A Survey and Evaluation of Mesh Reduction Techniques

Burkhard Winsche

Department of Computer Science, The University of Auckland
Private Bag 92019, Auckland, New Zealand

Email: burkhard@cs.auckland.ac.nz

Abstract: Large polygon meshes are a common entity in scientific and engineering science. Polygon
meshes can be used for simplified geometric operations such as collision detection and surface analysis
and permit hardware assisted rendering, an essential condition to achieve real-time display. In practice,
meshes obtained by conventional polygonization techniques are often too big for efficient rendering and
postprocessing. A mesh reduction technique is then employed to reduce the mesh size. This paper gives
an overview of common mesh reduction techniques, classifies them according to their design methodology
and compares and evaluates them.
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1 Introduction

Large meshes are common in computer graphics, for example when using devices such as CT, MRI, range
cameras, or satellite data. Since large meshes put a strain on storage capacity, communication, and
rendering hardware a mesh reduction algorithm must often be applied. The chosen technique depends
on the application. Whereas some techniques aim only to eliminate small and badly shaped polygons,
other techniques try to achieve a maximum reduction of polygons. Often the user wants to get a fast
preview of the mesh with the possibility to increase the resolution of the whole mesh (multiresolution
surface meshing) or part of the mesh (local level-of-detail control). The latter technique is common in
digital terrain modeling where far away objects can be approximated less accurately to improve rendering
speed!. A survey of polygonization methods and optimization techniques is given by Wiinsche [27].
An introduction into mesh reduction techniques is given by Schroeder [22] and a short overview and
classification is contained in [19].

2 Simplification Methodologies

We identify six methodologies used for mesh reduction:

I. Polygon merging combines coplanar or nearly coplanar polygons into bigger ones. The original
topology of the mesh is not changed.

The merging criteria are often based on the surface gradient (e.g., as given by the polygon normals)
[11, 15] or can be perceptually driven as done by Reddy [19] who uses the human Contrast Sensitivity
Function which considers both size of a polygon and surface curvature.

After merging the polygons, collinear or nearly collinear edges are eliminated [11] or polygon bound-
aries are approximated by straight lines with respect to a distance measures [15]. The such simplified
polygons are then retriangulated.

II. Polygon elimination deletes polygons by collapsing their vertices to single points.

The methods using this technique vary mostly only in the criteria used for polygon elimination. The
quality of a mesh can be improved by eliminating very small or very thin polygons [18] whereas a

1For a good overview of algorithms for the simplification of polyhedral terrains see [10].



larger polygon reduction is usually achieved by eliminating polygons according to surface curvature
[9]. Gieng et al. [7] use triangle-collapse operations. For each triangle they generate a bivariate
polynomial approximating the underlying surface in the area of the triangle. This function serves as
a basis for finding an optimal point to which the triangles are collapsed. The elimination criterion
for a triangle depends on its size and shape and the curvature of the generated polynomial.

III. Vertex elimination deletes vertices and retriangulates the resulting holes.

Typical criteria used for vertex elimination are planarity or curvature criteria [24] or global minimum
distance errors to the initial mesh or, if known, the original surface [5].

Schroeder [23] improves the quality of the simplified mesh by preserving high-frequency information
such as sharp edges and corners. The decimation algorithm visits each vertex and classifies the local
geometry and topology in the neighbourhood of the vertex. A vertex is deleted if it fulfills a local
planarity measure given by the distance to a plane function for interior vertices and a distance to
line function for boundary vertices.

Renze and Oliver [20] present a robust triangulation method to fill the holes resulting from vertex
elimination. Ciampalini et al. [3] minimizes the approximation error of a triangulation by a series
of edge flipping operations. They consider for this the approximated volumetric error, the sampled
local error, and the triangle aspect ratio and area difference. The authors mention that by using
edge flipping they obtain a better approximation with nearly one-half of the triangles used without

flipping.
IV. Edge collapsing replaces edges by vertices, obviating the need for retriangulation.

An edge can be replaced either by its center [1] or by moving one endpoint onto another [28, 21].
The first solution sometimes yields a better approximation whereas the latter solution retains the
original vertex set which proves useful in the definition of efficient multiresolution meshes (see
section 3). Cohen et al. [4] choose the new vertex in a two dimensional projection of the local mesh
in order to avoid self-intersection and optimize in the third dimension to minimize the error.

Hoppe et al. [14] use as a criteria for edge collapsing an energy function over a mesh to minimize both
the distance of the approximating mesh from the original, as well as the number of approximating
vertices. In [12] he extends his method in order to not only preserve the geometry of the original
mesh but also the overall appearance defined by its attributes such as colour, normals, and texture
coordinates. Hoppe achieves this goal by using an energy metric such that an edge collapse for an
edge with different attributes has a low priority.

For view-dependent refinement it is possible to develop criteria depending on viewing direction,
lighting, and the screen-space projection area [28] or view frustum, surface orientation, and screen-
space geometric error [13].

Cohen et al. [4] develop a piece-wise linear mapping function for each simplification operation which
is used to compute tight error bounds for the simplified mesh. The mapping function can also be
used to compute appropriate texture coordinates, colour, or surface normals for the simplified mesh
and is used for geomorphing and the computation of tight error bounds on colour and overall
appearance.

V. Retiling replaces the entire mesh with a coarser one using some error criteria. The original polygo-
nization is used only to provide the error measure.

An example is given by Turk [26] who distributes a set of points on a mesh by point repulsion, with
density weighted by estimates of local curvature and uses these points for a new polygonization.

VI. Multiresolution Wavelet Analysis (MRA) is used to decompose a simple function into a low
resolution part and so-called wavelet coefficients necessary to recover the original function. To apply
multiresolution analysis to mesh reduction the mesh is expressed as a parametric function. The low
resolution part of the function gives then a reduced mesh in which the new vertices are weighted
averages of the original vertices [17, 6].

View dependent refinement can be achieved by filtering the wavelet space directly [8] whereas reduc-
tion of other mesh attributes such as colour can be achieved by combining a different multiresolution
presentation for them with the representation for the geometry at display time [2].



3 Multiresolution Meshes

In many applications the optimal mesh simplification level is known only at run-time. For example, in
Virtual Reality applications parts of the scene close to a moving viewer or being highlighted must be
displayed in a higher resolution than parts far away or lying in a shadow. A multiresolution representation
provides a solution. It is a data structure that allows a compact representation of different levels-of-detail
(LOD) with a size of the same order as the data size [3].

Multiresolution meshes are becoming increasingly popular since they usually also offer progressive storage,
transmission, and reconstruction (starting with a low resolution base mesh). Two types of multiresolution
meshes are described in the literature:

Multiresolution wavelet analysis (MRA), already introduced in the previous section, stores a mesh as a
base mesh and a series of wavelet coefficients. Progressive Meshes [14, 12, 23, 28] are a series of triangle
meshes connected by reversible simplification operations. Usually the edge collapse operation is chosen,
which according to Schroeder [23] is fast and leads to a representation smaller than the original mesh
representation. A similar scheme using triangle collapse operations with an inverse vertex split was
developed by Gieng et al. [7].

Hoppe [12] and Ciampalini et al. [3] mention that in contrast to MRA their approaches have lossless
representation, manage feature edges or discontinuities with higher precision and are more efficient in
construction and reconstruction. Multiresolution analysis also has the disadvantage that it requires
remeshing and resampling [3]. Furthermore the wavelet approach can be somewhat conservative and
for a given error bound, algorithms based on vertex removal and edge collapse [5, 12] have been found
to provide more simplification (in terms of reducing polygon count). Hoppe [12] lists as advantages of
MRA that it allows approximations with a guaranteed global error [6] and the independent compression
of geometry and attributes [2].

4 Comparison

We have introduced a variety of mesh reduction techniques and provided some comparisons of decimation
methodologies and decimation criteria. In order to convey better understanding of the methods we now
present an extended and updated version of a classification framework previously introduced by us in
[27]. We then summarize some comparisons of speed and achieved mesh quality published in the existing
literature.

Our criteria for a classification are:

1. Does the algorithm achieve the approximation with a given number of vertices or polygons (bounded
number approximation)?

2. Does the algorithm achieve the approximation with a given maximum error of € (bounded € approz-
imation)?

Does the algorithm provide multiresolution surface meshing to obtain meshes of different resolution?
Does the algorithm provide a geomorph to interpolate smoothly between different levels-of-detail?

Does the algorithm use a subset of the original mesh vertices (vs. resampling)?

SR A

Does the algorithm preserve the mesh topology? Methods which allow a controlled change of the
topology are marked with an asterisk in table 1.

7. Does the algorithm allow a local level-of-detail control? This is useful if only selected parts of a
model must be approximated in detail.

8. Does the algorithm work for arbitrary meshes (i.e., for triangular 2-manifold meshes)?



9. Which error measure/removal criteria is used: 1. distance measure 2. polygon size 3. surface
curvature (estimated by normal angle) 4. wavelet coefficient .

Note that preservation of topology is important in applications such as FEM analysis, medical imaging,
or molecular modelling but in many other applications such as Virtual Reality it presents an undesired
constrain impacting on interactivity and speed. An example for a desired change in topology would be a
cubical plate with many small holes which, if topological change is allowed, can be approximated by just
six polygons. The results of classifying the presented algorithms with these criteria are shown in table 1.

Criteria

1. 2. 3. 4. 5. 6. 7. 8. 9.

11 No | No| No| No | Yes| Yes | No | Yes 3

L 15] | Yes | No| No | No | Yes | Yes | No | Yes | 1+3
9 Yes | Yes | No | No| No | Yes | No | Yes 3

IL. 7 Yes | No | Yes | Yes | No | Yes | No | Yes | 243
24] | Yes | No| No | No | Yes | Yes | No | Yes 1

5] No | Yes | No| No | Yes | Yes | Yes | Yes 1

L 23] | Yes | Yes | Yes | No | Yes | No* | No | Yes 1
3] | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes 1

14] | Yes | No| No | No | No | Yes | No | Yes 1

12] | Yes | No | Yes | Yes | No | No* | Yes | Yes 1

28] | Yes | No | Yes | No | Yes No | Yes | Yes 5

V. 21] | Yes | Yes | Yes | No | Yes | No* | No | Yes 1
1 No| No| No| No| No| Yes | No | Yes 3

4 Yes | Yes | No | Yes | No | Yes | Yes | Yes 1

| VI[[25]] Yes | No[ No|Yes | No| Yes| No| Yes | -]

[17] | Yes | Yes | Yes | Yes | No | Yes | No | No 4

6 Yes | Yes | Yes | Yes | No | Yes | Yes | Yes 4

VI 8 Yes | Yes | Yes | No | Yes | Yes | Yes | No 4
2 Yes | Yes | Yes | Yes | No | Yes | No | Yes 4

Table 1: Comparison of mesh reduction techniques.

Currently the Mesh Optimization algorithm from Hoppe et al. [14] and the Mesh Decimation method
from Schroeder et al. [24] appear the most popular and have been the basis for numerous new algorithms
[12, 13, 4, 23, 3].

Several authors [22, 15, 3] suggest that Retiling [26] is well suited for curved, round objects and that Mesh
Optimization [14] appears to give best results, but both algorithms are relatively slow. Mesh Decimation
[24] and Geometric Optimization [11] appear to be fastest. Schroeder [23] states the time complexity of
Mesh Decimation as O(n).

Ciampalini et al. [3] report that their algorithm is about 20-30 times faster than Mesh Optimization, but
about 10 times slower than Mesh Decimation. Given a target number of vertices their global error is 4 —
10 times lower than with Mesh Decimation and only slightly worse than Mesh Optimization.

Finally we note that most methods achieve simplification by a local error criteria such that the global
error for a simplification step is only given as an incremental and hence rather inexact error. Efficient
global error control is achieved by [5, 16, 23, 4].



5 Conclusion

Polygon meshes allow conventional storage of implicit surfaces, permit hardware assisted rendering, and
are used for numerous simplified geometric operations and other applications.

In practice meshes obtained by conventional polygonization techniques are often too big for efficient
rendering and postprocessing. A mesh reduction technique is then employed to reduce the mesh size. We
have introduced a variety of mesh reduction techniques, have classified them into six groups and have
given an evaluation and comparison between them. The field of multiresolution meshes deserves special
attention and we plan to publish a more detailed review and evaluation shortly.

We hope that our work forms a good basis for the decision making about which method to implement
and for the development of new mesh reduction techniques.
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