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Abstract—Animated models are essential for simulations and
virtual worlds. In many applications approximate models are
sufficient and an efficient model creation and animation suitable
for untrained users is required. Sketch-based modelling has been
shown to be a suitable interface for creating such models because
the underlying pen-and-paper metaphor is intuitive and effective.
However, there is no similarly easy process for animating these
models.

In this paper we present an automatic skeletalisation and rig-
ging algorithm for sketch-based models. Our algorithm analyses
sketched contours and creates fully automatically a hierarchical
skeleton with joints. The surface mesh is bound to the curved
skeleton bones using skinning techniques and the resulting model
can be animated using skeletal animation techniques.

Our analysis and user evaluation suggests that the joints
placements are perceived as natural. The models can be animated
using traditional skeletal animation techniques such as key-
framing and motion capturing, or can be used as input to
physically-based animation techniques and evolutionary algo-
rithms.

I. INTRODUCTION

Animated 3D models are essential for many applications in
science, engineering, education, medicine and arts. In many
instances a rough approximation of an object’s shape is suffi-
cient and easy model creation and animation is more important
than physical realism. Examples are storyboards for animation
production [1] and the initial stages of design processes. In
medical imaging and scientific computing, rough prototypes
(frequently termed templates or default models) are used for
segmentation, feature recognition and object tracking [2], [3].
Approximate models are also useful for demonstrating basic
concepts, e.g., in education [4].

Creating models and animations with sketches is particu-
larly attractive since it encourages creativity [5] and enables
users to concentrate on the overall problems rather than
details [6]. The past decade has seen a tremendous increase
in the design and use of sketch-based interfaces.

In this paper we present an automatic skeletalisation and
rigging algorithm for models created using contour-based ap-
proaches such as Igarashi et al.’s famous “Teddy” system [7].
The main contribution of our work is an animation system
which automatically detects movable parts and enables skeletal
animation based on curved bones.

Section II reviews previous work on animating sketch-based
objects. Section III presents the design of our system. We
evaluate our tool in section IV and conclude the paper with
section V.

II. LITERATURE REVIEW

Sketch-based modelling systems for 3D objects use the
following three steps: (1) Features characterising the 3D object
to be modelled are sketched in 2D using as few strokes as
possible. (2) The sketched 2D strokes are mapped to 3D shapes
according to application specific constraints, which reflect
assumptions about the shape of the 3D object to be modelled.
(3) Ambiguities are resolved and more detailed features added
by using modifier strokes. Frequently these strokes are directly
applied to the 3D shape resulting from the previous step.

The arguably most popular class of sketch-based 3D mod-
elling techniques uses sketch input to represent the silhouette
(outline) of a 3D object. The outline, often referred to as
contour, can be expanded to a 3D object by making the
assumption that the object is “blobby”, i.e., the cross section
of each component of the sketched contour is circular. This
assumption can be relaxed by allowing the user to draw
additional sketches to indicate the shape of the cross-section.

The best known system in this class is Igarashi et al.’s
“Teddy” application [7]. A 3D object is computed by sam-
pling the contour (outline), triangulating the sample points,
computing a skeleton from the mid-points of all internal
edges of the triangles, and then fitting circular cross-sections
around the skeleton. Additional functionalities for cutting and
combining objects allow the creation of complex, inflated
(blobby) shapes. Various modifications have been suggested,
e.g., for smoothing the resulting 3D surface [8], smoothing
the underlying skeleton [9], or for modifying the shape by
sketching contours of local features [10].

Karpenko et al. use implicit surfaces to “inflate” contours
to 3D bodies. As a result different sketched components can
be easily blended together [11]. Similar ideas are employed
in ShapeShop [12] and MIBlob which use implicit surfaces to
inflate contours traced in medical images [13]. Other authors
have shown that complex 3D objects can be edited using
stylus strokes that retrace an object’s silhouette [14], [15]. The
modification of a models silhouette subsequently rescales it so
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that it remaps itself to the new silhouette. Sketched-contours
can also be used to deform 3D templates in order to create
new models [16].

Relatively few techniques exist for the sketch-based anima-
tion of objects. The majority of methods either allow users to
define motion paths or to adjust rigid characters to compose
different poses. Motion Doodles [17] allow the user to sketch
a motion path for a sketched character which can consist of up
to seven components with predefined functionalities, i.e., the
algorithm is not suitable for general sketched objects. Oshita
and Ogiwara animate crowds by sketching example motion
paths for some characters and using them to estimate crowd
parameters such as moving speed and crowd regularity [18].

Davis et al. [19] and Mao et al. [20] achieve animations
of articulated 3D characters by creating 2D sketches of the
character in key frame poses. Igarashi et al. [21] use spatial
key framing where key frames are not determined by points
in the temporal domain, but by key poses of the 3D object. A
different approach is used for the “As-Rigid-As-Possible Shape
Manipulation” [22]. The user can animate a shape by selecting
arbitrary points within it and moving them. The 2D shape is
deformed by triangulating it and computing a configuration
containing the moved points (and corresponding triangles)
such that distortions of all other triangles are minimised. The
system is very intuitive and easy to use when employing
a multi-touch interface. However, it does not extend to 3D
shapes and the animations would be difficult to control using
other sketch-input devices (mouse, tablet and pen).

III. SYSTEM DESIGN

We use a sketch-based 3D model generated with a contour-
based approach. For simplicity we generate our model with
the “Teddy” algorithm. However, any contour-based method
where the final 3D shape corresponds to the originally
sketched contour is suitable. For animation purposes we use
skeletal animation since it is widely used, supported by many
graphics APIs and graphics engines, and because of the
possibility to use existing motion capture and animation data.
Baran and Popović demonstrated that it is possible to animate
a wide variety of shapes with the same skeleton [23].

The problem we hence have to solve is to create a hierar-
chical skeleton model with bones and joints from a sketched
contour.

Our system can be divided into three modules which are
explained subsequently:

1) Model and spine generation
2) Skeleton generation - bones and joints
3) Skelelal animation and skinning setup

A. Model and Spine Generation

The sketch-based model is created using the “Teddy” al-
gorithm [7]. The user sketches a 2D outline of the shape
which is sampled. The sample points are triangulated using a
Constrained Delauney Triangulation and classified according
to the number of internal edges. Triangles with one internal
edge are termed terminal triangles, triangles with two internal

edges split triangles, and triangles with three internal triangles
(i.e., no edge on the contour) are called junction triangles.

A skeleton, the so-called chordal axis, is defined by con-
necting all mid-points of internal edges and centroids of
junction triangles. Small side branches of the skeleton are
eliminated by using a pruning operation [7]: Starting from
the terminal triangle, triangles are merged until the merged
triangle is larger than the half circle around its internal edge.
The merged triangle is then triangulated again using a triangle
fan originating at the mid-point of its internal edge.

A 3D shape is formed by elevating all nodes of the chordal
axis orthogonally to the sketch plane. The height is equal
to the distance of a node to the next sample point on the
sketched contour. Note that the nodes are either the mid-points
of internal edges or the centroids of junction triangles, i.e., the
distance is easily computed. The sample points on the contour
and the elevated nodes are then connected by quarter circles
which are sampled and triangulated to create a surface mesh.
Surface construction for pruned sections of the chordal axis
requires special considerations which are not explained in the
“Teddy” paper and subsequent papers. The complete details
are given in [24].

B. Skeleton Generation - Bones and Joints

In order to animate the object we have to define a skeleton
which is a hierarchical structure consisting of bones and
joints. The chordal axis is an ideal candidate for this since
it lies approximately in the centre of the sketched contour
and it has a branched structure. We define a spine tree by
first finding the largest junction triangle. The largest junction
triangle usually represents the widest component of the final
shape. For example, for a human shape that would be the
body. We therefore make the centre of this triangle the root
of the skeleton. We then traverse the chordal axis graph in
pre-order starting with this node. The resulting spine tree has
the following properties:

• All centres of junction triangles are called branch nodes
and are internal nodes of the spine tree. The root of the
tree is the centre of the largest junction triangle. If no
branch node (i.e., no junction triangle) exist then the
resulting object is rigid.

• All branch nodes, which are directly connected to a
branch node detected earlier in the pre-order traversal of
the tree, are children of that node. The branch nodes are
connected by sections of the chordal axis.

• The leaves of the tree are spine nodes belonging to
terminal triangles. The leaves are the children of the
branch node to which they are directly connected by
sections of the chordal axis.

The tree represents a hierarchical skeleton, but the branch
nodes (centres of the junction triangles) do not represent
suitable joints of the skeleton as illustrated in the images on
the left of figures 1 and 2. So far all nodes and bones in the
spine tree are rigid. In the next step we will add joins to the
spine tree. The joins will be selected from spine nodes directly
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connected to branch nodes (i.e., they lie on the internal edges
of junction triangles).

Marr and Nishihara [25] noted that the concave parts of
a silhouette define the subparts of an object. We observed
that the edges of junction triangles isolate the subparts of
the sketched shape and hence define candidate joints. In a
previous paper we presented an algorithm for selecting folding
axes of a 2D sketched contour by merging edges of junction
triangles and determining “bendable” sections [26]. The results
approximate how a piece of paper of the sketched shape can
be bent. Applying this algorithm to 3D shapes obtained by
the “Teddy” algorithm does not lead to satisfactory results as
demonstrated in the images on the right of figure 1 and 2.
Whereas the folding axis in the middle of the torso of figure 1
is still acceptable, the axis separating the right shoulder from
the body is unintuitive. The same problem occurs for the
folding axes separating groups of two and three fingers in
figure 2.

Fig. 1. Left: the chordal axis (blue) and branch nodes (red) of a sketched
contour of a doll. Right: Folding axis (red lines) constructed using a paper
metaphor from [26].

Fig. 2. Left: the chordal axis (blue) and branch nodes (red) of a sketched
contour of a hand. Right: Folding axis (red lines) constructed using a paper
metaphor from [26].

Since we have no information about the semantic of an
object and its physical meaning we cannot guarantee physi-
cally correct joints. Instead we want to create joints which are
perceived as natural and plausible. The results above indicate
that this can be achieved by finding a subset of folding axes,
where the user perceives all elements as clearly separated from
each other.

We achieve this by clustering folding axes according to
their distance within the triangulation: For each branch node
we compute the circumcircle of the corresponding junction
triangle. If the circumcircles of two adjacent branch nodes
intersect they belong to the same component. If they do not
intersect the spine node on the edge nearest to the parent spine
node is a joint. The algorithm is illustrated in figure 3. The
five red dots in the image on the bottom right are the final
joints of the skeleton. Note that by using the circumcircles
of junction triangles we implement a relative distance criteria.
This is preferable to using an absolute value which would not
work if an object has features of strongly varying size.

Many advanced sketch-based modelling implementations
allow the user to model objects by sketching different shapes
and combining them. In this case we will have separate spine
trees which are joined where the shapes are combined. Since
drawing components separately usually indicates functional or
physical separation, we suggest in this case to always use a
joint at the connection point.

C. Sketelal Animation and Skinning Setup

An object is animated by moving its bones around joints.
In order to get a smooth deformation of the surface mesh
the mesh vertices must be associated with bone movements.
We use the popular Linear Blend Skinning algorithm which is
also frequently called Skeleton Subspace Deformation (SSD).
The algorithm is unpublished in the literature but an excellent
description is found in [27]. A linear blend skin is created by
beginning with a static model of the character. We use the
3D model and hierarchical skeleton (spine tree) explained in
the previous subsections. Note that the bones of the skeleton
are the sections of the spine tree, which connect two joints
or a joint and a leaf. Hence the bones are usually curved. We
now define for each bone a curvilinear coordinate system by
parameterising the corresponding curved section of the spine
tree. At each point of the bone two orthogonal vectors are
created by the normal vector of the sketch plane and the
cross product of the normal and tangent of the bone at that
point. Using this coordinate system we can now compute the
coordinates of a mesh vertex with respect to the bone. This
is done by first projecting it onto the sketch plane and then
finding the closest point to it on the curved bone.

If vertices are bound to only one bone then during animation
linear blend skinning results in gaps between or overlaps of
the bones’ surfaces. This is avoided by binding a vertex to
several bones. We do this by determining for each vertex its
distance to a joint and computing appropriate vertex weights.
For example, if a vertex has an equal distance to two bones
then its weights are 0.5 for each bone. In our case distance
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Fig. 3. The joint detection algorithm for finding spine nodes which divide the
sketched contour into separate parts for animation. The algorithm traverses
branches (red and blue lines) in the spine tree. Each branch connects two
branch nodes or one branch node to a leaf. Each step tests the intersection
(red and light blue circle) between two adjacent branch nodes’ circumcircles.
If there is no intersection between two circumcircles or the branch connects
a branch node to a leaf, a boundary edge is found (green lines). The spline
nodes on these boundary edges are the joints of our skeleton.

is defined by the distance of a sample point to a junction
triangle in the original 2D sketch. Since all 3D vertices and
the skeleton result from this triangulation it is an appropriate
and easy method to determine vertex weights.

In order to animate the mesh vertices we need to rotate
bones around their parent joints (i.e., the joint connecting the
bone to its parent in the hierarchical skeleton). Let vk

d be the
coordinates of a vertex in a dress pose (undeformed shape)
with respect to bone k. The position v of the deformed vertex
is computed by [27]:

v̄ =
n∑

i=0

wiMiL−1
i Lvvi

d (1)

where wi is the weight of the vertex with respect to bone i,
Lv is the matrix transforming the vertex v from its surface
representation to the world coordinate system, L−1

i transforms

the vertex from the world coordinate system into the static i-th
coordinate frame (dress pose), and Mi expresses the motion of
the i-th coordinate frame. The effect of this transformation is
that we can express a rotation around an axis of the coordinate
frame of the parent joint as rotation around the x-, y- or z-axes.
Note that since we have a hierarchical skeleton the matrix Li

is in fact the product of the matrices representing each bone
in the coordinate system of its parent bone.

IV. RESULTS

A. Efficiency

We first evaluated the efficiency and correctness of the
algorithm. More than a dozen simple models were constructed
and a selection of them is shown in figure 4. The most complex
model, the lobster, took about 20-30 seconds to sketch. The
contour has 243 sample points. The resulting 3D model has
2087 vertices, 4170 triangles, and took 0.493 seconds to
compute on a machine with E7200 dual 2.53GHz CPUs with
4GB RAM and NVIDIA GeForce 9600GT graphics card
with 512MB memory. The subsequent animations were all
performed in real-time with no noticeable delays - the exact
frame rate was not measured.

B. Correctness

All models we created were plausible with no major artifacts
such as holes or non-manifold surfaces. Figure 4 demonstrates
that most detected joints are meaningful. In particular note
that the egg (stone) has no joints even though its triangulation
contains junction triangles. Very few, if any, of our examples
have “natural” joints missing. In Figure 4 (a) it could be argued
that the doll figure should also have an elbow joint, but when
interviewing the participants in the subsequent user study, none
of them commented on this. The crocodile in part (h) of the
figure should have joints for each claw, but some claws were
drawn so short that the corresponding junction triangles were
eliminated by the pruning algorithm. The top joint of the desk
lamp in part (j) of the figure is not placed correctly. This is
due to an abnormality in the sketched contour. Some users
might expect the eyes of the lobster (c) to be movable. Joints
would have been created if the eyes were more protruding as
is the case for the dragonfly (i).

The algorithm produces some unexpected extra joints, e.g.,
the mouth and the left elbow of the lobster, the mouth and
body of the deer, the sides of the lamp shade, and a joint
below the wrist of the hand model. The extra joint of the hand
demonstrates a problem with “Teddy”’s pruning algorithm
which we plan to fix together with the problem of having
too many extra joints. The extra joints could be avoided by
enforcing a stricter size criteria for branches of the spine
tree. However, it is not clear what size is most appropriate.
We are planning to conduct an analysis of natural and man-
made “blobby” objects in order to optimize the automatic joint
selection.

Figure 4 also shows that the root of the spine tree (indicated
by a red dot) is usually in the component which would be
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Fig. 4. Examples of sketched models: (a) doll, (b) hand, (c) lobster, (d) snail, (e) egg/stone, (f) sea star (star fish), (g) robot, (h) crocodile, (i) dragonfly, (j)
desk lamp, (k) deer. Each image shows the sketched contour and resulting skeleton (left), and the Gouraud shaded 3D model (right). The joints separating
movable components are indicated by thick blue dotted lines. The root of the hierarchical skeleton for skeletal animation is indicated by a red dot.

naturally perceived as body or base of the object. Notable
exceptions are the robot (g) and the desk lamp (j).

C. User Experience

We conducted a user study with 11 participants (8 male,
3 female) and asked them to draw the doll and the hand
model shown in figure 4. Users were also able to rotate
object components around the joints as indicated in figure 5.
We asked users whether the joint positions are what they
expected and recorded responses using a seven-level Likert
scale (“strongly disagree” (-3) to “strongly agree” (3)). The
mean response was 0.91 for the hand model and 2.27 for
the doll model. The standard derivations were 1.64 and 0.65,
respectively. The subsequent interviews showed that for the
hand model the joint positions were perceived as intuitive but
six participants thought that the rotation of the mesh around
joints is not intuitive. The main problem was that all joints
are classified as ball joints (3 degrees of freedom), whereas
finger joints are hinge joints (one degree of freedom). This
allows unnatural movements and makes animation control
more difficult.

Automatically detecting the type of joint is an interesting
and important task for automating the animation process.
Methods similar to Xu et al. could be used to this [28]. The
authors analyse joint constraints in 3D models in order to
support the direct manipulation of an arbitrary mix of rigid
and deformable components.

D. Applications

The skeleton constructed with our algorithm can be used in
different ways to animate sketch-based models efficiently:

Fig. 5. Animation of sketched objects: (a) Hand-model fingers rotated around
the automatically detected joints. (b) Doll model with limbs rotated around
the automatically detected joints.

The first possibility is an automatic animation, i.e., with-
out requiring any user inputs. This can be achieved using
physically-based modelling, but usually requires some domain
knowledge. For example, when we detect that an object does
not have joints it can be considered rigid and animated using
a physics library such as ODE [29]. This way the object could
collide with other rigid objects or tumble down a (sketched)
slope.

If the object does have joints it can still be animated
automatically, e.g., using a locomotion controller computed
with an evolutionary algorithm [30], [31]. This means the
modelled shape learns to walk. In this case naturally placed
joints are essential and appropriate constraints (hinge joint,
ball joint, etc. ) must be known. A sketched object could also
be animated by rigging it with an existing animated skeleton
using the algorithm presented in [23].

Finally a sketched object can be animated efficiently using
sketch input as explained in subsection II. In this case the
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joints must be intuitively placed and the user must be able to
understand how a desired shape can be achieved by rotating a
section of the shape around a joint.

V. CONCLUSION AND FUTURE WORK

Sketch-based modelling and animation is an exciting tech-
nology with a wide range of applications. We have presented
a skeletalisation and skinning algorithm which automatically
computes a hierarchical skeleton model from a sketched object
and binds mesh vertices to its bones. This makes it possible
to integrate physical-based animation systems, map motion
templates or develop evolutionary algorithms in order to
achieve an automatic animation of sketched objects.

Our evaluation and user study demonstrated that the re-
sulting models and joint positions are perceived as natural
and intuitive. More research needs to be done in order to
classify joints automatically (degrees of freedom) and in order
to reduce the number of redundant joints.

We are currently working on a sketch-based interface for
animating sketched objects. Arrows drawn by the user are
associated with bones and the arrow shape together with the
orientation and position of the corresponding bone and joint
are used to estimate a rotation axis and angle. We would
also like to implement some of the various extensions of
the “Teddy” algorithm in order to increase modelling power
and visual attractiveness of the resulting shapes. Finally we
are interested in the automatic animation of sketched objects.
So far we have a prototype of a physically-based animation
system based on ODE [29].
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