
Real-Time Interaction Techniques for Meshless
Deformation Based on Shape Matching

Alex Henriques and Burkhard Wünsche

Graphics Group, Department of Computer Science, University of Auckland, New Zealand

Email: burkhard@cs.auckland.ac.nz

Abstract
Meshless deformation based on shape matching is a new technique for simulating deformable objects
which handles point-based objects and does not need connectivity information. The technique has been
first presented in 2005 and is of interest to all fields which require fast, stable simulations which do
not need to be physically correct. In particular the technique seems very suitable for use in virtual
surgery applications and highly interactive real-time environments such as computer games. However, in
contrast to traditional physically simulations, virtual environments require more complex and intuitive
real-time interaction paradigms in order to increase the look and feel of the simulation and the immersive
experience. We introduce techniques for picking, pushing and cutting objects simulated using meshless
deformation based on shape matching. All interactions can be performed in real time, are unconditionally
stable, easy to integrate into 3D rendering and game engines, and are easy-to-use and intuitive.

Keywords: deformable modeling, real-time simulation, interaction techniques, shape matching, virtual
environments

1 Introduction

Advances in graphics hardware and rendering tech-
niques have made it possible to develop realistic
real-time interactive virtual environments. Typical
examples are computer games, applications in ar-
chitecture and urban design and to some extend vi-
sualisation applications in science, engineering and
medicine. Despite these advances most of these
applications still use models based on rigid-body
physics due to their simplicity, easy control, and
the existence of readily available fast simulation
libraries such as ODE [1].

In 2005 meshless deformation based on shape
matching was introduced as a new technique for
simulating deformable objects. The technique
does not require connectivity information for
objects, is fast, unconditionally stable, and has
low memory requirements. Consequently the
technique might be very suitable for use in
virtual surgery applications and highly interactive
real-time environments such as computer games.

In this paper we introduce efficient interaction
techniques, i.e. picking, pushing and cutting,
for use with objects simulated using meshless
deformation based on shape matching. The
techniques can also be applied to other simulation
methods but are particularly suitable for
meshless deformation because when correctly
implemented the technique is unconditionally

stable. Furthermore since meshless deformation
does not require connectivity information we
do not have to worry about the geometry (e.g.
triangle aspect ratio) of the mesh representing
a deformable object, and we can use models
represented by point clouds. Consequently all
interaction techniques can be executed in real time
and can be easily integrated into a traditional 3D
rendering or game engine.

Section 2 introduces the meshless deformation
technique in more detail, section 3 describes the
interaction techniques available in the application
we have developed. Finally, section 4 summarises
our results, and section 5 concludes.

2 Meshless Deformation

“Meshless Deformations Based on Shape Match-
ing” is a recently developed technique for dynam-
ically simulating deformable objects [2]. The un-
derling model is geometrically, as opposed to phys-
ically, motivated. It is unconditionally stable, does
not require any pre-processing, and is simple to
compute.

2.1 The Technique

Meshless deformation treats each object as a point
cloud, or set of points, with no connectivity infor-
mation required. To understand the basic idea,



Figure 1: First, the original shape x0

i
is matched

to the deformed shape xi. Then, the deformed
points xi are pulled towards the matched shape gi

(adapted from [2]).

let the initial configuration of points be x0

i
, and

the deformed configuration of points at some later
time be xi. As a set of unconnected particles, each
xi responds to gravity and collisions, but no force
acts to retain the overall object’s shape. Meshless
deformation’s solution is to take the initial con-
figuration x0

i
, then move and rotate it as closely

as possible onto the actual configuration xi (see
Figure 1). The rotated version of the initial con-
figuration is now the set of goal positions gi which
minimise the least squares distance to actual po-
sitions. Each particle is pulled towards its goal
position after each time step, retaining the object’s
initial shape.

The fundamental equation that finds the optimal
transformation from x0

i
to gi is that of “absolute

orientation”: given coordinates of a set of points
as measured in two different Cartesian coordinate
systems, find the optimal transformation between
them [3]. To find this optimal transformation, the
following sum is minimised.

∑

i

wi

(
R(x0

i
− t0) + t − xi

)2

where R is a pure rotation matrix. In meshless
deformation, t0 is the centre of mass of the ini-
tial configuration, and t is the centre of mass of
the actual configuration. Müller et al. extend this
equation by adding linear and quadratic matching;
R is replaced by a linear deformation matrix A,
or a quadratic deformation matrix Ã. Thus, the
goal positions can be not only a rotated version of
the initial configuration, but a stretched, sheared,
bent and twisted version. To produce a tendency
towards the original undeformed state in linear and
quadratic matching, R is combined with A or Ã

to produce a final deformation matrix F.

F = βÃ + (1 − β)R

where β is a user defined constant between 0 and
1. Low β indicates a tendency mostly towards
the rigid matched state, while high β indicates a
tendency towards the quadratic match. The last

important constant is α, which defines the propor-
tional distance the points move towards their goal
positions gi every time step. When α = 1, each
point moves precisely to its goal position.

In summary, meshless deformation effectively
transforms the original object by a matrix
representing stretch, shear, bend and twist to
find the closest match to the deformed object,
then pulls the deformed object towards the goal
positions represented by the transformed object.

2.2 Clusters

The primary disadvantage of meshless deformation
is that goal positions are calculated by transform-
ing the object with at best a quadratic deforma-
tion matrix, hence only 27 deformation modes are
possible. Physical expressiveness may seem high,
but significant limitations become apparent for ob-
jects more complicated than cubes and beach balls.
These limitations are with respect to higher order
deformation and local deformation. Consider two
common objects as examples. A slithering snake
might have two bends in it, which requires at least
cubic deformations during animation, so it cannot
be deformed with global quadratic equations. As a
second example consider a sweatshirt with a hood.
When using global deformations raising or lowering
the hood is impossible to perform without bending
the entire object. Note that quadratic equations
do not have a compact support, i.e. are non-zero
virtually everywhere.

To extend meshless deformation for local and
higher order deformation, Müller et al. divide the
set of particles into overlapping clusters, each
with its own deformation modes and matrix. An
entity consisting of multiple interacting clusters
has a much greater range of deformation than
an entity consisting of only one cluster. The
shortcomings of the original implementation and
our improvements for obtaining more physically
realistic simulations are discussed in [4].

2.3 Evaluation

The advantages of meshless deformation are clear:
it is fast and very easy to set up and tweak. The
primary disadvantage of meshless deformation is
that modes of deformation are quite limited. Clus-
tering increases freedom, but is generally only well
suited to objects with a small number of subparts,
each of which deform at most quadratically. The
only way to model more complex objects like cloth
is to divide them into many fine grained clusters.
But this is extremely inefficient and not very accu-
rate – methods like mass-spring systems would be
more suitable.



3 Interaction Techniques

In order to make a virtual world more realistic it
is necessary to enable the user to interact with
objects in a believable manner. Simulating both
the look and feel of materials increases realism and
the immersive experience. Furthermore advanced
interactions are required for many applications
such as virtual surgery simulations. In this section
we introduce techniques for picking, constraining,
pushing and cutting objects simulated using
meshless deformation based on shape matching.

3.1 Picking

The main function of the picking mode is to grab
objects and manipulate them with a spring force.
The user can press the left mouse button to grab
an object vertex, then drag the mouse around to
control the direction of the spring force acting on
that vertex. The spring force acts towards the
position of the cursor represented by a red sphere.
When the user moves the mouse, the red sphere
moves along a plane facing the user. The mouse
wheel can move the red sphere away from (mouse
wheel up) or towards (mouse wheel down) the user.
This moves the red sphere’s plane of movement
away from or towards the user, while keeping the
plane’s normal unchanged.

While dragging a spring force around, the user
can release the left mouse button to stop the force
and release the spring. Alternatively, the user can
click the right mouse button to lock the force (i.e.
the red sphere) in place. The user can then move
around, change modes, or create a new spring
force, while the original spring force remains in
position. This makes it easy to “fix” an object
in a deformed position. An example is shown in
figure 2. To remove a locked in spring force, the
user can click and drag on the red sphere to regain
control of it then release the left mouse button, or
press a key to remove all spring forces from every
object.

3.2 Pushing

The main function of the pushing mode is to move
objects by pushing them. A solid sphere follows
the user’s cursor in the same manner as the red
sphere of the active spring force does in the picking
mode above. Any objects colliding with the sphere
undergo collision response forces. This is designed
to mimic the user pushing objects around with his
hand.

Figure 2: A deformed model of a trout fixed using
two locked pick points.

3.3 Cutting

The main function of the cutting mode is to cut
objects into separate pieces. The cursor turns into
two cylinders designed to mimic a cutting instru-
ment, e.g. a pair of scissors. To cut an object,
the user moves the “scissors” to the appropriate
position relative to the object, then holds down
the left mouse button to begin the cutting pro-
cess. The two “blades” of the scissors move closer
together, and when they meet, every object the
scissors intersect is severed along the plane of the
scissors, creating two new separate objects.

To change the orientation of the scissors, the user
can move the scissors towards him (mouse wheel
down), away from him (mouse wheel up), or he
can rotate the scissors about the y axis by holding
down shift and dragging the left mouse button up
or down.

3.3.1 Cutting Implementation

The cutting tool splits an object along a plane
defined by the orientation of the scissors-shaped
cursor. This simplifies the general cutting problem
somewhat, as (a) we do not have to deal with
partial cuts, and (b) the internal surface revealed
by the cuts is always planar.

First, we define a sever operation which, taking
an object o and a cutting plane c, removes all
of o in c’s positive halfspace and neatly seals up
the exposed cross-section. The cut operation then
consists of two sever operations: sever(o, c) and
sever(oclone,−c), where oclone is a clone of o and
−c is c with normal reversed.

The first step of sever is to separate o’s trian-
gles into categories. Triangles with v1, v2, v3



in the positive halfspace of the cutting plane are
discarded. Triangles with v1, v2, v3 all in the
negative halfspace of the cutting plane are kept.
The remaining triangles straddle the cutting plane,
and are cut along c to obtain a clean edge. These
triangles have either exactly one or exactly two
vertices in c’s negative halfspace. The former kind
are shortened to produce the clean edge; the latter
kind are cut to form two subtriangles (see Fig-
ure 3).

Figure 3: Triangles are made flush with the cutting
plane’s surface by creating two smaller triangles (a)
or by shortening triangle edges (b).

Figure 4: Triangulation for a cut down the centre
of an object shown as overlay (left) and around a
diagonal cutting plane.

When this process is carried out over every tri-
angle, a neat edge aligned with the cutting plane
is produced. Figure 4 shows the results for an
axis-aligned cutting plane (left) and for a diagonal
cutting plane (right).

The next step is to seal the exposed cross-section.
A surface is created by triangulating the newly
created vertices touching the cutting plane with
a Delaunay triangulation algorithm (see Figure 5).
The triangles tend to be irregularly shaped because
only vertices around the edge of the surface are
fed into the algorithm. With no vertices in the
centre, each triangle needs to span edge to edge.
An improvement to our method would add new
vertices inside the edges before running the De-
launay triangulation algorithm, resulting in more
consistently sized and shaped triangles.

After triangulation is performed, the object is
tetrahedralised and divided into clusters again.

Figure 5: After a cut, the exposed internal hole is
sealed up with a Delaunay triangulation.

Another possibility would be to keep what was left
of the old tetrahedrons and clusters, but possible
cluster degeneracy would need to be dealt with.

3.3.2 Problems

A requirement of the Delaunay triangulation algo-
rithm is that the input is free of duplicate vertices
(i.e. vertices with near identical positions). To
achieve this, we simply create a separate list of
duplicated cutting surface vertices, ensuring every
new vertex added to the list has a unique posi-
tion. The Delaunay triangulation is performed on
this separate list. The edges of the surface pro-
duced, consisting of duplicate vertices, are thus
sharp. This is desirable in must cutting applica-
tions. A rough cut could be easily achieved by
displacing vertices along the cutting plane with a
noise-based fractal function.

Since we use a 2D Delaunay triangulation
algorithm we converted the 3D coordinates of the
vertices of the cutting plane into 2D coordinates
within this plane. The triangle vertex indices
resulting from the algorithm can then be used
to index the original 3D vertices. Unfortunately
the particular implementation we used required
that the input 2D points be sorted in order of
increasing x. To preserve the mapping from 2D
to 3D we created a data structure consisting of a
2D coordinate and an index into the 3D vertices’
array, where the 3D vertex indexed is mapped
to the 2D coordinate. The array of these data
structures is then sorted into order of increasing
x. The triangle resulting from the Delaunay



triangulation index into this array, from which we
can extract the correct index into the 3D vertex
array.

3.4 Collision

Several types of methods are available for detecting
and responding to collisions between deformable
objects. These include bounded volume hierar-
chies, stochastic methods, distance fields, spatial
subdivision, and image-space techniques [5].

Our application uses spatial hashing [6] and pene-
tration depth estimation [7] techniques. We found
that collision detection was a performance bottle-
neck however. No “best way” to perform collision
detection for deformable objects has been decided
on yet, and future research will improve this area.

4 Results

We have implemented a meshless deformation al-
gorithm based on shape matching and developed a
test bed for simulation applications and interaction
techniques [4] based on the Ogre 3D graphics en-
gine [8]. The user can pick, push or cut deformable
objects in real-time. Simple objects with limited
modes of deformation are simulated best. Objects
composed of simple subcomponents are simulated
well with clusters. Objects with a very high num-
ber of deformation modes, such as cloth, can not
be simulated efficiently [9].

Usability. We found that all interaction techniques
were intuitive and easy to use and that
they significantly increased user satisfaction
(enjoyment) when interacting with the virtual
environment. This is a strong indication that
the implemented techniques are a useful addition
to highly-interactive immersive environments
although more formal tests are necessary to
confirm this observation. The pick application
works best for objects which deform globally, such
as the trout shown in figure 2, whereas simulating
locally deformable objects requires us to use
multiple clusters as demonstrated in figure 6.
The cutting tool proved particularly popular with
users and significantly increased the look and feel
of interacting with 3D objects (see figure 7).

Ease of implementation. We found meshless defor-
mation relatively easy to implement and integrate
into the 3D rendering engine Ogre. There are only
two main differences between current 3D engines
and what is required for deformable object simu-
lation. Firstly, rigid objects have static sharable
meshes, while deformable objects require updates
to individual vertex positions every time step on

Figure 6: Behaviour of a 5 × 5 cluster skin patch
in response to a user pick.

Figure 7: Cutting an object: (a) before cut, (b)
during cut, (c) two resulting halves have rolled
apart, (d) after further cuts.

their own mesh instance. Secondly, collision detec-
tion and response is a much slower, more difficult
task for deformable objects.

Performance. Our environment is comparatively
fast: We can simulate dozens of simple 32 tetrahe-
dron objects with collisions in real-time and uncon-
ditional stability (see figure 8). Significantly better
results could be achieved by optimising our algo-
rithms and/or implementing them on the GPU.

Tweakability. The “gooeyness” and stiffness of
each object can be easily modified using the α

and β parameters. Further collision-response
parameters can also be tweaked. The strength
of surface area preservation can be specified with
a force response curve. Volume preservation is
automatic, but can be adapted to use a force
response curve as well.

Disadvantages. The primary disadvantage of our
environment is the lack of robust local deformation.
For complex virtual surgery applications which of-



Figure 8: Large scale simulation of deformable
objects.

ten require plausible localised deformation of an
arbitrary region, our environment is less suitable.
Also, even when simulation is visually plausible, it
is usually not physically accurate.

5 Conclusion

We have implemented an improved algorithm for
meshless deformation based on shape matching
and we have presented several novel techniques
to interact with these objects in a realistic and
intuitive way. All interactions are performed in
real time, are unconditionally stable and easy to
integrate into 3D rendering and game engines.
Informal user studies suggested that all interaction
techniques significantly increase user satisfaction
(enjoyment) when interacting with the virtual
environment. Cutting could also easily be adapted
to serve as a fracturing implementation.

Disadvantages are that performing local deforma-
tions requires models with sufficiently small clus-
ters which is often not efficient. Also more im-
provements are necessary in order to apply our
techniques to large scale objects and scenes. The
cut operation so far can only perform full cuts and
does not support local incisions which would be
useful for a virtual surgery application or games
where the player might want to slash an opponent.

In summary we believe that the implemented
techniques are a useful addition to many highly-
interactive immersive environments where speed
and a more immersive feel are required but
physical accuracy is not important.

6 Future Work

When cutting an object many new triangles are
created along the cutting plane. Currently we give

each new triangle unique vertices which can result
in an uneven look when using different vertex nor-
mals. In future we intend to utilise a hash table for
vertices and normals similar to the one introduced
by Wyvill et al. [10].

References

[1] “Open Dynamics Engine home page.” http:

//www.ode.org.

[2] M. Müller, B. Heidelberger, M. Teschner,
and M. Gross, “Meshless deformations based
on shape matching,” ACM Trans. Graph.,
vol. 24, no. 3, pp. 471–478, 2005.

[3] B. Horn, “Closed-form solution of absolute
orientation using unit quaternions,” Journal
of the Optical Society of America A, vol. 4,
no. 4, pp. 629–642, 1987.

[4] A. Henriques, “Meshless deformation for real-
time soft tissue simulation,” BSc Honours
dissertation, University of Auckland, 2006. (to
be published in Oct 2006).

[5] M. Teschner, S. Kimmerle, G. Zachmann,
B. Heidelberger, L. Raghupathi,
A. Fuhrmann, M.-P. Cani, F. Faure,
N. Magnetat-Thalmann, and W. Strasser,
“Collision detection for deformable objects,”
in Eurographics State-of-the-Art Report
(EG-STAR), pp. 119–139, Eurographics
Association, Eurographics Association,
2004. http://www-evasion.imag.fr/

Publications/2004/TKZHRFCFMS04.

[6] M. Teschner, B. Heidelberger, M. Mueller,
D. Pomeranets, and M. Gross, “Optimized
spatial hashing for collision detection of de-
formable objects,” 2003.

[7] B. Heidelberger, M. Teschner, R. Keiser,
M. Muller, and M. Gross, “Consistent pen-
etration depth estimation for deformable col-
lision response,” Proceedings of Vision, Mod-
eling, Visualization VMV04, Stanford, USA,
pp. 339–346, 2004.

[8] “OGRE 3D home page.” http://www.

ogre3d.org.

[9] J. Rubin, “A framework for
interactive and physically realistic
cloth simulation,” 780 project report,
University of Auckland, Feb. 2006.
http://www.cs.auckland.ac.nz/~burkhard

/Reports/2005 SS JonathanRubin.pdf.

[10] G. Wyvill, C. McPheeters, and B. Wyvill,
“Animating soft objects,” The Visual Com-
puter, vol. 2, pp. 235 – 242, Aug. 1986.


