
1

Parameter Optimisation for Texture Completion
Hoang M. Nguyen, Burkhard C. Wünsche, Patrice Delmas, and Christof Lutteroth

Dept of Computer Science, University of Auckland, Auckland, New Zealand
justin.nguyen@auckland.ac.nz {burkhard, p.delmas, lutteroth}@cs.auckland.ac.nz

Abstract—In 3D reconstruction applications frequently large mesh sections are missing. While the geometry can be
created with mesh completion techniques, reconstructing the texture is more difficult. An exemplar-based synthesis usually
requires that the missing region contains only one texture pattern. Image inpainting techniques work for more complex
textures, but were designed primarily to fill narrow missing regions and tend to produce undesirable results when the
missing region is large. We solve this problem by exploiting the fact that most 3D objects contain different surface regions
with similar textures. We use an appearance space to identify suitable texture patches fitting with the boundary of the
missing region, and fill the region by using a patch-based synthesis combined with Poisson interpolation. We evaluate the
effect of different parameters and demonstrate its improved performance over existing inpainting techniques.

Keywords—texture retouching, texture inpainting, texture completion, image information recovery

F

1 INTRODUCTION

Over the past couple of years 3D reconstruc-
tion technologies have improved tremendously
and are now available in the consumer-level
domain. Examples include structured lighting
(Kinect), laser scanners, and image-based mod-
eling. In many applications the resulting mesh
contains large missing regions, e.g. because the
surface was invisible to the utilised sensor. Sur-
face reconstruction techniques, such as Poisson
Surface Reconstruction, and mesh completion
techniques can create a watertight surface, but
are unable to reconstruct texture information.

Missing textures can be obtained with texture
synthesis methods, but these usually employ a
single exemplar and assume a consistent tex-
ture over the missing region. Image inpainting
techniques work for more complex textures, but
were designed primarily to fill narrow missing
regions and tend to produce undesirable results
when the missing region is large.

3D objects in the real-world usually contain
repeating geometries and textures, e.g. the sides
of an animal, components of a plant (stem,
branch, blossom), or man-made objects which
are usually designed using symmetries and
self-similarities (e.g. walls and windows of a
house).

In this paper we perform texture completion
by exploiting the fact that most 3D objects

contain different surface regions with similar
textures. We use an appearance space to iden-
tify suitable texture patches fitting with the
boundary of the missing regions, and fill the
region by using a patch-based synthesis com-
bined with Poisson interpolation.

The remainder of this paper is organised
as follows: After a brief discussion of existing
image inpainting techniques in section 2, we
describe our inpainting algorithm in section 3.
Section 4 presents results and section 5 con-
cludes this paper.

2 RELATED WORK

Image in-painting techniques can be divided
into two classes. Pixel-based methods fill the
missing region pixel-by-pixel starting from the
boundary, whereas patch-based methods usu-
ally add entire patches and minimise disconti-
nuities between texture regions.

The arguably best known and most suc-
cessful algorithm amongst pixel-based inpaint-
ing methods was proposed by Bertalmio et al.
[1]. The authors attempt to replicate manual
inpainting by propagating the known color
values into a missing region along so called
isophotes, representing the smallest spatial
change of color values and structures.

Drori et al. [2] use adaptive circular fragments
to operate on different scales to capture both

2

global and local structures and approximate the
missing region.

Telea et al. [6] present an inpainting technique
based on a fast marching method for level set
applications. The method is simple and con-
siderably more efficient than other pixel-based
methods.

Pixel-based methods often fail to properly re-
construct larger structures with semantic mean-
ing, e.g. leaves. Criminisi et al. [3] iteratively
select a “best-fit” rectangular patch and copy it
over to the target region. The order in which
boundary pixels of the missing region are pro-
cessed is based on the amount of information
available for that pixel and whether it has any
prominent features.

Cheng et al. [4] update the priority equation
of [3] and made it adjustable to the structural
and textural information specific to an image.
Ignacio et al. [5] extend the concept of Cri-
minisi’s method and apply it in the wavelet
domain.

3 ALGORITHM

We employ a similar patch search and insertion
concept as Criminisi et al., but use appearance
space attributes and principal component anal-
ysis to improve region matching quality and
speed. In addition, our method smoothly fuses
patches together to remove all visible seams.

3.1 Candidate Patch Identification
The algorithm’s performance is significantly
effected by the ability to identify the patch in
the image that retains the highest resemblance
to the processed patch. This is achieved by
iteratively traversing through each pixel of the
image outside the missing region and comput-
ing the similarity of the patch centered around
that pixel and the original patch. Instead of
using the standard Sum of Squared Differences
(SSD) to measure the similarity of two given
patches, we employ appearance space attributes,
which provide much more information and
thus improve the search result.

When searching for a matching patch, we
consider for each pixel an 11 × 11 pixel neigh-
bourhood. For each pixel of this neighborhood

we consider RGB colours, the gradient vector,
as well as the signed Euclidean distance to the
closest dominant feature in the original texture.

Gradient Vector: We estimate the gradient
of an intensity image I, (∂I

∂x
, ∂I
∂y

) by using the
convolution kernels of a standard Sobel opera-
tor. The two kernels for the x and y directions
are:

Sx = (1 2 1)T · (1 0 − 1) (1)

Sy = (1 0 − 1)T · (1 2 1) (2)

The attribute gradient image is then defined
as:

A(p) = ((Sx ∗ I)(p), (Sy ∗ I)(p)) (3)

where p denotes an image pixel.

Signed Feature Distance: The signed fea-
ture distance of a pixel p is defined as the
distance of p to the closest pixel q ∈ M for
which M(p) 6= M(q) where M is a binary image
created by applying the canny edge detection
method [11] on the input image.

The distance between two pixels is defined
using the following equations (adapted from
[9]):

A(p) = s · (max
r ∈ M

λ(r)− λ(p)) (4)

λ(x) =
1

|qx − x|
(5)

f(x) =

{
1 if M(p) = 1

−1 if M(p) = 0
(6)

The vector (qx−x) points from x to the closest
pixel q in M.

The entire attribute information is encapsu-
lated into a 11 × 11 × (3 + 2 + 1) = 726-
dimensional vector. Determining the similarity
of two given patches by comparing two 726-
dimensional vectors is not efficient. In order to
make the appearance space more practicable,
the 726 dimensional vectors are projected into
low-dimensional vectors using principal compo-
nent analysis (PCA) ([9], [10]). In our method,
the dimensionality is reduced to 8, which in
our experiments with different image types
produced the best results.

3

The clear advantage of the attribute space
over the conventional SSD is that the attribute
space approach permits any meaningful infor-
mation about the pixels and their surrounding
to be embedded for matching purposes. By
reducing the dimensionality, the computation
time can be kept manageable.

3.2 Patch Fusion
The final step is to replicate the content of the
candidate patch and smoothly blend it with
the target region. We employ a Poisson-guided
interpolation approach proposed by [7] for this
task.

The goal is to adjust the colour information
of patch ΨB, while preserving the relative infor-
mation (image gradient) as much as possible, so
that the transition between the newly modified
patch ΨC and the rest of the image is gracefully
blended.

4 EVALUATION

In this section, we investigate the effect of
different algorithm parameters and evaluate its
performance over popular existing algorithms.

4.1 Effect of Parameters

Fig. 1. The original image is on the left, while
the damaged image is on the right

Effect of appearance space attributes:
Figure 2 shows an example in which the pre-
vious damaged “lizard” image (Figure 1) is
inpainted using various different appearance
space attributes. The following combinations
of appearance space attributes are used for
testing.
• Case 1: RGB color, HSB color, signed

feature distance, horizontal and vertical
gradient vectors.

Fig. 2. Appearance space attribute parameters:
a) Color, HSB color, signed feature distance,
horizontal and vertical gradient vectors. b) Color,
signed feature distance, horizontal and vertical
gradient vectors. c) Color and signed feature dis-
tance. d) Color, horizontal and vertical gradient
vectors.

• Case 2: RGB color, signed feature dis-
tance, horizontal and vertical gradient
vectors.

• Case 3: RGB color and signed feature
distance.

• Case 4: RGB color, horizontal and vertical

4

gradient vectors.
As can be observed from figure 2, there is

little or no visual difference between the first
and second case. This indicates that adding the
HSB color attribute does not result in finding
better patches.

There is an obvious difference in the result
quality when the gradient vectors are removed.
Some parts of the texture of the head become
fuzzy and appear incorrect. A small part of the
line on the body of the lizard is missing.

The result quality further deteriorates when
removing the signed feature distance attribute
in favor of the gradient vectors. The textures
become much more blurry and more missing
features are noted. This is probably due to the
fact that inccorect patches have been identified
and blended in this case.

We tested the different combinations of at-
tributes with various images from different do-
mains, and the results indicate that the optimal
combination of appearance space attributes is
RGB color, signed feature distance, horizontal and
vertical gradient vectors. Adding more attributes
often contributes little or no improvement and
yet increases the computational cost.

Effect of attribute vectors’ dimensionality:
In order to improve the efficiency, appear-
ance attribute vectors are projected to a low-
dimensional vectors before being compared to
others. In this section, we evaluate the effects
of the dimensionality of reduced appearance
attribute vectors on the the result quality.

Figure 3 shows an example in which appear-
ance attribute vectors were reduced to different
dimensions (8, 7, 6, 5) before comparison. Re-
ducing the original 726−dimensional attribute
vectors to a 8−dimensional vector yields good
results. Missing textures are reconstructed well
and seamlessly fused with the existing textures.
We found that using more than 8 dimensions
does not result in a visible improvement of the
texture completion result.

Reducing the dimension further to 6 or 7
increases blurriness. This is probably due to the
fact that the reduced vectors did not contain
enough information for correct patches to be
found.

When only 5 dimensions are retained, defor-
mations start to appear due to the lack of infor-

Fig. 3. Appearance space attribute dimensions:
a) 8−dimensional vectors. b) 7−dimensional
vectors. c) 6−dimensional vectors. d)
5−dimensional vectors.

mation required for correct patch detections.
Effect of Patch Size: Figure 4 demonstrates

the difference in the result quality when vary-
ing the patch sizes. We found that in most
cases the ideal patch size is the range between
7 and 11. Inpainted images in these cases are
often well-reconstructed. As the size of the
patches increases, the painted regions tend to
become more blurry. This is probably because

5

the larger the patch size is, the more unrelated
features from surrounding regions are involun-
tarily taken into account leading to less accu-
rate patch to be selected. Patch sizes smaller
than 7 increase the computational cost while
contribute little improvement in term of the
quality.

Fig. 4. Effect of patch sizes on the result quality.

4.2 Evaluation against Other Inpainting
Methods
In this section, we evaluate the performance of
our method against some of the best known
image inpainting methods described in the lit-
erature (Figure 5).

Bertalmio’s method [1] was not very success-
ful in this test. It was able to reconstruct small
parts of the missing regions (near the bound-
ary), but failed to interpolate textures further

for the middle regions resulting in patches with
colours not consistent with the regions neigh-
borhood.

Telea’s method [6] outperformed Bertalmio’s
method both in terms of reconstruction quality
and efficiency. However, the inpainted regions
appear very blurry and unrealistic. This is ex-
pected as pixel-based methods were designed
to tackle only narrow missing regions.

Standard exemplar-based inpainting method
(Criminisi [3]) performed reasonably well ex-
cept for some artefacts. These artefacts are
caused by incorrect patches that were selected
as a result of employing the conventional SSD.

Our algorithm performed well in this test
case. Although the inpainted region still ex-
hibits slight blurriness, the overall structure
of the different scene components is correctly
recovered.

5 CONCLUSION AND FUTURE WORK

We have presented a novel image inpainting
algorithm for synthesizing large missing tex-
ture regions from digital images. The results of
this inpainting process is a new image in which
the deterioration has been “inpainted” and re-
verted in such a way that few visible traces
of it remain. The basic idea of our approach
is to replicate missing textures by looking for
“best-fit” texture patches in the source regions
and smoothly inserting these patches into the
missing region to produce the final result.

Our solution offers two major improvements
compared to existing techniques. Patches for
filling in missing regions are found using an
appearance space vector, which not only en-
codes colour differences between regions, but
also colour gradients, feature distances and
other measures for image similarity. The second
major improvement is the technique to combine
the patches filling in a missing region. We use a
Poisson-guided interpolation to blend patches
to avoid visible seams.

We have evaluated our method’s perfor-
mance against some of the best known inpaint-
ing methods described in the literature and
found that our results are superior.

6

REFERENCES

[1] Marcelo Bertalmio and Guillermo Sapiro and Vicent
Caselles and Coloma Ballester, Image Inpainting, In Pro-
ceeding SIGGRAPH ’00 Proceedings of the 27th annual
conference on Computer graphics and interactive tech-
niques, pp. 417–424

[2] Iddo Drori and Daniel Cohen-Or and Hezy Yeshurun,
Fragment-Based Image Completion, ACM Transactions on
Graphics, Vol. 22, pp. 303–312

[3] A. Criminisi and P. Perez and K. Toyama, Object re-
moval by exemplar-based inpainting, ACM Transactions
on Graphics, pp. 721–728

[4] Wen-Huang Cheng and Chun-Wei Hsieh and Sheng-Kai
Lin and Chia-Wei Wang and Ja-Ling Wu, Robust algorithm
for exemplar-based image inpainting, In Proceedings of
CGIV, pp. 64–69

[5] Ubirate Ignecio and Cleudio R Jung, Block-based image
inpainting in the wavelet domain, Visual Computing,
pp. 733–741

[6] Alexandru Telea, An image inpainting technique based on
the fast marching method, Journal of Graphics Tool, Vol. 9,
pp. 23–34

[7] Patrick Perez and Michel Gangnet and Andrew Blake,
Poisson image editing, ACM Transactions on Graphics,
Vol. 22(3), pp. 313–318

[8] Alexei Efros and Thomas Leung, Texture synthesis by non-
parametric sampling, In Proceeding of ICCV, pp. 1033–
1038

[9] Felix Manke and Burkhard Wunsche, Analysis of appear-
ance space attributes for texture synthesis and morphing,
Image and Vision Computing New Zealand 2009. IVCNZ
09, pp. 85–90

[10] Sylvain Lefebvre and Hugues Hoppe, Appearance-space
texture synthesis, ACM SIGGRAPH 2006 Papers, pp. 541–
548

[11] Canny J, A Computational Approach To Edge Detection,
IEEE Trans. Pattern Analysis and Machine Intelligence
1986, Vol. 8(6), pp. 679698

Fig. 5. a) The input image. Image inpainting
results obtained using the algorithms from: (b)
(Bertalmio et al. 2000), (c) (Telea et al. 2004),
(d) (Criminisi et al. 2003) and (e) our method.

