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ABSTRACT 
Euclidean-based distance metrics are commonly used for 
measuring geometric shape distortions of 3D models, but have 
several drawbacks.  They have strict requirements regarding 
model representation and usually necessitate expensive surface 
sampling or point correspondence matching.  Furthermore, many 
distortion metrics have been designed to capture relatively minor 
shape changes, rather than large-scale (global) shape distortions 
which can occur during compression and image-based 
reconstruction.  This paper presents a new geometric distortion 
metric for offline quality assessment of 3D models.  The new 
metric is largely independent of object representation and does not 
require any surface sampling or point matching operations.  It can 
capture well both minor and severe shape distortions, on a large 
and small scale.  In the context of measuring the rate-distortion 
performance of a lossy mesh compression algorithm, the new 
metric provides a more reliable measure of overall shape 
distortion than the commonly used Hausdorff distance and a more 
relevant measure of surface error than the RMSE.  Visual 
distortion maps for the new metric are also created, which indicate 
that the metric also captures well the perceived shape error 
between two objects.  

Keywords 
Shape distortion; error metric; mesh compression; depth buffer; z-
buffer; orthographic projection. 

1. INTRODUCTION 
The accurate measurement of geometric shape distortions of 3D 
models during compression, watermarking, reconstruction and 
simplification, is still an open problem.  The main reason for this 
is that the term distortion lacks a formal definition and, as such, 
the existing error metrics used for this purpose often produce 
different, and sometimes conflicting, results.  This issue is 
especially critical in the field of lossy mesh compression, where 
the basis of evaluation and comparison of different algorithms is 
the rate-distortion curve.  Indeed, in a recent investigation [7], it 
was found that due to the disparities in the performance results 
produced by different error metrics, a complete evaluation of a 
lossy mesh compression algorithm can only be achieved by using 
several different distortion metrics.  Furthermore, most existing 
error metrics currently used for this purpose are purely based on 
Euclidean distance measures between the two models being 

compared.  Such metrics often have strict constraints on the 
representations of the models being compared (e.g., the two 
models must contain the same number of vertices), or else require 
expensive surface sampling and point correspondence matching 
techniques.  Moreover, it is now generally acknowledged that 
these purely geometric error metrics do not correlate well with the 
human visual perception of error.  For this reason, the recent trend 
has been to design perceptual error metrics, which aim to reflect 
an ‘average’ observer’s perception of distortion on a 3D model [8, 
9].  Most of these perceptual metrics have been designed to 
capture relatively small surface distortions and have not been 
tested for severe large-scale distortions that alter the global shape 
of an object.   

In this paper, we propose an alternative metric, termed the depth 
difference (DD), for measuring geometric shape distortion on 3D 
models.  This metric is able to capture distortions of different 
scale and extent, and it is independent of the object representation 
as long as the object can be rendered in 3D using depth values.  

Section 2 of this paper presents a review on existing distortion 
metrics for lossy mesh compression; Section 3 details the 
concepts and design procedure behind our proposed error metric; 
Section 4 covers implementation details; Section 5 describes our 
experimental procedures and presents the results; Section 6 
summarizes the key benefits of the DD metric and addresses some 
potential limitations; and Section 7 concludes this paper and 
suggests directions for future research. 

2. EXISTING DISTORTION METRICS 
FOR LOSSY MESH COMPRESSION 
Distortion metrics used in lossy mesh compression can be divided 
into two main categories: online error metrics and offline error 
metrics.  Online metrics (e.g., [4, 10, 13]) are generally designed 
to drive a specific compression (or simplification) algorithm, by 
checking that the quality of the reconstructed (simplified) mesh at 
certain points during processing satisfies some predetermined 
quality criteria.  Offline error metrics are used to evaluate the 
quality of a reconstructed 3D model at the end of transmission.  
Hence, offline error metrics are useful for evaluating and 
comparing the performance of different compression algorithms.  
The most commonly applied error metrics for evaluating lossy 
mesh compression algorithms are the root mean square error 
(RMSE) (e.g., [2]), the peak signal to noise ratio (PSNR) (e.g., 
[6]), and the Hausdorff distance (dH) (e.g., [1]).  These metrics 
require the two models being compared to have the same number 
of vertices (RMSE, PSNR), or else require surface sampling (dH) 
or searching operations to find the closest point correspondences 
between the two models.  Furthermore, the results produced can 
vary depending on the selected sampling parameters and point 
correspondences.  The requirement for the same number of 
vertices is impractical in lossy mesh compression, which often 
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involves mesh simplification procedures where the simplified 
model has a different geometry and connectivity to the original 
model.  Moreover, it is now generally acknowledged that these 
purely geometric error metrics do not correlate well with a 
human’s perceived error, and hence the visual interpretation of 
results is often ambiguous.  For this reason, a recent trend has 
been to design perceptual error metrics (a survey can be found in 
[9] and [8]), which aim to reflect an ‘average’ observer’s 
perception of error on a 3D model.  However, most of these 
perceptual metrics have been designed to capture relatively small 
surface distortions, and have not been tested for severe large-scale 
distortions that can alter the overall shape of an object.  Indeed, in 
[7] it was found that even the currently best performing perceptual 
metric, the mesh structural distortion measure 2 (MSDM2) [8], 
tends to under-estimate the perceptual effects of large-scale shape 
distortions, especially on very smooth, low-detail models.  
Additionally, most of the existing perceptual metrics still require 
some form of point correspondence searching on object surfaces.  
Several image-based perceptual metrics have also been proposed, 
which do not have this requirement (see [9]); however, generally 
the perceived degradation of still images is not adequate to 
evaluate the perceived degradation of the equivalent 3D model 
[15]. 

Based on these observations, we propose a new metric that is 
largely independent of object representation, is computationally 
inexpensive, is able to capture both minor and severe shape 
distortions on different scales, and has some correlation with the 
human perception of shape distortion.   

3. THE DEPTH DIFFERENCE (DD) 
METRIC 
The metric we are proposing aims to capture the visible volume 
difference between two 3D models.  We achieve this by 
comparing 2D depth images (DIs) obtained using orthographic 
projections of the 3D models from many different viewpoints.  
The method assumes that a rendering technique is available (e.g., 
OpenGL polygon rendering), which determines for every pixel the 
‘pseudo-depth’ [5] of the corresponding 3D surface point(s).  A 
difference depth image (DDI) is then computed for a pair of DIs at 
each viewpoint, by performing a matrix subtraction between them.  
The individual difference depth values within each DDI are 
summed up and the result is divided by the total size of the DDI, 
to obtain the average depth difference (ADD) between the two 
input models, at one viewpoint.  Finally, the average depth 
difference over many viewpoints is computed as the sum of the 
ADDs at all the viewpoints, divided by the total number of 
viewpoints.  We call this final measure simply the depth 
difference (DD).   

We obtain a dense coverage of the 3D object by generating 
viewpoints using a spiral point distribution [14].  For a spiral 
point set of size N, distributed evenly over the surface of a sphere, 
the spherical coordinates ሺߠ௞, ߶௞ሻ of the k-th viewpoint are: 
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The constant C in the equation above is chosen so that the 
successive points are approximately the same Euclidean distance 

apart on the surface of this sphere.  We use a value of 3.6 for C, 
which has been shown to work well for ܰ ൑ 12,000 [14].  For N, 
we choose a value of 100 viewpoints.  This value yielded in our 
experiments a good coverage of a large range of different objects. 

To compute the depth differences between two DIs for different 
models at the same viewpoint k, we require depth buffer values in 
the range [0,1] (default for most graphics APIs), and we compute 
for each pixel the absolute difference in depth values.  We term 
the resulting 2D array of difference values the difference depth 
image (DDI).  Figure 1 gives an example using the Stanford 
bunny and a highly compressed version of it.  
 
 
  

 

 

 

 

Note that black and white in the images above indicate, 
respectively, the minimum and maximum depth values in the 
chosen view volume.  By visually inspecting the images in Figure 
1(a) and Figure 1(b), we see that the DDI has correctly captured 
the shape differences (around the ears, nose and body) between 
these two models at this viewpoint.   

Following the computation of the DDI at each viewpoint, the 
average depth difference (ADD) between the two input models at 
viewpoint k (where (1 ൑ ݇ ൑ ܰ)), is obtained in the following 
manner: 
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where ݉ ൈ ݊ is the size of the DDI.  The averaging ensures that 
the depth difference values are in the range [0,1] and are 
independent of the size of the depth buffer used for rendering.   

Once the ADD for each of the N chosen viewpoints has been 
computed, all of the N ADDs are summed up and the result is 
divided by N.  We call the result the depth difference (DD), and it 
represents the average depth difference over N viewpoints, for the 
two input 3D models: 
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Similarly to the case with the ADD values, the averaging step is 
performed to ensure that the depth difference values are in the 
range [0,1], and to remove the variability factor of different 
choices for values of N.  A DD value of 0 indicates that the two 
models being compared are identical in shape (with respect to the 
depth buffer resolution), while values closer to 1 indicate greater 
differences in shape between these models.  The computation of 
the DD relies on the assumption that the two models being 
compared are aligned according to a common reference point 
(e.g., their centres of mass), so that the only difference in size 
between them is caused by the distortions. 

The following section discusses additional implementation 
considerations, which must be taken into account to ensure that 
the DD metric is computed accurately. 

Figure 1: Visualization of depth images: (a) DI of the 3D 
bunny model from one viewpoint; (b) DI of a distorted version 

of (a) at the same viewpoint; (c) DDI of (a) and (b). 

(a) (b)  (c) 



4. IMPLEMENTATION DETAILS 
We use MATLAB for displaying the 3D models and computing 
the DD values, and OpenGL for rendering and obtaining the depth 
images.  Since we only require depth images, results are not 
affected by shading, lighting, or texturing. 

We use orthographic projection - rather than perspective 
projection – since in an orthographic projection the viewing 
volume is a rectangular parallelepiped.  This means that the 
relative size of objects is maintained regardless of the distance to 
the virtual camera.  As a result, two corresponding points (pixels 
in our case) can be measured.  Furthermore, with orthographic 
projection all the depth values in the z-buffer have the same 
precision, regardless of how far away the object is from the 
camera.  In perspective projection, greater depth precision is 
reserved for objects closer to the camera. 

In order to obtain comparable depth values, the same viewing 
volume must be used for the objects to be compared.  We choose 
the viewing volume to be the smallest cube enclosing the axis 
aligned bounding spheres of both models.  

All our experiments use a viewport size of 420x560 pixels.  The 
viewport dimensions determine the size of the depth images (DIs) 
which we extract from the depth buffer, and hence limit the spatial 
resolution of any features we can capture.  

5. EVALUATION 
The suitability of the DD as a shape distortion metric was tested 
by evaluating its performance in several different distortion 
scenarios using a number of different 3D models.  The test 
scenarios, choice of test models, and experimental results for each 
scenario are presented in the following sections. 

5.1 Experiment 1: Isolated Distortions 
The purpose of this experiment was to test how the DD metric 
captures the two basic types of shape distortion that can occur on 
a 3D model’s surface: convex distortions and concave distortions.  
Convex distortions protrude outwards from the surface and are 
generally manifested as bulges or spikes, while concave 
distortions bend the surface of a model inwards.  The distortions 
in this experiment were created manually, by changing the 
positions of certain vertices on the models.  The test models were 
chosen to be simple geometric objects, with little or no surface 
detail, so that the isolated distortions would be easily discernible 
on their surfaces.  The results from two such test cases are 
presented below. 

5.1.1 Convex Distortions 
Figure 2 illustrates a model of an icosahedron, followed by three 
distorted versions of this model.  The only distortion present in the 
model in Figure 2(b) is the spike protruding from the 
icosahedron’s surface.  The distorted model in Figure 2(c) 
contains this same spike plus an additional, smaller spike, and the 
model in Figure 2(d) contains both of the spikes present in the 
previous two distorted models plus an additional third spike.  In 
all the distorted models, the spike from Figure 2(b) is the largest 
distortion present. 

 

 

 

 

 

Figure 3 illustrates the DIs, DDIs and DD values for each of the 
distorted icosahedrons in Figure 2, as well as the Hausdorff 
distance values for comparison.  The DIs and DDIs have been 
chosen at one salient viewpoint and generated in the same way as 
for Figure 1.  

 

 

 

 

 

 

 

 

 

 

The DDIs in Figure 3 demonstrate that the DD metric is able to 
correctly capture all the convex distortions present on the 
icosahedrons’ surfaces.  Moreover, the increasing DD values 
corresponding to the increasing number of spikes on the 
icosahedrons show that the DD changes appropriately to reflect 
the changing number of errors on a model’s surface.  This gives a 
better indication of the overall amount of distortion present on a 
3D object than the commonly used Hausdorff distance, which 
only reflects the maximum local error on a surface and fails to 
capture other, smaller errors that may be simultaneously present 
on this surface.  This limitation of the Hausdorff distance is 
portrayed by the dH values in Figure 3, which remain the same for 
all the distorted icosahedrons despite the fact that some of them 
have a larger number of distortions than others.   

5.1.2 Concave Distortions 
Figure 4 illustrates an example of a concave distortion, which 
causes one face of the cube model to bend inwards at a certain 
point. 

 

 

 

 

 

Figure 5 shows the depth image (DI) for each of these cubes, as 
well as the corresponding DDI, at the viewpoint where a viewer is 
looking directly at the face with the concavity so that the other 
cube faces are temporarily hidden from view.  Hence the DI 
corresponding to the undistorted cube is just a black square, 
because this face is flat and nearest to the viewer.  The DI for the 
distorted cube, however, indicates the presence of higher depth 
values around the centre of the cube face, which is where the 
concavity is located.  The DDI in Figure 5 demonstrates that the 
DD metric correctly captures this difference in shape between the 
two cubes. 

 

 

 

 

 Figure 2: (a) Original model; ((b)-(d)) Distorted versions of (a).

(d) (b) (a) (c) 

Figure 3: (a) DI of the original model; ((b)-(d)) DIs and 
associated DDIs (under each depth image) of the distorted 

versions of (a): (b) DD = 0.00363, dH = 1.035; (c) DD = 0.00590, 
dH = 1.035; (d) DD = 0.00684, dH = 1.035.  

(a) 

(d) (c) (b) 

Figure 4: (a) Undistorted cube; (b) Same cube as in (a), but 
with a concavity in one face. 

(a) (b) 

Figure 5: (left) DI for the undistorted cube; (middle) DI for the 
distorted cube; (right) DDI of these depth images. 





coefficients the dH curve is almost flat, while the DD curve 
decreases quite rapidly.  Figure 8 depicts the DDIs for the Torus 
models between these compression rates, which indicate an 
improvement in the shape of the Torus (particularly on the outer 
boundary) that the dH fails to capture.  Furthermore, unlike the dH, 
the DD is a symmetric metric and does not require any surface 
sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3 Capturing Severe Large-Scale Shape 
Distortions 
Figures 7 and 8 illustrate the ability of the DD metric to capture 
relatively minor large-scale shape distortions.  Figures 3 and 5 
indicate the DD’s ability to capture localized distortions on a 
smaller scale.  However, the DD is also able to capture severe 
large-scale shape distortions, and an example of this is illustrated 
in Figure 9.  In Figure 9, the distorted version of the original 
Bunny model corresponds to a reconstruction of this model with 
10% wavelet coefficients at each resolution level.  The associated 
DDIs at several important viewpoints illustrate that the DD metric 
captures well the shape dissimilarities between the original and 
distorted Bunny models.  Indeed, the DDIs illustrate that the DD 
essentially gives a measure of the average volume difference 
between two models, which is an intuitive way to think about 
shape differences. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Comparison with the “Surface Roving” 
Metric 
An alternative way of using depth values to measure shape 
dissimilarity was proposed in [12].  The key differences between 
that metric and our metric are: (1) The metric in [12] is designed 

for measuring minor shape distortions caused by geometry 
compression in a guided multi-resolution modelling scenario 
(indeed, the results in [12] are demonstrated only for minor shape 
distortions); our metric is designed to capture a wider range of 
distortion levels in a more general setting.  (2) The method by 
which the multiple viewpoints (and hence the 2D projections) are 
generated in [12] is different to our approach, as we do not use a 
surface roving camera.  (3) The results of the metric in [12] are 
presented for different representations of only one model (the 
Bunny), whereas we present experimental results of our metric for 
several models with different shapes and surface details.  (4) We 
also present a comparison of our metric with two other commonly 
used geometric error metrics in terms of how they capture 
different levels of distortion on different models, which is not 
present in [12].  (5) Additionally, we generate visual distortion 
maps associated with our metric, which is not the case in [12].   

6. RESULTS AND DISCUSSION 
The following section summarizes key benefits that the DD can 
offer as a shape distortion metric.  Potential limitations of the 
metric are also identified and addressed. 

6.1 Benefits of the DD Metric 
The DD is an image-based metric, so it is largely independent of 
object representation - if the object can be rendered in 3D with 
depth values, it can be measured by the DD.  Because the DD 
relies on directly comparing the depth values of two overlapping 
pixels, it does not require any surface sampling or point 
correspondence searching on the 3D models being compared.  
This is an advantage over most existing shape distortion metrics 
(such as the RMSE and dH), which do have this requirement and 
can therefore be quite computationally expensive to compute for 
large and complex models.  In fact, our method does not require a 
surface mesh and can also be used in combination with a point 
cloud renderer or ray tracer for CSG objects.  Furthermore, the 
DD is better able to capture the overall difference in shape 
between two models than the commonly used Hausdorff distance.  
Unlike the dH, the DD is also a symmetric metric, so that only a 
one-way calculation is needed between the two models being 
compared.  Additionally, this new metric is able to capture 
distortions of various sizes as long as the available depth 
resolution allows these distortions to be detected (see Section 6.2).  
The visual distortion maps (DDIs) of the DD at different 
viewpoints can also give an indication of the dependency of 
viewpoint on the perceived shape error.  Although the DD is 
technically a geometric error metric, inspection of the associated 
DDIs in our experiments suggests that the DD is also able to 
capture well the perceived shape differences between different 
objects.  This indicates that the DD has promise as a perceptual 
metric, but in order to confirm this a more thorough investigation 
is required, where the DD is compared to the subjective distortion 
scores from a large group of human subjects judging a variety of 
different models.  This will be the subject of a future 
investigation.  Another key benefit of the DD is its generality as 
an offline metric: although designed with the case of lossy mesh 
compression in mind, the DD can actually be used in any 
application where the shape preservation of a 3D model is 
important but there is no strict requirement for exact geometry 
reconstruction. 

6.2 Potential Limitations of the DD Metric 
There are three aspects of the DD metric that may be seen as 
limitations.  Firstly, the computation of the DD assumes a pixel 
graphics display device.  However, this is the most common type 
of display device used nowadays, so this requirement of the DD is 

Figure 9: (a) Original Bunny model; (b) Distorted version of 
(a); ((c)-(f)) DDIs between (a) and (b) at several salient 

viewpoints. 

(b) (a) (c)

(f) (e) (d) 

Figure 8: (a) Original Torus model; ((b)-(c)) Reconstructed 
versions of (a) using, respectively, 30% and 40% wavelet 
coefficients (corresponding DDIs are under each model). 

(b) 

(a) 

(c) 



not a serious limitation.  Secondly, the 3D models to be compared 
must be rendered at many different viewpoints.  However, modern 
entry-level graphics cards are able to achieve rendering speeds 
from 120-210 million triangles per second, with an impressive 
1.3-1.8 billion triangles per second for the ultra-high-end range 
[11].  These performance capabilities, combined with the fact that 
the DD metric requires only basic rendering (see Section 4), 
means that the rendering at many viewpoints can be achieved 
almost in real-time for most 3D models.  Because the DD is 
designed as an offline quality metric, the rendering speed may not 
be an issue in the first place; however, for very large models, a 
fast computation of the DD may be achieved by providing input 
models with efficient representations, which are able to be 
rendered quickly.  Finally, the size of distortion that can be 
detected by the DD depends on the size (depth) of the available z-
buffer.  However, most modern graphics cards use a 24-bit z-
buffer, which allows 224 different depth values to be represented.  
By further setting the viewing volume of the 3D object in such a 
way as to take the greatest advantage of the available depth 
resolution (discussed in Section 4), this can allow the DD to detect 
a wide range of distortion sizes. 

7. CONCLUSION 
We have presented a new image-based error metric for measuring 
geometric shape distortion on 3D models.  This new metric, 
termed the depth difference (DD), works by comparing the z-
buffer depth values of orthographic projections of a pair of 3D 
models rendered at many viewpoints, and computing the average 
depth difference between them.  The new metric has been found 
to work well for capturing minor as well as severe shape 
distortions, both on a large and small scale.  The metric has also 
been tested in the real-use case of measuring the rate-distortion 
performance of a wavelet-based mesh compression algorithm.  In 
this scenario, it has been found to provide a more reliable measure 
of overall shape distortion than the commonly used Hausdorff 
distance and a more relevant measure of surface error than the 
RMSE.  The main advantages that the DD metric enjoys over the 
existing geometric error metrics, which are commonly applied to 
measuring shape distortion, are that it is largely independent of 
3D object representation and it requires no surface sampling or 
point correspondence matching.  The DD is intended to be used 
for offline quality evaluation of 3D models, in applications where 
the shape preservation of the model is important but there is no 
strict requirement on exact geometry reconstruction.  Future work 
will involve testing the DD metric against human subjects in a 
subjective distortion experiment, as well as against existing 
perceptual metrics, to determine whether the DD may be used as 
an objective perceptual error metric. 
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