
GPU-Based Volume Segmentation

Stefan Schenke1, Burkhard C. Wünsche2 and Joachim Denzler1

1Friedrich-Schiller-Universität Jena, Lehrstuhl für Bildverarbeitung, D-07740 Jena, Germany.
2University of Auckland, Dept. of Computer Science, Private Bag 92019, Auckland, New Zealand.

Email: burkhard@cs.auckland.ac.nz

Abstract
Volume segmentation is an important part of any medical image analysis framework used for diagnoses,
treatment planning and biomedical modelling and visualisation. Recent advances in modern graphics
hardware have made it possible to perform general purpose computing on the GPU. In this paper
we survey and analyse the current state-of-the-art of GPU-based volume segmentation algorithms.
Limitations of GPU-based implementations due to the architecture of graphics hardware are discussed
and guidelines for developing new GPU-based algorithms are given. We conclude with the GPU-based
implementation of a hybrid volume segmentation method which makes use of the latest GPU features
such as frame buffer objects. We present a framework for the interactive control and visualisation of the
segmentation process and we demonstrate the speed advantage achieved by using the GPU.

Keywords: volume segmentation, GPU programming, GPGPU

1 Introduction

Image segmentation is the process of partitioning
an image into non-intersecting regions such that
each region is homogeneous with respect to some
pre-defined similarity criterion. Applications of
image segmentation range from computer vision
to medical image analysis which usually involves
3D image data sets (volume segmentation).

In order to obtain good segmentation results it
is often necessary to enhance image quality using
low-level pre-processing steps to correct shading,
reduce noise and suppress other system dependent
influences. The quality of the segmentation out-
put is crucial for the success of subsequent high-
level image analysis and classification procedures.
Segmentation results are affected by issues such as
spatial resolution, poor contrast, ill-defined bound-
aries, noise and other acquisition artifacts. Conse-
quently many researchers believe that image data
alone is not sufficient and instead user guidance or
a priori knowledge, such as the expected shape or
spatial position of an object, is necessary [1].

Over the past decades numerous segmentation
methods have been developed but none performs
consistently well for all applications. Instead the
best methods are usually highly specialised for
specific image classes or problems, especially when
they integrate a priori knowledge about features
like shape or position of the objects to segment.
Suri et al. point to more than 1000 publications of

image segmentation methods in the medical field
alone [2].

It is possible to broadly categorise image segmen-
tation methods into three classes:

• Pixel-based methods directly classify each in-
dividual pixel based on its feature value util-
ising histograms or other global measures.

• Edge-based methods use edge information
and minimum cost functions to determine the
boundaries of homogeneous regions.

• Region-based methods build object bound-
aries using a pre-defined similarity criterion
which pixels within a region have to match.

A survey and review of image segmentation tech-
niques can be found in [3].

In this paper we investigate volume segmentation
algorithms specifically developed for modern
graphics hardware. The parallel computational
resources of commodity graphics hardware and
recent improvements of their programming
flexibility have made them a well suited platform
for image processing tasks, including image
segmentation. We survey and analyse existing
algorithms, discuss limitations imposed by the
GPU architecture and we present and evaluate our
own implementation of an interactive GPU-based
hybrid volume segmentation algorithm.

2 General-Purpose Computation on
GPUs (GPGPU)

The latest graphics chips provide enormous
memory bandwidth and computational power
which are key prerequisites for efficiently solving
many scientific problems. The NVIDIA GeForce
6 Ultra GPU, for instance, reaches sustained
memory transfer rates of up to 35.2 GByte per
second and the ATI Radeon X800XT achieves a
sustained computational power of 63 GFLOPS,
compared to the theoretical peak of 14.8 GFLOPS
on a 3.7GHz Intel Pentium 4 SSE2 CPU with
6.4GB per second main memory access [4, 5].

2.1 Programmable Graphics Hardware

Graphics chips incorporate nowadays powerful and
flexible architectures providing fully programmable
processing units with support for vectorised 32-
bit IEEE floating-point operations. High-level
programming languages have been developed to
easily exploit the flexibility of the vertex and pixel
pipelines. The latest improvements of current
GPUs comprise vertex texture access, full MIMD
branching support in vertex processors as well
as limited branching capabilities in the fragment
pipeline.

Despite the computational speed, increased
precision and rapidly extending programmability,
current graphics hardware lacks some fundamental
computing constructs: integer arithmetic and
associated bit-wise shift and logical operations,
like AND, OR, XOR, NOT are not supported on
graphics hardware. The architecture of current
high-end GPUs reflects the flow of data (graphics
pipeline) and is illustrated in figure 1.

Host

Cull / Clip / Setup

Rasterization

Fragment Crossbar

Vertex Processing

Fragment Processing /
Texture Mapping

Texture
Memory

Z-compare and blend

Z-Cull

Memory

Figure 1: The GeForce 6 series architecture
(adapted from [4]).

The input to the graphics pipeline are geometric
primitives defined by vertices and its output are
the colour values of the primitives’ fragments (pix-
els) which are stored in the video memory of the

graphics card. The task of the vertex processing
stage is to transform the incoming vertices from
object space into screen space and to perform per-
vertex calculations such as lighting. The fragment
processors compute for every incoming fragment
its final colour value using the interpolated vertex
attributes from the rasteriser. This pipeline stage
has access to global memory in the form of textures
which the fragment processors can access in order
to calculate fragment colours. In the final stage of
the pipeline fragments are blended with the frame
buffer or are discarded if they fail optionally ap-
plied depth and stencil tests.

2.2 Limitations of GPUs

Programmable GPUs have a higher computational
power than CPUs because they are explicitly de-
signed for the simultaneous processing of multiple
data-parallel primitives. However, compared to
CPUs they offer only a limited instruction set con-
sisting primarily of mathematics operations which
are often graphics specific and in general accept
as input a limited number of 32-bit floating point
4-vectors. The vertex stage can output a limited
number of these floating point vectors, which are
interpolated by the rasteriser and passed as input
vectors to the fragment stage. Currently the frag-
ment processor can output only 4 floating point
4-vectors, usually representing colours. Each pro-
grammable stage has access to global constants and
local temporary registers.

Since the write position of a processed fragment
is determined in advance by the vertex-parameters
and cannot be changed within a fragment program,
fragment processors are incapable of performing
memory scatter. It is possible to perform memory
scatter operations via vertex programs through the
recently emerged vertex-texture-fetch capability of
current GPUs and the vertex processors’ ability to
change the target memory address of the coloured
fragments. This, however, can lead to memory
and rasterisation coherence issues and lower per-
formance [6].

High-level shading languages support traditional
C-style explicit flow control constructs. Current
GPUs make use of three basic types of data-parallel
branching: predication, MIMD (multiple instruc-
tion multiple data) branching and SIMD (single
instruction multiple data) branching. True MIMD
branching is currently only implemented in the ver-
tex processors of the NVIDIA GeForce 6, NV40
Quadro and G70 GPUs. Because of the perfor-
mance penalties of SIMD and branching by pred-
ication, it is important to move the flow-control
decisions up to an earlier stage of the graphics

pipeline, where they can be evaluated more effi-
ciently.

3 An Analysis of GPU-Based Volume
Segmentation Techniques

The limitations described in subsection 2.2 make
it difficult to map volume segmentation algorithms
directly to graphics hardware. The instruction
count limitation of current vertex or fragment
processors can sometimes be bypassed by splitting
the computation into several rendering passes
and storing intermediate calculation results
within textures for subsequent shader executions.
Furthermore, hybrid approaches can be used by
moving difficult to implement parts of the desired
algorithm to the CPU. For example, Lefohn et al.
implemented a memory manager for the graphics
hardware on the CPU, allowing for the utilisation
of sparse data structures for a GPU-based level-set
solver [7, 8].

Many successful image segmentation algorithms
rely on the dynamic computation of image
statistics which are difficult to implement on the
GPU. An example is image histograms which
require the creation of a memory array containing
the number of pixels for every gray-value interval
of interest. A simple approach to solve this task
is to read each pixel’s gray value and increase the
corresponding counter in the memory array. This
requires the ability to perform data-dependent
memory writes, which is a form of memory
scatter and, as described previously, is impossible
to implement directly in fragment programs.
NVIDIA presents a histogram calculation method
based on occlusion queries [9].

Another limitation for high-level segmentation al-
gorithms employing additional object information
is the available amount of graphics memory. For
example, atlas-based image segmentation methods
require the construction and access to a database,
containing information about object attributes
such as shape. As of today, the maximum memory
available on consumer PC graphics hardware is
512 MByte, being easily exceeded by the analysis
of volumetric and multi-channel imaging datasets.

Algorithms that map well to the parallel graph-
ics hardware architecture have an high arithmetic
intensity and are executable in parallel. In 2002
Yang et al. [10] presented a fast threshold based
image segmentation method followed by morpho-
logical operations to clean and smooth the result-
ing images. By exploiting the register combin-
ers and blending capabilities of fixed-function con-
sumer graphics hardware, they achieve a speedup
by a factor of 5 compared to CPU implementa-

tions. Viola et al. [11] adapted the thresholding
approach to current graphics hardware and im-
proved it by performing preceding nonlinear image
enhancement filters using high level shading lan-
guages.

In 2003, Sherbondy et al. [12] presented a non-
linear diffusion-based region growing technique to
segment volumetric images. By integrating the
filtering and growing process with a direct volume
renderer and implementing all three algorithms us-
ing vertex and fragment shaders the authors avoid
data transfers across the system bus. The resulting
speed-up enables the interactive simultaneous seg-
mentation and visualisation of volume data. One
common difficulty with edge-based methods is the
leak of seeds across weak boundaries which moti-
vates the use of an interactive segmentation pro-
cess. Observing the growing process and seeing
the segmentation results immediately enables the
user to select suitable seed points and to adjust
the parameters influencing the diffusion process
appropriately.

Sherbondy et al. use an ATI Radeon 9800 Pro
graphics card and exploit its 3D textures and early
z-culling capabilities. They achieve a performance
gain of about 10 to 20x over a highly optimised
software implementation running on an Intel Pen-
tium 4 2.4GHz based PC. In addition the visual
quality of the segmentation results is better than
that obtained with threshold-based approaches.

Rumpf and Strzodka [13] introduced a GPU-based
solver for a 2D level-set equation with intensity and
gradient image-based forces. Lefohn and Whitaker
[7] extended this approach to 3D, supporting a
more complex user controllable evolution function
to reduce the influence of image noise. Subse-
quently Lefohn et al. presented a sparse 3D level-
set solver, which by limiting the computation to
only active surface elements provides a speedup
of 10-15 times compared to highly optimised CPU
solvers [8].

4 Implementation of a hybrid GPU-
based Volume Segmentation
Technique

We have implemented a hybrid image segmen-
tation technique which uses threshold-based
and diffusion-based region growing and utilises
sophisticated graphics hardware functionality of
consumer level graphics cards. All segmentation
algorithms, including image pre-processing as
well as morphological segmentation modifiers,
have been developed to be executable entirely on
the graphics processing unit. The segmentation
techniques have been designed and implemented to

be integrated into the object-oriented architecture
of the open source visualisation system VTK
[14]. Furthermore, a framework application has
been developed providing access to volumetric
image datasets, an user interface for interactive
steering of the segmentation processes, as
well as different data visualisations, including
volume rendering based on functionalities of
the Visualization Toolkit. To provide principle
platform independence, OpenGL was chosen as
the 3D Graphics API for the implementation of
the presented image filtering and segmentation
techniques. For the creation of the specific vertex
and fragment programs, the high-level OpenGL
Shading Language was utilised [15].

4.1 Data Representation and Processing
Model

3D image data sets are loaded into the graphics
hardware memory as stacks of 2D textures. In or-
der to allow the iterative execution of filter as well
as segmentation fragment programs, a second iden-
tically structured stack of 2D textures is created.
The processing of an image operator is issued by
drawing a quadrilateral covering a specific texture
slice of the target stack, binding several texture
slices from the source stack as input and setting
the specific fragment program for execution. De-
pending on the performed algorithm, one or three
textures, i.e. volume slices, will be bound as input
for the particular fragment shader. For example,
the thresholding operation only requires the data
of a single voxel, determines the thresholding result
and stores it in the second texture stack at the cor-
responding voxel location. In contrast, a fragment
program performing a region growing step requires
voxel information of its spatial neighbourhood and
thus needs access to the neighbouring texture slices
of the current voxel.

Some operations, like the seeded region growing,
require multiple iterations of its computation.
Rather than copying the whole frame buffer after
each slice has been computed many researchers
use pixel buffers which are invisible off-screen
rendering targets. The drawback of this pbuffer-
technique is, that changing the rendering target
usually incorporates an OpenGL context switch,
which is an expensive, time consuming function
call. Furthermore, this extension is currently
platform dependently and only available under
the Microsoft Windows operating system.

We exploit the new EXT framebuffer object

OpenGL extension [16] for the realization of the
render to texture functionality. It is available
in the latest NVIDIA graphics drivers (v77.72)
and provides the most efficient way to render to

arbitrary textures [17]. The extension allows for
the creation of arbitrary frame buffer objects,
consisting of a collection of logical buffers, i.e. for
colour, depth or stencil values, being usable as
texture objects as well as render-buffer objects.
Moreover, additional OpenGL rendering contexts
are not required and a more efficient management
of graphics resources is provided by allowing to
share logical buffers between frame-buffer objects.

4.2 Diffusion-based Image Smoothing

In order to improve segmentation results we
preprocess image data using a nonlinear edge-
preserving image smoothing operator based on
an anisotropic diffusion metric proposed by
Perona and Malik [18]. The anisotropic diffusion
filter reduces noise artifacts while preserving
the structure of edges and it hence improves
the behaviour of region growing segmentation
techniques. The evolution of the image smoothing
can be represented by the partial differential
equation:

∂V (t, x, y, z)

∂t
= div(g(|∇V (t, x, y, z)|)∇V (t, x, y, z))

where g(s) = νe−
s
2

K2 and V (x, y, z) is a voxel,
t represents an iteration step, and ν and K are
user-defined parameters to control the smoothing
process.

Following the approach by Sherbondy et al. [12]
we discretise the equation using a standard explicit
forward Euler approach. Rearranging terms makes
it possible to use the dot product for the calcula-
tion which is directly supported by the fragment
processor hardware and requires only one single
clock cycle for its calculation [19].

4.3 Seeded Region Growing

Our segmentation algorithm is based on a seeded
region growing approach which allows the iterative
application of threshold-based and diffusion-based
region growing steps. The seed point selection is
a crucial step for the region growing segmentation
process. In order to make full use of the parallel
nature of modern graphics hardware it is important
to select as many seed points as possible. Our man-
ual seed point selection allows the user to interac-
tively select arbitrary regions in the image dataset
and thus select multiple voxels as seed points with
a user definable seed value. The seed regions can
be increased using thresholding and morphological
operators.

The threshold-based region growing step is simi-
lar to the approach by Viola et al. [11] but we

only consider voxels adjacent to seed voxels for
thresholding. The diffusion-based region growing
approach follows the method described by Sher-
bondy et al. [12] and uses a similar equation as de-
scribed in subsection 4.2. This approach is notice-
able slower than the threshold-based region grow-
ing method.

In order to combine the advantages of both
these methods our approach enables the user to
mix threshold-based and diffusion-based region
growing steps. The morphological operations
erode and dilate can be utilised interactively
to provide a user steerable modification of the
segmentation result. All methods described in
this section have been implemented by fragment
shaders and the entire segmentation process is
executed on the GPU. More implementation
details are described in [19].

5 Application Framework Design

Our application is written in C/C++ and runs on
the Microsoft Windows operating systems. It uses
the OpenGL graphics library version 2.0 which in-
corporates the high-level OpenGL Shading Lan-
guage. Furthermore we use the OpenGL Extension
Wrangler Library (GLEW) [20].

We have integrated our GPU-based volume seg-
mentation method into VTK [14] which provides us
with interactive user interface tools and advanced
visualisation techniques. Figure 2 shows an exam-
ple of our application at work.

Figure 2: A VTK widget used for seed point selec-
tion (left) and the control panel for the interactive
segmentation process (right).

6 Results

Our application allows the fast interactive segmen-
tation of large data sets. An example of the results
obtained using our interactive hybrid segmentation
method is shown in figure 3.

Since our segmentation is performed interactively
it is difficult to measure its total performance.
Table 1 shows the processing throughput in
MVoxels/s for the GPU and CPU implementation
of the diffusion-based region growing algorithm:

Figure 3: The result of interactively segmenting an
MRI data set of the brain.

Size 51×51 85×85 128×128 256×256
×38 ×64 ×96 ×192

GPU 115 150 186 204
CPU 0.66 0.60 0.58 0.54

Table 1: Processing throughput in MVoxels/s

for the GPU and CPU implementation of the
diffusion-based region growing algorithm.

The measurements indicate the huge speed
advantage obtained by using a GPU-based
implementation. Similar speed improvements
were obtained for anisotropic diffusion filtering,
whereas the speed advantage for threshold-based
region growing is smaller and varies from a factor
of 4 up to 17 for the largest test data set.

Note that the CPU implementation does not ex-
ploit additional instruction sets, like MMX, SSE,
or SSE2. Therefore, these results are not represen-
tative. Nevertheless, the huge performance gain
obtained by using a GPU-based implementation
can be seen very clearly. The CPU implementa-
tion was executed on an 2.4GHz Intel Pentium 4
based PC with 512 MB PC333 DDR RAM. The
GPU-implementation was executed on an NVIDIA
GeForce 6800 GT graphics card, comprising 256
MB of RAM.

7 Conclusion

We have reviewed and analysed the current state-
of-the-art of GPU-based volume segmentation
methods and we have explained its fundamental
limitations. We have developed an interactive
hybrid GPU-based segmentation technique which
combines threshold-based and diffusion-based

region growing and we have successfully employed
it to segment data sets of up to 256×256×192
voxels in real time. As with all interactive methods
the success of the technique depends a lot on the
skills of the user.

Preliminary performance measurements indicate
that a GPU-based application is by at least one
order of magnitude faster than a comparable
CPU-based implementation. In future work we
will perform comparisons with optimised CPU
implementations and we plan to quantitatively
evaluate the quality of our segmentation results.

References

[1] M. Sonka and J. M. Fitzpatrick, Handbook
of Medical Imaging, vol. 2 - Medical Image
Processing and Analysis. SPIE Press, 2000.

[2] J. S. Suri, S. K. Setarehdan, and S. Singh,
Advanced Algorithmic Approaches to Medical
Image Segmentation. Springer Verlag, 2002.

[3] J. K. Udupa and G. T. Herman, eds., 3D
Imaging in Medicine. Boca Raton: CRC
Press, 2000.

[4] E. Kilgariff and R. Fernando, GPU Gems 2,
ch. The GeForce 6 Series GPU Architecture,
pp. 471–491. Addison Wesley, 2005.

[5] I. Buck, “GPGPU: General-purpose compu-
tation on graphics hardware - GPU computa-
tion strategies & tricks.” ACM SIGGRAPH
Course Notes, 2004.

[6] J. D. Owens, D. Luebke, N. Govindaraju,
M. Harris, J. Krüger, A. E. Lefohn, and
T. J. Purcell, “A survey of general-purpose
computation on graphics hardware,” in Pro-
ceedings of Eurographics 2005 - State of the
Art Reports, pp. 21–51, Aug. 2005. Dublin,
Ireland, August 29 – September 2.

[7] A. E. Lefohn and R. T. Whitaker, “GPU-
based, three-dimensional level set solver
with curvature flow,” technical report
uucs-02-017, School of Computing,
University of Utah, 2002. URL:
http://graphics.cs.ucdavis.edu/

~lefohn/work/rls/gpuLevelSet3D-TR.pdf.

[8] A. E. Lefohn, J. M. Kniss, C. D. Hansen,
and R. T. Whitaker, “Interactive deformation
and visualization of level set surfaces using
graphics hardware,” in Proceedings of IEEE
Visualization, pp. 75–82, 2003. 19–24 October
2003.

[9] Nvidia Corporation, “Nvidia software de-
velopment kit 9.1,” 2005. URL: http://

developer.nvidia.com.

[10] R. Yang and G. Welch, “Fast image segmenta-
tion and smoothing using commodity graphics
hardware,” Journal of Graphics Tools, spe-
cial issue on Hardware-Accelerated Rendering
Techniques, vol. 7, no. 4, pp. 91–100, 2002.

[11] I. Viola, A. Kanitsar, and E. Gröller,
“Hardware-based nonlinear filtering and seg-
mentation using high-level shading lan-
guages,” in Proceedings of IEEE Visualiza-
tion, pp. 309–316, 2003. 19–24 October 2003.

[12] A. Sherbondy, M. Houston, and S. Napel,
“Fast volume segmentation with simultaneous
visualization using programmable graphics
hardware,” in Proceedings of IEEE Visualiza-
tion, pp. 171–176, 2003. 19–24 October 2003.

[13] M. Rumpf and R. Strzodka, “Level set seg-
mentation in graphics hardware,” in Proceed-
ings of the IEEE International Conference on
Image Processing (ICIP 01), pp. 1103–1106,
2001.

[14] Kitware, Inc., “VTK Home Page.” URL:
http://public.kitware.com/VTK/.

[15] J. Kessenich, D. Baldwin, and R. Rost, “The
OpenGL shading language,” 2004. URL:
http://www.opengl.org.

[16] J. Juliano and J. Sandmel, “EXT framebuffer
object specification,” 2005. URL: http://

oss.sgi.com/projects/ogl-sample/

registry/EXT/framebuffer object.txt.

[17] S. Green, “The OpenGL framebuffer
object extension,” 2005. Game Developers
Conference 2005 presentation slides, URL:
http://developer.nvidia.com/object/

gdc_2005_presentations.html.

[18] P. Perona and J. Malik, “Scale-space and
edge detection using anisotropic diffusion,”
IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, no. 7, pp. 629–
639, 1990.

[19] S. Schenke, “Analysis and design of GPU-
based algorithms for interactive volume seg-
mentation,” Diplomarbeit, Friedrich-Schiller-
Universität Jena, July 2005. Lehrstuhl für
Bildverarbeitung.

[20] M. Ikits and M. Magallon, “The OpenGL
Extension Wrangler Library (GLEW),” 2005.
URL: http://glew.sourceforge.net.

