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Abstract

Diffusion tensor imaging (DTT) is a relatively new imaging technique which is used to measure the water
diffusion in the brain. Since water diffusion is influenced by the micro-structure of tissue DTI can be
used to identify nerve fibre tracts in the brain. Over recent years many fibre tracking techniques have
been proposed, but little work has been done to evaluate and compare these techniques. In this paper
we present a framework for designing virtual nerve fibre tracts and for simulating noisy DTI data sets
for evaluating and comparing nerve fibre tracking techniques. We have implemented three classes of
fibre tractography algorithms, streamlines, tensorlines and tensor deflection, and we devise several error
metrics for comparing them. Our analysis shows that all methods are very sensitive to noise and that
streamlines fail in regions where nerve fibres cross, whereas tensorlines and tensor deflection cope well
with the tested tract topologies.
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1 Introduction

Diffusion tensor imaging (DTI), also known as
diffusion-weighted MRI imaging (DWTI), is used to
measure the intrinsic properties of water diffusion
in the brain by an orientation invariant quantity,
the diffusion tensor D [1, 2]. The eigenvalues and
eigenvectors of the symmetric second-order tensor
D define the principal axes of a diffusion ellipsoid
which expresses the spatial distribution of water
molecules originating at a point location after an
infinitesimal time period.

The directional information of water diffusion in
the brain can be used to estimate the structure
and the orientation of the never fibre tracts as wa-
ter tends to diffuse within white matter along the
axonal fibre direction in the brain [3]. Due to errors
(noise) in the DTI data and because of its low
resolution advanced mathematical models must be
employed in order to find the fibre tract with the
highest probability of being correct. Previously
suggested solutions include physically-based mod-
els [3, 4], statistical models [5], which make use of
the assumption that sudden changes in fibre tract
direction are most likely due to errors (noise) in
the data, and curvature minimising schemes [6],
which are based on the observation that the fibre
tracts in a healthy brain usually follow a path with
a minimum curvature.

Because of noise and the low sample density of
DTT it is usually necessary to smooth, regularise
and reconstruct the data before visualising and
analysing it. Suitable techniques are described in
[7, 8,9, 10]. Distortions induced by eddy-currents
are characterised and corrected in [11, 12]. So
far little work has been done to validate, analyse
and compare fibre tracking algorithms. Lazar and
Alexander have compared fibre tracking algorithms
for tensor fields with linear, radial and circular
major eigenvector fields [13].

In the following sections we introduce a framework
for creating arbitrarily shaped virtual nerve fibre
tracts and for simulating noisy DWI data sets from
them. We use our framework to evaluate and com-
pare three classes of fibre tractography algorithms.

2 A Framework for Simulating DTI
Data

In order to quantitatively compare the fibre track-
ing algorithms synthetic tensor fields are required
[13, 14]. We reconstruct the synthetic tensor fields
by first modelling the nerve fibre tracts and sur-
rounding tissue and then determining the direc-
tions e; and magnitudes \; (i = 1,...,3) of the
water diffusion within these structures. The diffu-
sion tensor D is then given by
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2.1 Construction of Virtual Nerve Fibre
Tracts

We have developed an interactive user interface
which allows the modelling of fibre tract trajec-
tories by B-Spline curves [15]. Virtual nerve fibre
tracts are created by fitting a cylindrical surface
around the curve as illustrated in figure 1.

In order to determine the principal water diffusions
for a point within the nerve fibre tract we define a
reference frame for the associated B-Spline curve
[16]. The three axes of the reference frame define
the principal diffusion directions. The tangent vec-
tor is associated with the maximum diffusion value
and indicates the direction of the pathway. Since
different types of fibre tracts have different ranges
of typical diffusivities [17] the user can specify the
principal diffusivities accordingly.

Figure 1: B-Spline curves (a) define the trajecto-
ries of fibre tracts (b). The reference frame of the
space curves determines the eigenvectors used for
computing the synthetic tensor field (c).

2.2 Construction of a Synthetic Tensor
Field

In order to obtain a synthetic tensor field for a
given set of fibre tracts the user has to specify
the number and density of sample points. For
each sample point inside a fibre tract we determine
the closest curve point to it. We then determine
the reference frame at that point and the tract’s
principal diffusivities and compute the diffusion
tensor using equation 1.

If a point is inside several tracts the corresponding
tensors are summed up. If a point is outside of all
fibre tracts we assume that it lies in a gray matter
region and we define an isotropic diffusion tensor
using typical values reported in the literature [18].

2.3 Adding Gaussian Noise to DTI Data

To make the synthetic diffusion tensor data more
realistic, Gaussian normal noise with zero mean
and the standard deviation corresponding to the
desired Signal-to-Noise-Ratio (SNR) is added to
the real and imaginary channels of the ideal signal
for every sample point. The procedure of adding
noise to a synthetic tensor field is the reverse of the
process for DTI data acquisition [19].

1) Represent the noise-free tensor D, obtained
using the procedure described in the previous
subsection, by its six independent elements
d = (dgs, dyy, 2z, duy, duzy dyz).

2) Define six gradient vectors simulating the DTI
acquisition scheme:
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From this data we can compute the six apparent
diffusion coefficients (ADC) as
di=q'Dq;, i=1,...,6

Let d=(dy,ds, ds, dy, ds, dg) then

d=Ad (2)
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3) The “ideal” noise-free signals are calculated as
[19]
Si = Soeibdi (3)

where Sy is the base line signal and b is the so-
called b-factor. Typical values for b in DTI imaging
are 1000 — 1500s/mm?, though some researchers
believe that higher values of 3000 —4000s/mm? are
needed to resolve more complex fibre connectivity,
such as crossing fibre tracts [20].

4) The noise free signals S = S; (1 = 1,...,6)
are treated as complex numbers Z = a + ib where
S = mod(Z) = va? + b2. For simplicity we follow
Skare et al. [19] and set a = S and b = 0 and
superimpose independent normal Gaussian noises
upon the real and imaginary parts:

Z = (S 4+ noise,) + i(noisep)



where noise, and noisep are independent random
samples from a Gaussian distribution with mean
p = 0 and a standard deviation o. The standard
deviation is chosen according to the user defined
signal to noise ratio SNR = % Random samples
are obtained using the Gaussian random number
generator gasdev [21].

The resulting noise contaminated signals are

S; = mod(Z) = \/(S; + noiseq)? + (noisey)?

5) The noise contaminated ADCs are calculated
using equation 3 and the noisy diffusion tensor is
obtained by inverting equation 2.
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Figure 2: A simulated DTT data set with different
SNRs representing crossing fibre tracts.

An example of the resulting simulated noisy DTT
data is shown in figure 2. The motivation for this
method is given in [19]. Note that it has been
shown that MRI data is best modelled with Ri-
cian noise, whose distributions, however, are nearly
Gaussian for SNRs larger than two [22].

3 Implementation

The simulation framework was implemented in
C/C++ using the OpenGL, GLU and GLUT
libraries in order to gain platform independence.
An object-oriented design makes it easy to add
new fibre tracking methods or different types
of tensor fields such as real DTI data or fields
obtained using different simulation techniques.

3.1 Fibre Tracking Algorithms

We have implemented three types of fibre tracking
methods: streamlines, tensorlines and Tensor De-
flection (TEND). For all techniques we integrate

for a seed point in both the positive and negative
eigenvector direction. The tracking continues until
the boundary of the data set is reached or the mean
diffusivity Ameqn and diffusion anisotropy Asniso
at the current curve point lie outside a previously
specified admissible range of values [23].

Let D be the diffusion tensor and e; and \; (i =
1,...,3) be its eigenvectors and eigenvalues, re-
spectively, with \; > Ay > A3. A nerve fibre can be
computed as a streamline S(t) of the major eigen-
vector field, i.e., it is the solution of the ordinary
differential equation

ds(t)

S —ei(8(1) . S(0) = s
where sq is the seed point. We solve this equation

using a 4 order Runge-Kutta method [21].

The tensor deflection (TEND) fibre tracking
method uses the entire diffusion tensor information
to deflect the current fibre direction v;, [24]. For
each integration step the new fibre direction
is computed from the diffusion tensor as
Vout = DVvip.

The tensorline tracking technique from Weinstein
et al. is a mixture of the two previously described
techniques [25]. It not only considers the prin-
cipal diffusion direction of the local tensor, but
also the nearby orientation information of the local
tensor by adding an advection term in a standard
diffusion-based propagation method.
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where cp = ()\1 — )\2)/()\1 + )\2 + )\3) is the lin-
ear anisotropy coefficient and w is a user-defined
weighting term which we set to w = 0.2 as recom-
mended in [25].

3.2 Error Metrics

In order to analyse a fibre tracking method the
user draws one or several nerve fibres and creates
a DTI data set with the desired SNR from it. The
user then defines a set of seed points by specifying
a region of interest and/or an admissible range of
values for the mean diffusivity Ay eqn and diffusion
anisotropy Aaniso [23)-

For each seed point we track a nerve fibre using
the methods described in the previous section. In
order to analyse the results we have to define what
constitutes a correct solution. We choose as correct
solution the B-Spline curve defining the trajectory
of the nerve fibre tract and translate it linearly with
respect to its reference frame such that it passes
through the given seed point.



In order to evaluate the quality of a fibre tracking
method we introduce three error metrics:

1. The average length of the simulated nerve fibres.
This error measure shows how stable a tracking
method is with regard to small perturbations which
can cause a computed nerve fibre to leave a fibre
tract.

2. The number of computed fibres which stay
within the correct fibre tract. This error measure
shows how stable the tracking method is in regions
of crossing or adjacent fibre tracts.

3. The least square distance error (LSE) of the
computed nerve fibres with respect to the correct
solution. This error measure is computed for the
part of a simulated nerve fibre which lies within the
correct fibre tract and it indicates the precision of
a fibre tracking algorithm.

4 Results

We evaluated the suitability of streamlines (ST),
tensorlines (TL) and tensor deflection (TEND) for
fibre tractography using simulated DTI data sets
for two scenarios: two crossing fibre tracts as illus-
trated in figure 2 and a branching fibre tract.

4.1 Crossing Fibre Tracts

The results for tracking two crossing fibre tracts
are shown in the figures 3-5. The horizontal axis
specifies the minimum length of nerve fibres con-
sidered for computing the error measure.
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Figure 3: The average length of nerve fibres

computed using streamlines (ST), tensorlines (TL)
and tensor deflection (TEND).
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Figure 4: The number of nerve fibres computed
using streamlines (ST), tensorlines (TL) and tensor
deflection (TEND), which lie completely within the
correct fibre tract.
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Figure 5: The average least square error of nerve
fibres computed using streamlines (ST), tensorlines
(TL) and tensor deflection (TEND).

Since all seed points are inside of fibre tracts the ex-
pected length of all computed nerve fibres is equal
to the length of a fibre tract (& 23 units). It can be
seen that for SNR=32 most computed nerve fibre
trajectories, independent of the tracking method
used, swerve outside the fibre tract. A more de-
tailed examination reveals that the closer a seed
point is to the boundary of the fibre tract the
more likely the tracking method is to fail. Overall
the tensor deflection method results in the longest
fibres for low signal to noise ratios. If noise is vir-
tually eliminated all methods perform reasonable
well and the lengths of the computed nerve fibres
are close to the expected value.

Figure 4 shows the correctness of the computed
nerve fibres, i.e., whether the nerve fibres lie en-
tirely within one fibre tract or whether they diverge
into the wrong tract in the region where the fibre
tracts cross. It can be seen that for SNR=32 all
tracking methods fail. If noise is virtually elimi-
nated the streamline method always diverges into
the wrong fibre track, whereas the tensor deflection
method stays in most cases within the fibre tract
where it started.

The precision of the three algorithms for SNR=32
is similar for all tracking methods and the
derivation from the correct result increases
approximately linear with the length of a nerve
fibre. If noise is virtually eliminated the precision
of the tensorline and tensor deflection method
improve considerably whereas the
method gets slightly worse.

streamline

4.2 Branching Fibre Tracts

The results shown in the figures 6-8 demonstrate
that all of the three tracking methods perform well
for branching fibre tracts, but are again very sen-
sitive to noise.

Our results indicate that overall tensor deflection is
the best nerve fibre tracking method, in particular
if we deal with crossing fibre tracts which are com-
mon in real DTT data sets. The streamline method
performs well for branching topologies but fails
for crossing fibre tracts because it only considers
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Figure 6: The average length of nerve fibres
computed using streamlines (ST), tensorlines (TL)
and tensor deflection (TEND).
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Figure 7: The number of nerve fibres computed
using streamlines (ST), tensorlines (TL) and tensor
deflection (TEND), which lie completely within the
correct fibre tract.
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Figure 8: The average least square error of nerve
fibres computed using streamlines (ST), tensorlines
(TL) and tensor deflection (TEND).

the major eigenvector. As a result the method is
not able to track nerve fibres in regions of planar
anisotropic diffusion (A1 &= Az).

5 Conclusion

We have introduced a framework for simulating
DTI data and for testing and analysing fibre track-
ing methods. Our tool allows the user to define
virtual nerve fibre tracts by B-Spline curves, which
specify the direction of the pathway, and a radius
which specifies the thickness of the tract.

A DTI data set is simulated by computing for each
sample point and each fibre tract typical diffu-
sion values according to the fibre tract direction
at that point. The contributions of each tract
at a sample point are summed up and complex
Gaussian normal noise with zero mean and the
standard deviation corresponding to a user-defined
SNR is added. The procedure of adding noise to a
synthetic tensor field is the reverse of the process
for DTT data acquisition.

We have used our framework to analyse and com-
pare three fibre tracking techniques and we found
that overall the tensor deflection methods performs
best, whereas the streamline method fails com-
pletely for crossing fibre tract topologies. The ten-
sorline method represents a mixture of these two
techniques and performs slightly worse than tensor
deflection but considerable better than the stream-
line technique.

In future work we want to investigate other fibre
tract topologies, add modelling capabilities for sim-
ulating other anatomical structures (e.g., cerebral
spinal fluid) and simulate pathological DTT data
(e.g., after a subcortical stroke). Furthermore we
want to investigate alternative fibre tracking meth-
ods such as [3, 4, 6].
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