
An Investigation into Graph Cut Parameter Optimisation for
Image-Fusion Applications

Xiao Bao Clark Jackson G. Finlay Andrew J. Wilson

Keith L. J. Milburn Minh Hoang Nguyen Christof Lutteroth

Burkhard C. Wünsche

Department of Computer Science
University of Auckland, Auckland, New Zealand

{xcla001,jfin052,awil308,kmil102,hngu039}@aucklanduni.ac.nz
{lutteroth,burkhard}@cs.auckland.ac.nz

ABSTRACT
The graph cut technique has been employed successfully in
a large number of computer graphics and computer vision
related problems. The algorithm has yielded particularly
impressive results in the field of image fusion, e.g., texture
tiling, image stitching, and image and video editing. An
analysis of the literature shows that authors use different
variations of the algorithm, such as different cost functions
and parameters. However, there are no detailed investiga-
tions on how these parameters influence results and what
parameters are most suitable for what type of application.
In this paper we analyse the use of graph cut algorithms in
different image fusion applications. We list and classify rel-
evant parameters, suggest new cost functions for seam opti-
misation, and analyse the effect of parameter choices on dif-
ferent application scenarios. Based on the results we develop
guidelines assisting users to employ the graph cut technique
effectively in different image fusion applications.

Categories and Subject Descriptors
I.3.7 [Three-Dimensional Graphics and Realism]: Color,
shading, shadowing, and texture; I.3.3 [Picture/Image Gen-
eration]: Display algorithms; I.2.10 [Vision and Scene
Understanding]: Texture; G.2.2 [Graph Theory]: Graph
algorithms

Keywords
graph cut algorithm, image editing, texture synthesis, image
stitching, image processing
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Graph cut techniques have become increasingly popular
in the computer vision and computer graphics domain as an
efficient means for solving optimisation problems [2]. This
is achieved by representing the set of possible solutions as
a directed graph with a single sink and source, where edge
weights encode the cost of a solution. The graph cut algo-
rithm enables the computation of a maximum-flow solution,
which defines a minimum-cut (minimum cost) solution.
A particular successful application field for this algorithm

has been image fusion, i.e., the seamless combination of
(parts of) multiple images into a single image. Applications
range from texture synthesis and transfer [7, 1], to image and
video editing [7, 12], and image-based modelling [16, 17].
In this paper we categorise parameters for the graph cut

algorithm, integrate appearance space attributes into the
graph cut framework, and analyse parameters’ effectiveness
for different image-fusion applications. Section 2 will ex-
plain the problem domain in more detail. Section 3 reviews
previous work in this field with an emphasis on parameter
choices for image-fusion applications. Section 4 explains our
experimental set-up with results summarised in section 5.
We conclude this paper and give an outlook on future work
in section 6.

2. THE GRAPH CUT ALGORITHM
In this paper we consider the most basic case of an image

fusion problem, i.e., to have two overlapping images A and
B, and to find the cut within the overlap region, which cre-
ates the best transition between these images [14]. The over-
lap region is represented as directed graph, where each node
represents a pixel position p in the overlap region, which is
denoted A(p) and B(p) for the two images A and B, respec-
tively. Nodes are connected by edges representing connectiv-
ity between pixels. Usually 4-connectivity is assumed, i.e.,
each node (pixel) is connected to four neighbouring nodes
(neighbouring pixels in the overlap region). Each edge is
given a cost encoding the pixel differences between the two
source images at that position. In the simplest case the cost
w corresponds to the colour difference between the images



A and B at the neighbouring pixels p and q, i.e.,

w = w(p, q, A,B) = ||A(p)−B(p)||+ ||A(q)−B(q)|| (1)

where ||.|| is the L2 norm.
The resulting graph is converted into a flow network by

introducing a source node and sink node, which correspond
to the parts of the images A and B, respectively, which lie
outside the overlap region. The source and sink node are
connected to the boundary pixels of the overlap region using
edges with infinite cost. Finding the optimal cut through the
overlap region is equivalent to finding the maximum flow in
this network subject to not exceeding the edge constraints
given by the cost function. The minimum cut can then be
obtained from the edges with full capacity [14, 13].

A more general formulation of this problem uses the the-
ory of Markov Random Fields and allows more complex cost
functions (energy models) incorporating additional image-
based constraints [2]. The max-flow/min-cut problem is
NP-hard [7], but can be efficiently approximated using the
α-expansion algorithm [3]. The algorithm can be further
expanded to take into account more than two overlapping
source images. In this case the seams of old cuts become
new nodes in the graph [7].

In our investigation we consider only two source images
and only cost functions expressing image differences across
seams.

3. LITERATURE REVIEW
Efros and Freeman use seam optimisation for tiling tex-

tures [5]. The authors use the same general problem formu-
lation as presented above and introduce the cost function in
equation 1 to capture image colour differences along seams.
However, the authors use dynamic programming to find a
minimum cut.

Long and Mould [9] report that Efros and Freeman’s ap-
proach can produce highly visible discontinuities when the
path takes a shortcut through cost peaks (a short path with
high edge costs can be cheaper than a long path with low
edge costs). The authors propose instead a non-scalar dis-
tance metric which only takes into account the maximum
cost of an edge, rather than the cumulative cost of all edges
in a graph. Zou et al. subsequently proposed a graph cut
technique using this metric [18], which requires a special
solution procedure to find the minimum-cut. The authors
report that the new cost function works best for textures
with low frequency and highly localised features, e.g., ocean
waves and woodgrain.

Kwatra et al. [7] report that seams are more noticeable
in low-frequency regions, and a visually more pleasing cut is
computed by increasing the cost of an edge with a decreasing
image gradient. The authors modify the cost function w
from equation 1 to

w∇ =
w(p, q, A,B)

||Gpq
A (p)||+ ||Gpq

A (q)||+ ||Gpq
B (p)||+ ||Gpq

B (q)|| (2)

where Gpq
A (p) is the image gradient in the direction of the

edge pq at pixel p.
Agarwala et al. [1] present a technique for interactive

digital photomontage, enabling the combination of interest-
ing features from multiple images into a single photo. The
authors use different cost functions for capturing seam dis-

continuities:

wm(p, q, A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X for “colours”

Y for “gradients”

X + Y for “colours & gradients”

X/Z for “colours & edges”

(3)

where

X = w(p, q, A,B) (4)

Y = ||∇A(p)−∇B(p)||+ ||∇A(q)−∇B(q)|| (5)

Z = EA(p, q) +EB(p, q) (6)

and ∇A(p) is a 6-component colour gradient (RGB) of im-
age A at pixel p (derivatives in x and y-direction for all
colour components), and EA(p, q) is the scalar edge poten-
tial between two neighbouring pixels p and q in image A,
computed using a Sobel filter [1]. The authors mention that
X/Z is only a semi-metric and hence the guaranteed per-
formance of the α-expansion algorithm [3] is lost, but no
problems were observed.
Ramanarayanan and Bala incorporate neighbourhood in-

formation into the graph cut cost function and demonstrate
that this can be used for a constrained texture synthesis [11].
Most image-fusion applications seem to use the RGB colour

space for calculating colour distances. However, the choice of
colour space can make a significant difference as illustrated
by Kulkarni and Nicolls, who experimented with seven differ-
ent colour models for performing image segmentation using
graph cuts [6]. The authors report that Luv values work bet-
ter in areas of high brightness and MR8 filtering improves
segmentation in textured regions.

4. EXPERIMENTAL SETUP

4.1 Graph Cut Algorithm Parameters
Our analysis of the literature suggests that the choice of

cost function, distance metric, neighbourhood information,
and colour space can make a significant difference on the
location of the optimal cut. We categorise these parameters
as follows:

Cost functions: The cost function always has the form
w(p, q, A,B), but can differ in the pixel information and dis-
tance metrics employed. We investigate the following pa-
rameters:

• Distance metrics: L2 norm, L1 norm (Manhattan dis-
tance), L∞ (supremum norm).

• Non-linear distance measures: In order to penalise high
edge costs relative to long cut paths, we replace the L2

norm ||.||2 with ||.||n2 , where n = 2, . . . , 9. We denote
the resulting semi-norms with L2, . . . , L9.

• Pixel measures: We use as pixel measures colour dis-
tance (equation 1), gradient weighted colour distance
(equation 2), gradient (equation 3, case 2), and colour
distance + gradient (equation 3, case 3). In addition
we propose a modification of equation 2, which uses for
each component of the colour difference the gradient of
that colour component only as weighting factor. The
resulting 3-vector for each term in the expression be-
low is transformed into a scalar by computing its norm



Figure 1: Examples of image pairs used in our experiments: image quilting examples (a-c), image editing
examples (d-h,j) and an image stitching example for creating a panorama (i). The overlapping regions for the
graph cut algorithm are indicated in yellow.

(default is L2):

w∇2 =

∥∥∥∥∥
|ACi(p)−BCi(p)|

|Gpq
ACi

(p)|+ |Gpq
BCi

(p)|

∥∥∥∥∥+

∥∥∥∥∥
|ACi(q)−BCi(q)|

|Gpq
ACi

(q)|+ |Gpq
BCi

(q)|

∥∥∥∥∥
(7)

where (C1, C2, C3) are the three components of the
utilised colour space (e.g., RGB).

Image Representation: Most articles on image-fusion tech-
niques do not mention the colour space employed, but several
authors report using the RGB space. As indicated in the lit-
erature review the choice of colour space can significantly af-
fect results. We hence investigate several colour spaces which
have been successfully employed in related graphics/vision
applications [4]. In order to incorporate a wider measure
for the visual appearance of a texture we also investigate
appearance space attributes [8, 10]:

• Colour Spaces: RGB, HSV , CIELuv, CIELab,
Perception-based Colour Space [4].

• Appearance spaces: Signed feature distance [10] (to
obtain consistent spatial distribution of features) and
edge information [Canny edge detector] (to achieve
alignment of features).

Graph Representation: Many of the reviewed articles op-
timise parameters related to the graph representation, e.g.,
the size of overlapping regions and placement of images with
respect to each other. All reviewed articles seem to assume
4-connectivity, but a graph for 8-connectivity could also be
constructed. An important and interesting problem is the
incorporation of old seams when performing a sequence of
image fusion operations. We do not consider these issues in
our experiments.

4.2 Test Cases
In order to determine the effect of different parameters we

selected the following application scenarios commonly en-
countered in research and practical applications:

1. Image stitching: combining overlapping photographs
of a panorama. We perform a manual placement and
do not consider issues such as distortion correction.

2. Texture quilting: Similar to [5] we use two overlap-
ping copies of an exemplar texture.

3. Image editing: Similar to [7] we want to insert one
image into another unrelated image and create a real-
istic scene.

In order to investigate the effect of different parameter
choices we use images with the following characteristics:

1. Images with self-similarity suitable for tiling (e.g., from
Efros and Freeman’s paper [5, 9])

2. Images with smooth low frequency variations (e.g., land-
scape photos) [7]

3. Images with high frequency variations (e.g., sand, mar-
ble, rough water surface) [7]

4. Images with noise (e.g., old grainy photos or noise
added with Photoshop) [14]

5. Images with low frequency and highly localised features
(e.g., ocean waves and woodgrain) [18]

6. Images with regular spatially distributed features (e.g.,
random dots with similar gaps, brick pattern, stones/fruits
with similar size ) [10]

We created 30 pairs of images covering the application
scenarios and types of images listed above. A subset of our
test cases is displayed in figure 1.

4.3 Experimental Setup
We implemented our framework for testing graph cut algo-

rithms using C/C++. We used OpenCV for image process-
ing and I/O operations. The minimum cut was determined
using the Planar Graph Cut library [13]. For image quilting
and image stitching examples we overlapped image pairs by
25% − 50%, whereas for image editing examples we used a
larger overlap. The overlap for the image pairs in figure 1 is
visualised using yellow boxes. The minimum cuts were com-
puted fully automatically (i.e., without manually inserting
constrained pixels as in [7]).



Figure 2: Examples of the results obtained using different norms. From left to right: L2, L1, L∞, L2 and L3.

Figure 3: Examples of the results obtained using different colour spaces. From left to right: RGB, HSV,
CIELab, CIELuv, Perceptual Colour Space [4].

5. RESULTS
We evaluated different parameter combinations for the

graph cut algorithm using 30 pairs of test images represent-
ing different application scenarios and image properties as
described in section 4.2. We used different combinations
of the parameters listed in section 4.1 resulting in 465 im-
ages in total. The complete set of images can be found at
www.cs.auckland.ac.nz/~burkhard/Research/GraphCut.

The following subsections discuss key findings and give
representative examples.

5.1 Effect of Norm

Figure 2 shows the results of using the cost function from
equation 1, an RGB colour space, and different norms for
calculating the colour distance. The L2 norm is most com-
monly used in the literature. Our results indicate that the
L1 norm is similarly good, but is much faster to evaluate
and hence of interest in applications where speed is impor-
tant. The L∞ norm is not useful since it only considers
the largest colour component. One problem of using the
L2 norm is that it discourages long cutting paths, since the
sum of many small errors is often larger than one big er-
ror. For images with high frequency information and large
colour distances between image features we obtained best



Figure 4: Examples of the results obtained using different cost functions. From left to right: colour distance
(equation 1), gradient weighted colour distance (equation 2), componentwise gradient weighted colour distance
(equation 7), gradient (equation 3, case 2), and colour distance + gradient (equation 3, case 3).

results by using the L2 and L3 distance measures, which ef-
fectively polynomially scale edge weights in the graph. This
results in a more complex path, which follows feature bound-
aries and is often visually more pleasing. This is most evi-
dent in the“woodgrain” example (top row of figure 2), which
has no visible seam when using L2 and L3. The “river and
raft” example (middle row of figure 2) demonstrates that
the use of this exponential distance measure creates a path
which closely follows feature boundaries (raft), even if they
are complex. Interestingly, the exponential distance mea-
sures perform badly for small scale stochastic textures such
as grass (bottom row of figure 2).

5.2 Effect of Colour Space
Figure 3 shows the results of using the cost function in

equation 1, the L2 norm, and different colour spaces. We
found that the RGB, HSV, CIELuv and CIELab colour spaces
result in slightly different cuts, but with few, if any, visible
differences in terms of seam quality. In general the RGB
colour space is sufficient. The HSV colour space can be ad-
vantageous when dealing with scenes with large hue varia-
tions. For example, in the“mountain and hut”scene (middle
row of figure 3) the HSV space produces the only cut lying
entirely within the water region (blue hue), whereas other
colour spaces produce cuts across the roof or the vegetation.

The Perceptual Colour Space [4] demonstrates a very un-
even performance, but works well in image stitching exam-
ples. For example, in the bottom row of figure 3 this colour
space is the only one, which creates a cut avoiding regions
with illumination differences. The result is a virtually invis-
ible seam across the rock face.

5.3 Effect of Cost Function
Figure 4 shows the effect of using different cost functions.

In all cases we used the RGB colour space and the L2 norm.
We found that Kwatra et al.’s gradient weighted colour dis-

tance (equation 2) performed almost always best. Our mod-
ification of applying the gradient to each channel separately
(equation 7) is a possible alternative. For example, in the
middle row of figure 4 this creates a cut closely following
the feature boundary of the plane, which reduces the length
of the visible seam within the air layer. However, since the
vertical stabiliser at the tail of the plane has a similar colour
to the surrounding air, the cut goes across it. The gradient-
based cost functions produce good results if overlapping im-
age regions contain similar materials, e.g., the water region
in the bottom row of figure 4.

Figure 5: Examples of the results obtained using dif-
ferent appearance spaces. From left to right: stan-
dard approach, edge information, signed feature dis-
tance.

5.4 Effect of Appearance Space
Figure 5 shows the results of using different appearance

spaces, i.e., rather than applying the cost function to the
image we compute an appearance space (edge information,
signed feature distance [10]) and apply the cost function and
graph cut algorithm to these derived images. The results are
disappointing. The edge information yields occasionally in-
teresting and plausible images, but results are inconsistent.



The signed feature distance does not maintain spatial rela-
tionships of features as expected, and performs always worse
then the standard approach (equation 1, RGB colour space,
and L2 norm).

6. CONCLUSION AND FUTURE WORK
In general Kwatra et al.’s cost function (equation 2) in

combination with the RGB colour space and the L2 norm
works well for most applications. Our new componentwise
gradient weighted colour distance is a good alternative and
works well for images where different colours have a strong
semantic meaning (different materials). For image stitching
the non-linear cost function L3 is a good alternative, since it
avoids cuts across features such as clouds. This often results
in a smoother transition between images. For image quilting
non-linear cost functions become even more important, espe-
cially for images with high frequency information and strong
textural features such as the “woodgrain” and “brick”.

Changing the colour space has in general little influence
on the results. The perceptual colour space [4] proved useful
for combining overlapping images of a panorama with slight
illumination differences. However, the colour space failed
several times badly in image editing examples.

For image editing all cost functions produced relatively
poor results. In general the use of the L1 and L2 norm
is recommended. The exponential distance measures can
work well for images with high colour and feature variations,
since in this case the extra cost of a longer cutting path
can be offset by smaller colour transitions across the path.
However, this characteristic leads to poor cuts for stochastic
textures (e.g., grass). The gradient-weighted cost functions
(equation 2 and 7) produced the most consistent results for
image editing applications, but still fail frequently. Kwatra
et al. mention in their paper [7] that they “constrain some
pixels from the output image”. They report further that the
title image of their paper took roughly one hour to complete.
For image editing manual interaction seems to be crucial and
so far no satisfactory combination of parameters exist for
automatically creating consistently visually pleasing results.

Many of the successful cost functions are not norms, but
semi-norms. Hence several properties of the alpha-expansion
algorithm, such as the worst case upper bound, do not apply.
This drawback is most crucial in 3D applications where al-
ternative solutions such as [13] do not apply. Using different
graph cut solvers, such as GridCut [15], produced occasion-
ally slightly different solutions.

In future work we want to investigate more cost func-
tions and especially the use of multiple appearance space
attributes simultaneously. We are particular interested in
using graph-cut techniques for image-based modelling appli-
cations to reconstruct and transfer textures.
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