface shading (Humphreys
1992)with diffuse shading being the most important shape
cue. Shape perception is highly orientation dependent
such that rotated versions of the same form can be per-
ceived as different shapes. Perception can also be depen-
dent on previous stimuli. Familiar shapes and configura-
tions can improve the recognition of a target if it is a part
of them (Schiffman 1996).
Depth perception is achieved using binocular vision

and visual cues. Binocular vision includes disparity, con-
vergence and motion parallax. Disparity depends on a ob-
ject viewed by two eyes which are slightly displaced so
that the perceived images differ slightly. The displacement
of the retinal images of an object is converted by the brain
to depth information. Motion parallax is the effect that the
relative distance an object moves determines the amount
its image moves on the retina. For visualisation purposes
binocular vision is achieved by using stereo goggles or
VR Head Displays. Independent of this visual cues such
as size, brightness, perspective, overlay, texture gradient,
and aerial perspective (Humphreys 1992) are used to aid
depth perception.
The concept ofGestalt originates from the fine arts and

expresses the notion that the “whole contains more infor-
mation than the parts”. Perception of Gestalt is influenced
by proximity, similarity, continuation, closure, symme-
try, and the law of Prägnanz, which states that the eyes
tend to see the simplest and most stable figure (Schiffman
1996). Context might also play a role in Gestalt perception
(Humphreys 1992).
Figure-ground perception describes the observation

that an object can be instantly separated perceptually from
its background. This is due to physically different attri-
butes of the figure and the background but is also in-
fluenced by size, angle, and association with meaningful
shapes (Schiffman 1996).

4 Classification of Visual Attributes

In this section we suggest a classification of visual at-
tributes according to representational accuracy, perceptual
dimension and spatial requirement. The classification sup-
ports the identification of suitable visual attributes for rep-
resenting a given data set and hence forms the basis for
mapping data onto visualization icons.
Not all visual attributes are equally well suited to dis-

play quantitative information. For many attributes their
perceived scale is a power of the actual scale (Steven’s
law) (Cleveland 1985). The power is close to one for the
perception of length so that length variations can be es-
timated quite accurately. For area and volume changes
the power is smaller than one so that small areas are usu-
ally perceived larger than they actually are and vice versa
for large areas. In addition perception of visual attributes
can be influenced by orientation, e.g., angles with a hori-
zontal bisector are seen larger than angles with a vertical
one (Cleveland 1985). Also it has been shown that slope
changes influence the perception of vertical distances.
As a consequence the suitability of visual attributes for

information encoding differs. We use the term informa-
tion accuracy as a measure of how accurately a human can
estimate a quantitative variable represented by that visual
attribute. Cleveland shows that such a variable is most ac-
curately represented by a position along a scale, and then
in decreasing order of accuracy by interval length, slope or
angle, area, volume and color as indicated below (Cleve-
land 1985).

highest accuracy
of representation

lowest accuracy
of representation

position on scale
interval length
slope/angle
area
volume
color

The above ranking changeswhen visualizing ordinal or
nominal data which occur frequently in information visu-
alisation (Mackinlay 1986). The suitability of a high level
visual attribute for visualizing quantitative data depends
on which low level attribute dominates its perception. For
example, if a texture consists of colored strokes with a
direction and length then the stroke color and direction
are usually easier perceived than the length of individual
strokes.
We suggest to further differentiate visual attributes by

their information dimension and spatial requirements. In-
formation dimension refers to the number of dimensions
inherent in the visual attribute. Length and slope repre-
sent only one dimension but color can be used to represent
at least two dimensions. Texture is usually composed of
several basic visual attributes such as color and the length
and orientation of texture elements. The total information
dimension is therefore the sum of the dimensions of the
inherent basic attributes. An additional output dimension
can be represented by the spatial frequency of a texture.
Similarly shape has been shown to represent multiple in-
dependent output dimensions.
We define the spatial requirement of a visual attribute

as the smallest unit of space (i.e., pixels on a screen) neces-
sary to identify a piece of information. Whereas color has
a minimal spatial requirement only limited by the resolu-
tion of the human visual system a texture requires a much
larger space of the output medium to enable the viewer to
identify inherent information. For clarity the spatial re-
quirement is described both subjectively (low-high) and
then in brackets more objectively by the dimension of the
occupied space. For example, a position on a scale is given
by a point (dimension 0) whereas volumes and other 3D
shapes occupy three-dimensional regions. Color can be



Information Information Spatial Information Information
dimension accuracy requirement (dimension) content density

Position on scale 1–3 High Low (0) High High
Length 1 High Medium (1) Medium Low
3D Direction 2 Medium Medium (1) Medium Medium
Area 1 Medium Medium (2) Low-Medium Low
Volume 1 Medium High (3) Low-Medium Very Low
Shape 3 Low-Medium High (3) Medium-High Medium-High
Texture 3 Low-Medium Medium (1-3) Medium-High Medium-High
Color 2 Low Low ( 0) Medium High

Table 1: Classification of common visual attributes.

represented by points, however, color perception is very
poor for isolated pixels so that for many applications the
space requirement of the color attribute is higher than zero
dimensions.
The information content of a visual attribute can now

be defined as the product of information accuracy and in-
formation dimension. The information density is given by
dividing the information content of a visual attribute by its
spatial requirement. A listing of common visual attributes
classified using above criteria is shown in table 1.
An alternative classification of visual attributes for in-

formation visualization has been suggested by Dastani
(Dastani 2002). The author classifies visual attributes into
spatial attributes, non-spatial attributes and topological at-
tributes and derives from that different perceptual struc-
tures with the aim of finding a structure-preserving map-
ping from data structures onto perceptual structures.

5 Mapping Information onto Visual Attributes

In order to create effective visualisations informationmust
be mapped to visual attributes in a way that optimises its
perception and understanding. The task is difficult since
the perception, interpretation and comprehension of visual
input is influenced by context, attentional focus, expec-
tations, prior knowledge, past experiences and subjective
biases (Healey, Interrante & Rheingans 1999).
The mapping between data and visual attributes is usu-

ally determined by the intended function of a graphical
representation. The following functions are common:

Display quantitative information
Draw attention
Show correlation
Quantitative information is best displayed by length

and position and is therefore reflected in the size of a
graphical representation. Depending on the required ac-
curacy of the representation, the available space and the
number of simultaneously displayed data sets alternative
attributes might be more appropriate as shown in table 1.
Figure 2 shows as an example a circular vector field

which we visualise with different graphical representa-
tions (visualisation icons) for the data (Wünsche 2003b).
The velocity direction is indicated by a Line Integral Con-
volution texture (LIC) (Cabral & Leedom 1993, Stalling
& Hege 1995) and by the direction of the vector arrows.
While vector arrows give more precise directional infor-
mation they can easily be misleading since there is no in-
dication of to which data point they apply. The vector
magnitude is represented by the colour of the LIC texture
(a poor representation, but continuous), by the length of an
arrow (precise, but only available for selected data points)
and by a height field which offers the most accurate repre-
sentation since the boundaries of the domain can be used
as a scale. Note that only the height field shows clearly
that the vector magnitude increases linearly from the cen-
tre of the data set.
Attention can be drawn to a target by using bright or

highly saturated colors, sharp boundaries, or movement or

Figure 2: A circular vector field visualised using different
visualisation icons.

change (Rheingans & Landreth 1995). Target identifica-
tion is also influenced by linear separation, color category,
and color distance (Healey et al. 1999). If the complexity
of the scene allows it instant target identification can be
achieved by using preattentive features.
Preattentive features are very simple features that are

perceived without conscious attention. An example is the
instantaneous perception of a red dot in a cloud of blue
ones. The underlying mechanism has been contributed
to different sensory dimensions for basic visual attributes
such that a unique feature in any dimension is immediately
detected (Davidoff 1991). Preattentive vision seems to be
dependent on primitive textural features such as length,
width and orientation of simple elongated shape as well
as their end connections, angle orientations, and intersec-
tions (Schiffman 1996). In addition preattentive vision ex-
ists for shape, curvature, closure, color (hue), intensity and
more complex visual attributes such as texture and depth
(Healey et al. 1999).

5.1 Analysis of Visual Attributes
The classification in table 1 was obtained from results pre-
viously presented in the literature and from our own expe-
riences and some simple experiments with students. More
formal experiments are necessary to verify and quantify
the results for practical applications.
Our classification was motivated by the goal to mea-

sure the suitability of a visual attribute for display-



ing quantitative information. An interesting question is
whether our classification still holds true when a visual at-
tribute is used for other tasks, such as instant target recog-
nition by preattentive processing.

Figure 3: Screen shot of a program to test preattentive
target identification.

Figure 3 shows an application developed by us to de-
termine the properties of visual attributes for preatten-
tive processing. After starting the application the screen
is initially empty. If the user presses a key 1000 blue
squares and one red square are randomly distributed over
the screen without overlaps. As soon as the user finds
the red square he/she presses another key. The task is re-
peated 10 times and the total time between each pair of
key presses is recorded.
Two experiments were performed using 38 volunteers.

All but two of the volunteers were between 20–30 years
old and had limited previous experience with visualiza-
tions. Two volunteers were older and considerable more
experienced.
The first experiment tested how preattentive perception

depends on the object size. The users performed the above
described task for squares with side lengths of 2,4,6,8,and
10 pixels. The results for one subject are illustrated in fig-
ure 4. It can be seen that the time to find the red square
increases roughly exponentially with smaller pixel size.
An interesting result was that the ratio of the times for per-
forming the five tasks were similar for all 38 subjects, e.g.,
finding the red square with square sizes of pixels took
3-5 times as long as when the square sizes were
pixels. However, the actual times recorded varied greatly
between subjects. The slowest person (who was partially
colour blind) took for each task 3-5 times as long as the
fastest one. Other factors which might be responsible for
these differences but have not been examined in detail are
lack visual acuity and other vision defects, reaction time,
and mental awareness.
Closer examination showed that the volunteers differed

in the way they performed the tasks. Whereas some users
kept a constant distance from the screen other users moved
closer to the screen with decreasing size of the squares.
We found that for large pixel sizes the user must sit rela-
tively far behind the screen in order to find the target with-
out having to scan the screen. In contrast for small squares
it seems to be virtually impossible to find the target preat-
tentively with one glance and sitting closer to the screen
and looking at different areas of the screen seems to be the
most effective way to find the target.
Our initial results indicate that target identification

strongly depends on the size of the target and the spatial
resolution of the eye. In particular the results might indi-
cate that some properties of visual attributes, e.g., the fact

Figure 4: A chart of the time it took to find a red square
among 1000 blue squares using different square sizes.

that colour has a low spatial requirement, do not apply to
target identification tasks.
In the second experiment we tested how preattentive

target identification is affected by the colour dimension of
non-target squares. Initially all non-target squares were
blue and in the subsequent four tasks we added green,
black, yellow and cyan squares, respectively. In all five
tasks the number of squares was the same for each colour
present in the image. The results of the study are shown
in figure 5.

Figure 5: A chart of the time it took to find a red square
among 1000 non-target squares with 1, 2, 3, 4 and 5 dif-
ferent colours, respectively.

It can be seen that the time for finding the red square
increases with an increasing number of colours, but the
increase is not as significant as if the size is reduced. An
interesting observation is that for most volunteers the time
required to perform the task with 5 differently coloured
non-target squares was smaller than if using only 4 differ-
ent colours. One reason for this might be that yellow is a
“hot” colour which draws attention. Using 5 colours rather
than 4 reduces the number of yellow coloured squares and
as such might make it easier to find the red square.



As a conclusion from these initial experiments we sug-
gest that the classification in table 1 does not extend to
preattentive target identification. For example, colour is
listed as having a high information density because it has
a low spatial requirement and a high information den-
sity. However, our experiments show that for preattentive
target identification a certain minimum amount of screen
space is necessary and that the number of different colours
which can be used is limited. We intend to perform similar
experiments for other preattentive attributes in order to de-
termine their information content and information density
for preattentive target identification. Further experiments
are necessary in order to determine the results for other
preattentive tasks.

5.2 Combining Visual Attributes
As mentioned previously different visual attributes can be
used to create graphical primitives (visualization icons)
to represent data. The visualization icons themselves can
also be combined in order to yield more information than
the sum of the individual icons (Keller & Keller 1993).
Additional information may exist in the form of correla-
tion between multiple variables or as higher-order visual
information (Gestalt).
Correlation between related data sets is perceived most

easily when similar visualisation icons are used (Keller &
Keller 1993). Perception can be further improved by using
multiple visualisation techniques simultaneously for the
same data (Rheingans & Landreth 1995).
Gestalt concepts in visualisation are demonstrated by

Laidlaw et al. who use densely-arranged normalised ten-
sor ellipsoids in order to obtain a texture-like representa-
tion of a diffusion tensor field which improves the per-
ception of features and field properties (Laidlaw, Ahrens,
Kremers & Readhead 1998).
In contrast to correlated variables unrelated variables

are best displayed using orthogonal (independent) visual
attributes such as shape, colour, movement, and texture.
Many visualisation icons utilise multiple visual attributes
so extra care has to be taken when combining such icons.
In general it has been shown that the brain can handle a
maximum of about seven unrelated elements (Keller &
Keller 1993). Note that different visualisation icons can
also be used to display the same data in order to reinforce
information or to highlight different aspects of the data
(explicit redundancy).
Further guidelines for combining visualisation icons

are obtained from research on graphing data. For ex-
ample, visualisation icons which overlap should be visu-
ally distinguishable (Cleveland 1985). When visualisation
icons with similar shape are used colour can be used to
discriminate between them (Cleveland 1985). Mackinlay
(Mackinlay 1986) extends work from Bertin (Bertin 1983)
and classifies graphical encoding techniques into marks
(points, lines, areas), positional (1D, 2D, 3D), temporal
(animation), retinal (colour, shape, size, saturation, tex-
ture and orientation), maps, connections (tree, network)
and others. The author uses this classification to create a
composition algebra which specifies whether two encod-
ing techniques can be used for the same task. While the
work was developed for graph design many results apply
to the field of scientific visualisation. For example, when
size and shape are composed together small sizes must be
avoided since the shapes of the small objects may be hard
to distinguish.
This observation is reflected in our classification of vi-

sual attributes given in table 1. For example, length has
a medium spatial requirement but shape has a high spa-
tial requirement. Consequently an icon using both length
and shape for encoding data is restricted in its usage by
the spatial requirements for shape encoding. In general
the spatial requirement of an icon is given by the largest

spatial requirement of any of its visual attributes.
The effectiveness of visualisation icons is also influ-

enced by the chosen background. The background can be
used to highlight and support features in the image and can
be used to provide supplementary information and 3D per-
spective (Keller & Keller 1993). Keller and Keller recom-
mend that the background of a visualisation should have
a neutral (unsaturated) colour with a good contrast to the
foreground. The authors further recommend the use of
a horizontal (landscape) view since it corresponds to the
normal field of vision. 3D scenes should be oriented in
such a way that important features are in the foreground
and not covered by other scene components (Keller &
Keller 1993).

6 Increasing the Effectiveness of a Visualisation

A general approach for the creation of effective visuali-
sations is given by the “Natural Scene Paradigm” which
is based on our ability to immediately perceive complex
information in natural scenes (Robertson 1991). Imple-
menting this paradigm involves clear 3D structures and
the association of data with recognizable properties of ob-
jects.
In many cases no natural association between data and

icons exist and the understanding of a visualisation is de-
pendent on the target audience having a priori knowledge
about it. In particular familiarity with the data set and the
particular visualisation techniques is often required.

6.1 Lighting
Since our environment is illuminated by a wide variety of
natural and artificial light sources, the human brain is well
adapted to perceive geometric information from shading.
As mentioned in section 3 the single most important clue
in shape recognition is diffuse illumination. Hence light-
ing is essential if using icons which encode information by
shape (such as height fields, isosurfaces, and tensor ellip-
soids). On the other hand, illuminating an object changes
its perceived colour so that lighting should be disabled if
colour is the primary visual attribute. For example, in fig-
ure 2 lighting is disabled for the rendering of flat or nearly
flat (“shape-less”) surfaces such as the textured ground
plane and the heightfield but lighting is enabled for the
vector arrows.
Some authors suggest that diffuse shading is the most

important shape cue and that adding specularity does
not significantly improve perception of shape differences
(Rodger & Browse 2000). Therefore specular material
properties should be avoided for icons which use colour
as a secondary visual attribute. On the other hand specu-
lar highlights can help to distinguish object details, such
as the radius of a rounded edge, so that adding specular-
ity to objects with low colour variations (e.g., isosurfaces)
improves the amount of perceived information.
The use of shadows can further improve the perception

of the 3D geometry of an object. For example, shadows
have been successfully employed for visualizing 3D vec-
tors over 2D slices (Klassen & Harrington 1991). Shad-
ows can also be used to indicate the distance of an object
from a background plane and help to indicate the spatial
order of objects. It has also been shown that shadowing
increases the accuracy (but not speed) of object position-
ing (Hubona, Wheeler, Shirah & Brandt 1999). However,
Hubona et al. (Hubona et al. 1999) show that using mul-
tiple shadowing light sources decreases user performance
for positioning and resizing tasks, which indicates that the
perception and interpretation of scientific visualisations
might also suffer if more than one light source is used for
shadow creation.



6.2 Perceptual Clues
In general it is difficult to design a visualisation using the
natural scene paradigm. More concrete techniques for im-
proving perception and understanding are

Shape clues
Contextual clues
Annotations

Shape clues are used to improve the perception of the
3D geometry of a scene. Two major classes of shape clues
exist: illumination (explained in the previous subsection)
and explicit redundancies. Techniques based on explicit
redundancies include emphasizing of silhouette curves
(figure-ground boundary) and contour curves (depth dis-
continuities) (Saito & Takahashi 1990) and the use of mir-
rors. Projections of coloured shadows on the 3 coordinate
planes have also been used (Allen B. Tucker 1997).
Contextual clues improve perception by enabling the

brain to relate abstract visualisation icons to familiar ob-
jects or properties. Examples of contextual clues inherent
in a data set are coastlines, bounding boxes, and model
outlines which improve the perception of positional infor-
mation. Motion blur can be used to indicate velocities.
Additional contextual clues to make data more readable
include numbered scales, grid lines, and abstract objects
to suggest value and relationships (see (Tufte 1983)). Ob-
ject recognition can be increased by comparing an object
with similar ones familiar to the user. This can be achieved
by using multiple windows with the same view, by using
split-screen techniques or by using overlay techniques.
Zhang et al. (Zhang, Curry, Morris & Laidlaw 2000)

apply contextual clues to the field of medical imag-
ing and use easily identified anatomical features to im-
prove the understanding of the 3D geometry of visualised
nerve fiber structures. An example from our own work
(Wünsche & Lobb 2001,Wünsche 2003b) is shown in fig-
ure 6. The tube-like structures indicate nerve fiber tracts,
whereas the green and red isosurfaces represent the eyes
and the ventricles, respectively. The latter two objects are
anatomical landmarks which indicate the orientation of
the data set (the eyes are in the front of the head), improve
the perception of the position of the nerve fibers inside the
head, and clarify the perception of the 3D geometry since
the fibers tracts furthest away from the view point are oc-
cluded by the ventricles.
Finally annotations can be used to identify features and

to explain relationships. Examples are legends, labels, and
markers. Legends should be comprehensive, informative
and draw attention to important features in the data set
(Cleveland 1985). Care has to be taken that the annota-
tions do not distract from the actual goal of the visualisa-
tion (Tufte 1983).

6.3 Exploration Techniques
The perception of a visualised data set is further improved
by enabling the user to interact with the data. Com-
mon types of interaction are rotation, translation (pan) and
zoom. Walk through and fly through features are also pop-
ular. An example of the resulting improvement in percep-
tion is explained in (Wünsche 2003a, Wünsche & Young
2003): If large numbers of icons are distributed over a
3D domain, rotating the model around its axis enables the
brain to differentiate icons in the foreground and the back-
ground. Animating the interaction, e.g., using continuous
rotations or automatic fly-throughs, can help the user to
concentrate on the data.
Other common interaction techniques are fish-eye

views and cut-away (clipping) techniques. A generalisa-
tion of clipping is the sectioning tool (Wünsche 2003b).

Figure 6: A visualisation of the nerve fiber structure in
the brain. Perception is improved by inserting familiar
anatomical structures such as the eyes (green) and the ven-
tricles (red).

The tool slices a data set into sections and arranges them
regularly in 3D. Inner structure is revealed but the global
structure can still be perceived due to the brain’s ability to
visually interpolate slice data.
Region-of-interest techniques allow the user to extract

a region of interest from the data volume. In most cases
regions of interest are interactively defined by placing a
box or a sphere into the volume. In some cases simple
shapes are not sufficient to extract an interesting region
such as an anatomical abnormality in a medical data set.
Ney and Fishman (Ney& Fishman 1991) present a tool for
interactively creating shapes suitable to define arbitrarily
shaped regions of interest in a data set.
Fuhrmann and Gröller (Fuhrmann & Gröller 1998) in-

troducemagic lenses and magic boxes as a tool to improve
3D interaction. Magic lenses are planar usually circular
objects which magnify the scene behind the lens and re-
move the volume in front of it. Magic volumes are ex-
plicit focus volumes in which a detailed representation of
the visualisation is displayed. The back faces of the box
are opaque in order to reduce distraction.
Large data sets can be efficiently explored by using

multiscale visualisations which use different levels of ab-
straction for detail views and overviews of the data. An
example is given by Stolte et al. (Stolte, Tang & Hanrahan
2003).
Data brushing, originally developed for multivariate

data, can also be utilised in scientific visualisation by se-
lecting or highlighting icons shown in one view in all other
views of the data. The technique can be used to increase
rendering speed, to highlight or to extract features and to
facilitate the discovery of relationships between subsets
of the data (Wong & Bergeron 1996, Wong & Bergeron
1997).
Finally image graphs (Ma 1999, Ma 2000) and vi-

sualisation spreadsheets (Chi, Riedl, Barry & Konstan
1998, Jankun-Kelly & Ma 2001) allow the user to interac-
tively change visualisation parameters while seeing their
effects on the final image.
An increasingly popular approach to dealing with ex-

tremely large data sets is the use of immersive environ-
ments such as virtual reality (VR) workbenches (Bryson
& Levit 1991, Bryson 1996) and CAVE theatres (Jaswal
1997). Interaction with data is achieved using data gloves
(Bryson & Levit 1991, Bryson 1996, Fröhlich, Barrass,



Zehner, Plate & Göbel 1999) or natural interaction tech-
niques such as speech and hand gestures (Sharma, Zeller,
Pavlovic, Huang, Lo, Chu, Zhao, Phillips & Schulten
2000).
For large data sets exploration results might be im-

proved by employing a collaborative visualisation in
which research teams collectively analyze data (Wood,
Wright & Brodlie 1997). Fuhrmann et al. suggest that col-
laborative exploration is facilitated by using augmented
reality which combines familiar physical surroundings
with synthetic data (Fuhrmann, Löffelmann, Schmalstieg
& Gervautz 1998). Issues relating to collaborative con-
trol are discussed in (Bresnahan, Insley & Papka 2000).
Recently collaborative visualisation over the Internet has
been proposed as an effective learning tool (Pea 2002).
Direct interaction with the data can be replaced or sup-

plemented by a presentation simulating an interaction. For
example, a sequence of successively magnified images re-
veals structure whereas a simultaneous display of images
using different techniques shows multiple aspects of a data
set (Keller & Keller 1993).

7 Conclusion

We suggested a classification of visual attributes accord-
ing to information accuracy, information dimension and
spatial requirement. From this classification we deter-
mined the information content and the information den-
sity of a visual attribute. The classification can be used to
select and to develop graphical representations for a given
visualisation task by considering the visual attributes most
suitable for that task. An initial analysis of visual at-
tributes for preattentive target identification suggests that
our results do not extend to this task. Further research is
necessary to quantify our classification and to extend it
to other visual processing tasks. An important observa-
tion which might be useful for the development of user
interfaces for data exploration is that the effectiveness of
a visualization can not be measured in absolute terms but
depends on how it is viewed.
We presented additional guidelines for creating more

effective visualisations and motivated them using the
“Natural Scene Paradigm”. An important result is that
lighting should not be applied globally to a scene but only
to objects where illumination aids the shape recognition.
If the color of an objects encodes important information it
might be better to render it without shading. While unnat-
ural this rule optimises the perception of information from
shape and colour attributes.
We hope that this work will enable the reader to create

visualizations that represent complex sets of information
more effectively.
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Fröhlich, B., Barrass, S., Zehner, B., Plate, J. & Göbel, M.
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