
GPGPU Accelerated Texture-Based Radiosity

Sungkono Surya Tjahyono, Christof Lutteroth, Burkhard Wünsche
Department of Computer Science

University of Auckland

Auckland, New Zealand

Email: stja001@aucklanduni.ac.nz, c.lutteroth@auckland.ac.nz, b.wunsche@auckland.ac.nz

Abstract—Radiosity is a popular global illumination algorithm
capable of achieving photorealistic rendering results. However, its
use in interactive environments is limited by its computational
complexity. This paper presents a GPGPU-based implementation
of the gathering radiosity approach using texture-based discreti-
sation and the OpenCL framework. Hemicubes are rendered to
a texture array and processed by OpenCL kernels in parallel to
compute the output radiance of the patches. Results show that
even with the high synchronisation overhead of the OpenGL-
OpenCL interoperability, the proposed method is an order of
magnitude faster than a CPU-based implementation, and that
it approaches interactive speeds. Investigation of the influence
of different parameters shows that an increase in hemicube size
results in a linear increase in computation time, while an increase
in the number of layers in the texture array dimensions results
in a logarithmic decrease in computation time.

I. INTRODUCTION

Radiosity is a Global Illumination (GI) algorithm which

was proposed in 1984 [1]. The method solves the render-

ing equation [2] by using a finite element discretisation to

calculate light interaction between diffuse surfaces. Radiosity

can be precalculated and stored as lightmaps as long as the

lighting condition and/or geometries within the scene do not

change. Once one of the assumed conditions is changed, the

calculated radiosity solution is no longer valid and it has to

be recalculated.

Typical radiosity implementations work by subdividing the

polygons within the scene into smaller elements (usually

referred to as patches) and light interactions are performed

at this level. The geometric relationship between a pair of

patches is referred to as form factor. The first implemented

radiosity solution had O(n2) complexity for its memory and

computation requirements, since the interaction between all

patches had to be taken into account.

There have been many approaches to eliminate these con-

straints, including the progressive refinement approach (shoot-

ing and gathering) [3] and instant radiosity [4]. The shooting

approach works by choosing the patch with the highest undis-

tributed energy and shooting it to all the visible patches and

the process is repeated until the highest undistributed energy

falls below a certain threshold. The gathering approach works

by going through each patch sequentially and summing up

the irradiance energy coming from all visible patches and

this process is repeated until the intensity difference between

iterations fall below a certain threshold. Instant radiosity

works by shooting rays from the light sources in random

directions and places a Virtual Point Light (VPL) at the point

of intersection between the rays and surfaces in the scene. The

VPL’s intensity is calculated with the value of the colour of

the light source and the reflectance properties (albedo) of the

surface it hits. A Russian Roulette scheme is used to determine

whether new rays should be cast from the VPL or not. The

instant radiosity approach is view dependent, unlike the other

two approaches.

The progressive refinement approach usually uses a tech-

nique called the hemicube rendering [5] to obtain a visibility

list for each patch. This list can be used to check for visibility

and to calculate form factors faster than other methods such

as ray casting but suffers from aliasing and banding artifacts

due to the limited resolution of the hemicube.

Even with the current generation of powerful consumer

level hardware, calculating the radiosity solution in real time

is still a challenge, regardless of which approach is taken.

Motivated by the advent of highly programmable and par-

allelisable graphics hardware (GPU) and their supporting

frameworks (NVIDIA CUDA, ATI Stream, Khronos OpenCL,

Microsoft DirectCompute), this research looks at exploiting

the highly parallel nature of the radiosity calculation by using

the GPU to process most or all of the lighting data. In this

paper, a novel method is proposed to solve the radiosity

equation (gathering approach specifically) on the GPU by

representing the radiosity patches in the texture space. In addi-

tion, GPU-based computation using the OpenCL framework is

compared to CPU-based computation using a sample scene to

evaluate their performance. Although the GPGPU frameworks

have been around for quite some time, its techniques are

still not as matured as shader-based techniques and published

radiosity techniques using the GPGPU frameworks are still

scarce.

The rest of the paper is organised as follows: Section II

presents related works in the area of radiosity. Details of the

proposed method are described in Section III. Section IV

outlines important implementation details with regards to

OpenGL-OpenCL interoperability. An evaluation of the imple-

mented system is presented in Section V. Limitations and ideas

for future work are presented in Section VI. The conclusion

is outlined in Section VII.

II. RELATED WORKS

There have been many attempts to calculate radiosity in

real time and some have been very promising. Nielsen et

131



Texel ID T0 Tx Ty … Tz … Tn 
Barycentric 
Coordinate 

{uT0, v T0, w T0} {uTX, v TX, w TX} {uTY, v TY, w TY} … {uTZ, v TX, w TX} … {uTN, v TN, w TN} 

Mesh Index 0 0 0 … 1 … M TN 
Face Index 0 0 1 … 0 … F TN 
Subface Index 0 1 0 … 0 … S TN 

Fig. 1. UV Coordinate Set (left) and the patch list extracted from texture space (right).

al. [6] use texture space subdivision and hardware texture

mapping to accelerate the hemicube rendering process. An

index map (integer values encoded as colour values) is used

to represent radiosity patches and is texture mapped onto the

polygons when rendering the hemicubes. The rendered values

on the hemicube are used as index values to a form factor

table containing information such as form factor, surface id and

element index. Coombe et al. [7] also use texels as radiosity

patches and use a modified progressive refinement approach

that runs on the GPU. A hemicube is rendered from the point

of view of the shooter as normal, but instead of shooting

energy to all patches in the hemicube, all patches are iterated

over in a fragment shader to check if they are visible from

the shooter. If a patch is visible, it receives a fraction of the

shooter’s energy based on its form factor. Going through the

list of potential receivers rather than going through all the

patches in the hemicube eliminates the problem of having to

write to arbitrary locations in the textures. It also allows the

shooter’s energy to be distributed in parallel since patches are

independent of each other.

In the game industry, the most notable success in real

time radiosity calculation is a product called Enlighten by

Geomerics [8]. It separates the direct and indirect lighting

and blends the output of each at the final stage of rendering.

This is done to allow for the direct lighting effects, which are

generally high frequency and instantaneous, to be displayed

as they happen, and the indirect lighting effects, which are

generally soft, subtle and low frequency, to be integrated over

time. Separating the direct and indirect lighting solution also

allows Enlighten to be plugged-in into an existing lighting

solution as long as it can generate the appropriate input for

Enlighten to process. Geomerics has adopted the NVIDIA

CUDA framework to improve the performance of Enlighten’s

preprocessing and runtime components, resulting in a complete

update of a game level to take 2-3ms [9].

Castaño [10] renders low resolution hemicubes to a texture

atlas and multiplies them with a multiplier map (Fig.2) which

encodes the amount of light received per solid angle of the

texels of the hemicube according to Lambert’s emission law.

This is then integrated to obtain the output radiance value of

each patch. By using the mulitplier map, the form factors do

not need to be calculated explicitly. The Lambert’s emission

law map takes into account the angle between the surface

normal of the patch on which the hemicube is rendered from

and the texel on the surface of the hemicube, while the solid

angle map takes into account the texel’s orientation, distance

and position on the hemicube. The multiplier map can be

calculated once and be applied to all hemicubes. Castaño uses

geometric subdivision with irradiance caching to allow for less

hemicubes to be rendered and to give smoother appearance in

the rendered scene.

III. PROPOSED METHOD

A. Texture space subdivision

Most geometry-based subdivision techniques in radiosity

systems use quadrilaterals (quads). In the texture space, texels

serve as a good candidate to represent such a subdivision. In-

stead of subdividing the quads geometrically, a UV coordinate

value is generated for each vertex. These UV coordinate values

are also used to create lightmaps which are texture mapped

onto the scene when rendering the hemicubes and displaying

the converged radiosity solution.

As shown in Fig.1 five sets of data need to be extracted

from the texture space to create the patch list. These are:

• texel id of the texel within the texture.

• mesh index of the mesh the texel belongs to.

• face index of the face within the mesh identified by mesh
index.

• subface index of the subface within the face identified by

face index.
• barycentric coordinate of the center of the patch.

The face index and subface index are used to differentiate

between the quad that makes up the surface and the triangles

that make up the quad. In the case that the surface is a

triangle, there will only be a single subface. This is done

so that the rendering system only needs to deal with one

type of geometry and it also allows for the calculation of

the barycentric coordinates. The barycentric coordinate is

calculated by weighting the position of the center of the texel

with regards to the three vertices that make up the triangle.

The barycentric coordinate can be used to calculate the center

and normal of the patch by substituting the UV coordinate of

the vertices with the normal and position of the vertices in the

world coordinate space.

132



Fig. 2. Lambert’s emission law map (left), solid angle map (inner left),
multiplier map (inner right) and stacked format multiplier map (right). The
solid angle and multiplier maps have been intensified to show the distribution
of values across the maps more clearly.

B. Hemicube

A hemicube is used to obtain the visibility list and the

current radiosity values of the patches in the scene (values

on the lightmap). Hemispherical projection cannot be used in

this method due to the low geometric subdivision, as all of

the details are encoded in the texture space. As mentioned

by Elias [11] and Castaño [10], instead of calculating the

form factors between patches, a multiplier map (Fig. 2) can

be applied to the hemicubes to obtain the contribution from

each texel in the hemicube towards the irradiance value.

IV. IMPLEMENTATION DETAILS

A. Patch List

The patch list (Fig.1) can be obtained by using a combi-

nation of the render to texture technique (RTT), two floating

point RGBA render targets, a vertex shader and a fragment

shader. The vertex shader transforms the UV coordinates

using an orthographic projection, while the fragment shader

calculates the barycentric coordinates and stores them in the

first render target. The mesh, face and subface indices which

are passed from the host application as vertex attributes are

stored in the second render target by the fragment shader. The

alpha channel of each render target is used to store a flag to

indicate that the texels are valid and have been rasterised by

the fragment shader.

The two render targets are then transferred back to the host

application, where each RGBA tuple is processed to extract the

information from all valid tuples (the flag in the A component

is set). This step can be performed as an offline process or

as an initialisation step depending on the complexity of the

scene. The patch list can be exported to a binary file as all

the information contained within it is static.

B. Hemicube Rendering

To reduce the rendering time as much as possible and to

provide enough workload for the GPU, the hemicubes are

rendered to a 2D texture array using a geometry shader and

an instancing technique. By using these techniques, the same

hemicube face can be rendered to multiple layers of the texture

array with a single draw call. An OpenGL extension called

GL_ARB_viewport_array can also be used to allow for

multiple viewports and scissor rectangles to be specified,

allowing for a complete hemicube to be rendered with a single

draw call. By combining these three techniques, a single draw

call can render complete hemicubes to multiple layers of the

texture array to reduce the CPU workload. The geometry

shader takes as input a list of matrices which represent the

model-view projection for each face of the hemicube, while

the viewport and scissor rectangle arrays specify which region

of the texture array to draw into.

To save texture space, the hemicube is arranged not in the

typical cross layout but in a vertical stack format shown in

Fig.2. A random rotation ([−180◦, 180◦)) along the patch’s

normal is applied before the patch’s hemicube is rendered

to reduce the effect of banding artifacts. The banding arti-

facts are caused by the limited resolution of the hemicube

to sample the irradiance of the environment. By adding a

random rotation to each patch’s hemicube, banding artifacts

are traded for noise artifacts which can be smoothed out

using interpolation [10]. The random rotation for each patch

should be constant throughout the lifetime of the application

to prevent flickering artifacts on the displayed result as the

iterations converge to the true solution.

C. Hemicube Integration

OpenCL is used to perform the hemicube integration be-

cause of the highly parallelisable nature of the problem.

OpenCL buffers are created from OpenGL textures using

OpenCL’s interoperability feature to avoid PCI Express bus

transfer of the texture array to the host application and back

to the GPU after being converted to OpenCL buffers. Three

OpenCL kernels are used: multiply kernel to multiply the

hemicubes with the multiplier map, reduce row kernel to

reduce the rows of each hemicube into a single row, and reduce
column kernel to reduce the hemicube columns into a single

value.

OpenGL-OpenCL interoperability in the OpenCL 1.0 speci-

fication relies on the use of glFinish() and clFinish()
to ensure synchronisation of the buffers before they can

be used by the other API. As mentioned by Hensley

et al. [12], glFinish() and clFinish() are heavy-

weight, expensive and blocking calls. The OpenCL 1.1 spec-

ification adds two event extensions (cl_khr_gl_event
and GL_ARB_cl_event) that allow for easier OpenGL-

OpenCL buffers synchronisation. These events are much more

lightweight and should reduce the amount of overhead. Using

this event mechanism, an event can be placed in the OpenGL

command queue and checked by OpenCL for synchronisation

before trying to acquire the OpenGL buffers. Once the event

is processed by the OpenGL command queue, OpenCL can

attempt to acquire the buffers without having to wait until the

OpenGL command queue is empty.

The number of work items per work group to process

the 2D texture array can be tweaked to obtain the highest

occupancy and utilisation of the GPU. For the first two kernels,

the number of work items is made as small as possible to

allow for the most number of work groups. In this case, each

work group contains 512 work items laid out in a 32x16x1

block (the number of maximum work items per work group

133



multiply
kernel

reduce row kernel

reduce column kernel

multiplier
map

texture array
result buffer

reduced row buffer reduced column buffer

Fig. 3. The multiply kernel applies the multiplier map (top left) to the texture
array (top middle) in parallel to produce the result buffer (top right). The
reduce row kernel reduces all rows in each hemicube to a single row (bottom
left) and the reduce column kernel reduces the columns to a single value
stored in the same buffer (bottom right).

is governed by the available resources of the GPU and the

resources used by each kernel). This means each work group

is responsible for a small portion of the texture array in any one

layer (each red block in the top left of Fig.3 is a work group).

This gives the GPU enough workload at a fine-grained level

and helps the hardware scheduler to schedule different work

groups as data are fetched from the GPU’s global memory to

each work group’s shared local memory. The multiply kernel
converts the 3D workspace into a 2D workspace by storing

subsequent layers on top of the previous layer (top right of

Fig.3). This simplifies the indexing complexity within the

reduce row kernel.
The reduce row kernel is responsible for reducing each

column of the hemicube into a single value. In the example

shown in Fig.3, if each hemicube is 128x384 and the texture

array is 1024x768x2, this means the reduce row kernel will

produce an output buffer with dimensions of 1024x4. At this

stage, it is important to make sure that each work group only

processes a region that belongs to the same hemicube. The

reduce column kernel then sums each of the 128 elements

into a single value by halving the number of elements in

each iteration (parallel reduction). The final value from each

work group is stored in the same buffer and stored at their

corresponding group index so that only the first 32 elements

need to be transferred back to the host application (red block in

the bottom right of Fig.3). These reduced values are multiplied

by the surface reflectance of the patch and stored in the

radiosity texture to be used in the next iteration and when

displaying the result on screen.

V. EVALUATION

A. Performance

The sample scene is tested using an Intel Core i5 750

at 2.67GHz and an NVIDIA GeForce GTX 550 Ti with

1GB GDDR5 memory, 192 shader cores, compute capability

2.1, OpenGL 3.3.0, GLSL 3.30 and OpenCL 1.0 specifica-

tions. Key factors contributing to the overall performance are:

hemicube resolution, lightmap resolution and texture array

dimensions. The smaller the hemicube resolution and the

higher the texture array dimensions are, the more hemicubes

that can fit into the texture array and therefore more can be

processed in parallel. The higher the lightmap resolution is,

the more patches to process which reduces the performance.

There are 10700 texels used to represent the radiosity patches

in the sample scene on a 128x128 lightmap texture.

As shown in Fig.4, the average iteration time (per frame) is

quite high. This is mainly caused by the sharing of OpenGL

texture buffers with OpenCL. By sharing OpenGL buffers with

OpenCL, the need to transfer the data to the host application

memory and back to the GPU memory as OpenCL buffers

is avoided. However, there is still some synchronisation that

needs to be completed before OpenCL can use the buffers.

This synchronisation is the acquiring and releasing of the

buffers from one API to the other through glFinish() and

clFinish() (Section IV-C). These overheads can be up to

21.2% and 60.2% of the iteration time for glFinish() and

clFinish() respectively. The event based mechanism sup-

ported by the OpenCL 1.1 specifications is not implemented

due to the lack of support of the necessary extensions by the

NVIDIA driver at this time.

The average kernel execution time is quite stable within the

different hemicube sizes and texture array dimensions. This

shows that the size of the workload for the same hemicube size

is constant, the main difference being how many hemicubes

are processed simultaneously based on the number of layers

in the texture array.

The average pixel difference graph in Fig.4 compares two

radiosity techniques: the full matrix approach using a Gauss-

Seidel linear solver with form factors and the proposed

method. The value for each iteration represents the average

difference in pixel intensity values for the 10700 texels within

the lightmap textures of the two methods. It shows that

there is a consistent difference in average intensity values

across corresponding pixel locations between the two methods’

lightmap textures across the different hemicube sizes (the three

line graphs fall on top of each other). It also shows that the

radiosity calculations converge to the true solutions as more

iterations are performed and that the proposed method behaves

similarly to the Gauss-Seidel method.

TABLE I compares the average iteration time (over 30

iterations) of a CPU-based and GPU-based implementation

of the proposed method on different hemicube sizes using

a 1024x1024 texture array with different number of layers.

The high iteration times of the CPU-based implementation

is mainly attributed to the necessity to transfer the texture

array data to the application’s memory and the fact that the

hemicubes within the texture array are processed sequentially.

B. Artifacts

Fig.5 shows the effects of hemicube resolution and random

rotation on the converged results. Banding artifacts are not as

134



0

0.02

0.04

0.06

1 6 11 16 21 26 31

M
ag

ni
tu

de
 o

f C
ol

ou
r V

al
ue

Itera�on Number

Average Pixel Di�erence

32x96 64x192 128x384

0

1000

2000

3000

32x96 64x192 128x384

Ti
m

e 
(m

s)

Hemicube Size (pixel)

Average Itera�on Time

1 Layer 2 Layers 4 Layers 8 Layers

0

100

200

300

32x96 64x192 128x384

Ti
m

e 
(m

s)

Hemicube Size (pixel)

Average GPU Render Time

1 Layer 2 Layers 4 Layers 8 Layers

0
100
200
300
400

32x96 64x192 128x384

Ti
m

e 
(m

s)

Hemicube Size (pixel)

Average Kernel Time

1 Layer 2 Layers 4 Layers 8 Layers

0
100
200
300
400

32x96 64x192 128x384

Ti
m

e 
(m

s)

Hemicube Size (pixel)

Average glFinish Time

1 Layer 2 Layers 4 Layers 8 Layers

0

500

1000

1500

32x96 64x192 128x384

Ti
m

e 
(m

s)

Hemicube Size (pixel)

Average clFinish Time

1 Layer 2 Layers 4 Layers 8 Layers

Fig. 4. Performance of different hemicube sizes and number of layers in a 1024x1024 texture array (average over 30 iterations).

TABLE I
COMPARISON OF CPU-BASED AND GPU-BASED IMPLEMENTATION.

Hardware CPU GPU 
Hemicube Size 128 128 
Num of Layers 1 1 2 4 8 
Avg. Itera�on Time (ms) 14770.22 1987.27 1308.25 951.82 767.95 
Speed-up Factor --- 7.4 11.3 15.5 19.2 
Hardware CPU GPU 
Hemicube Size 64 64 
Num of Layers 1 1 2 4 8 
Avg. Itera�on Time (ms) 3814.17 467.75 310.52 231.77 188.75 
Speed-up Factor --- 8.2 12.3 16.5 20.2 
Hardware CPU GPU 
Hemicube Size 32 32 
Num of Layers 1 1 2 4 8 
Avg. Itera�on Time (ms) 1108.60 196.75 124.92 98.66 86.80 
Speed-up Factor --- 5.6 8.9 11.2 12.8 

Fig. 5. Effects of hemicube resolution. 32x32x16 pixels (left), 64x64x32
pixels (center), 128x128x64 (right). Top row without rotation, bottom row
with random rotation.

visible on higher hemicube resolutions, however, they increase

the computational complexity. As shown by Fig.5, a compro-

mise between computation cost and acceptable visual quality

can be achieved using a relatively low resolution hemicube

with a random rotation. In the sample scene, hemicube size

of 64x64x32 pixels with a random rotation added to each

patch’s hemicube are acceptable. As the scene and/or lighting

complexity increases, further optimisation will be necessary.

C. OpenCL Work Size

The number of work items and work groups along with

how the GPU’s global memory is accessed highly affect the

efficiency of the computation. The number of work items

needs to be a multiple of the size of the smallest work unit.

32 work items constitutes a unit of work and are executed

at the same time. An occupancy level of higher than 25% is

required to hide memory latency [13] and to ensure the GPU

has enough work to do for all of its processing units. The

sample scene has an occupancy level of 66.7% with 32x16x1

work items per work group for the first kernel, 32x1 for the

second kernel and hemicube widthx1 for the last kernel. The

global memory access for each unit of work also needs to be

coalesced to obtain higher efficiency. This is done by ensuring

that each work item accesses its designated memory location

within the buffers and that each work item accesses sequential

data from the global memory.

D. Dynamic Environment

The proposed method does not need to calculate or store the

form factors between any pair of patches because a multiplier

map is used. As position and/or orientation of any geometry

is changed, its transformation can be applied to the center and

normal data stored in the patch list to obtain the latest position

and orientation from which to render the hemicube. In the case

of real time performance, this will result in a smooth transition.

As the lighting intensity changes, the estimated radiosity will

adjust to the new lighting intensity values which will stabilise

over time as more iterations are performed. This is similar to

135



how iterations using the Gauss-Seidel method will converge

towards the true solution as more iterations are performed

regardless of the initial or current values.

VI. LIMITATION AND FUTURE WORK

A. Banding Artifacts

Irradiance caching can be implemented to only sample high

resolution hemicubes from key locations that are considered

important (position of patches compared to occluders and

reflectors) and interpolate between them. This will create a

smoother appearance through interpolation and reduces the

number of hemicubes to be rendered. Elias [11] suggested

interpolation in texture space by rendering hemicubes for every

4th pixel in the lightmap and interpolating between them. If

the difference between the sampled values is higher than a

certain threshold, a new hemicube is rendered and integrated.

B. Interpolation

The UV parameterisation process to create the UV coordi-

nate set needs to be clean and precise. In the sample scene,

the UV coordinate set is generated manually, with a UV island

created for each of the 9 quads (similar to Fig.1). The UV

coordinate of each vertex is forced to lie on a pixel boundary

to ensure that the center of each pixel is enclosed by the quad,

so that each patch is represented by a whole pixel. If the UV

coordinate does not lie on a pixel boundary, artifacts might

occur in the form of black patches in the rendered scene. In

this case, the pixel is not rasterised but sampled in the rendered

scene because no interpolation is used (using nearest sample).

If interpolation is used, boundaries of the UV islands will

create issues as the edges of the quads in the rendered scene

will have a darker appearance due to its interpolation with

unused texels outside the boundary of the UV island (black

by default). One solution to the interpolation and misaligned

UV coordinates issues is to dilate the UV islands so that

when interpolation is performed, the boundaries of the UV

island will be interpolated with itself. This step should only

be performed when displaying the result on the screen and

not during the iterations to avoid adding energy to the scene.

Another solution is to adjust the UV coordinates during the

initial patch list creation using a geometry shader, each UV

coordinate will move at most half a pixel to be aligned with

the pixel boundaries.

C. Other Frameworks

The main limitation with the OpenCL 1.0 implementation

is the need to call glFinish() and clFinish() to

ensure buffers are synchronised. As seen by the impact the

synchronisation overhead has on the overall iteration time,

other computing frameworks should be used to compare their

performances in this regard. These include OpenCL 1.1 and

NVIDIA CUDA frameworks. A complete port using Microsoft

DirectX graphics library along with its new DirectCompute

capability could also be done.

VII. CONCLUSION

Radiosity is a highly parallelisable problem and as shown by

the proposed method, performing the calculations on graphics

hardware to exploit its computing power can improve con-

vergence speed and performance. The improvement depends

on the the numbers of cores and processor speed of the CPU

for the CPU implementation and the number of shader cores

and their speed for the GPU implementation. The proposed

method’s ability to support dynamic environments and inter-

active radiosity calculation means that it can be used in many

applications such as architectural visualisations, simulations

and eventually video game applications. As graphics hardware

becomes more powerful and as their supporting frameworks

become more mature, it can be envisioned that radiosity

calculations will be performed in real time.

ACKNOWLEDGMENT

The authors would like to thank the graphics team at

Sidhe: Alan Chambers, Robert Higgs, Kester Maddock, Robert

Cannell and Ramon Steenson for their support and guidance.

The authors would also like to thank MSI New Zealand for

their support through the Fellowship Funding.

REFERENCES

[1] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling
the interaction of light between diffuse surfaces,” in Proceedings of
the 11th annual conference on Computer graphics and interactive
techniques, ser. SIGGRAPH ’84. ACM, 1984, pp. 213–222.

[2] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th
annual conference on Computer graphics and interactive techniques,
ser. SIGGRAPH ’86. ACM, 1986, pp. 143–150.

[3] M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg, “A
progressive refinement approach to fast radiosity image generation,” in
Proceedings of the 15th annual conference on Computer graphics and
interactive techniques, ser. SIGGRAPH ’88. ACM, 1988, pp. 75–84.

[4] A. Keller, “Instant radiosity,” in Proceedings of the 24th annual confer-
ence on Computer graphics and interactive techniques, ser. SIGGRAPH
’97. ACM Press/Addison-Wesley Publishing Co., 1997, pp. 49–56.

[5] M. F. Cohen and D. P. Greenberg, “The hemi-cube: a radiosity solution
for complex environments,” in Proceedings of the 12th annual confer-
ence on Computer graphics and interactive techniques, ser. SIGGRAPH
’85. ACM, 1985, pp. 31–40.

[6] K. H. Nielsen and N. J. Christensen, “Fast texture-based form factor
calculations for radiosity using graphics hardware,” J. Graph. Tools,
vol. 6, pp. 1–12, September 2002.

[7] G. Coombe, M. J. Harris, and A. Lastra, “Radiosity on graphics
hardware,” in Proceedings of Graphics Interface 2004, ser. GI ’04.
Canadian Human-Computer Communications Society, 2004, pp. 161–
168.

[8] S. Martin and P. Einarsson, “A Real Time Radiosity Architecture for
Video Games,” in SIGGRAPH ’10: ACM SIGGRAPH 2010 Courses,
ser. SIGGRAPH ’10. ACM, 2010.

[9] S. Martin, “Enlighten Research, past, present, future,” ser. London
Graphics Seminar 2011, 2011.

[10] I. Castaño. (2011) Hemicube rendering and integration. [Online].
Available: http://the-witness.net/news/2010/09/hemicube-rendering-and-
integration/

[11] H. Elias. (2011) Radiosity. [Online]. Available:
http://freespace.virgin.net/hugo.elias/radiosity/radiosity.htm

[12] J. Hensley, D. Gerstmann, and T. Harada, “Advanced opencl by exam-
ple,” in SA ’10: ACM SIGGRAPH ASIA 2010 Courses, ser. SIGGRAPH
’10. ACM, 2010.

[13] “OpenCL Best Practices Guide,” White Paper, NVIDIA Corporation,
February 2011.

136


