
Strider: A Simple and Effective Terrain Navigation
Controller

Jarno van der Linden, Jing Li, Richard Lobb, Kevin Novins, and Burkhard Wünsche

Graphics Group
Department of Computer Science, University of Auckland.

jvan006@cs.auckland.ac.nz

Abstract
We present a simple controller for terrain navigation called Strider. The controller is based on the
concept of walking and is implemented using a standard mouse device as used with virtually any desktop
computer. Terrain can be explored at any detail by changing the height of the Strider. By applying a
scale factor to the rate of change in position and Strider height based on the current height above the
terrain, large terrains can be navigated quickly while still allowing fine control when examining small
details. In contrast to other user interfaces for terrain navigation, such as flight simulators, no keyboard
input is required.

Keywords : terrain navigation, controllers, walking

1 Introduction

Terrain visualisation is one of the mainstays of
computer graphics. The challenge of showing large
scale detailed terrain in real-time has given rise to
numerous algorithms and rendering systems.

While investigating various terrain rendering sys-
tems, it became clear to us that while some pro-
duce impressive visuals, there is often little thought
put into how the user is to navigate effectively over
the terrain. Common methods range from the use
of a keyboard with each basic movement mapped
to a key, to the simultaneous use of both keyboard
and mouse to control a realistic simulation of a
complex fighter aircraft.

Frustrated with mechanisms that provided insuffi-
cient control, too much control, were too complex,
required specialised hardware, or had no relation
with the task of terrain exploration, we developed
the Strider terrain navigation controller. Unlike
other controllers, Strider can be used to explore
a terrain at any scale ranging from local to global.
Strider uses only a standard mouse and is operated
single-handedly.

2 Related work

The controller is often an afterthought in terrain
visualisation systems when the emphasis is on the
rendering. The topic of navigating in a virtual
environment is being studied extensively in the
computer-human interaction field. See for example
[1].

Ware and Fleet [2] have investigated the use of
distance to objects to scale the sensitivity of the
controller. This is similar in concept to our work
where we apply a scaling to changes in position
and height depending on distance to the terrain.
However, we wish to avoid the use of the flying
control metaphor. Our application is also targeted
at terrain exploration, rather than more general
environments.

Walking is a common way of navigating through
human-scale environments. Studies such as [3]
show that walking is a better method of exploring
human-scale virtual environments than flying.

To achieve a more immersive and intuitive experi-
ence, custom hardware has been built to support
the use of a walking interface, for example [4].
Such equipment is expensive and not commonly
available.

A mouse device is specialised for 2D navigation,
and as such does not have the degree of freedom
required for general 3D navigation. Devices such
as the SpaceBall [6] provide the necessary degrees
of freedom, but take more time to master than a
standard mouse. Furthermore, we wanted to use
the devices present on a typical computer system
rather than depend on specialised devices.

3 The Strider Controller

As part of a terrain visualisation project, we re-
quired a means to easily navigate the virtual ter-
rain. After investigating the control methods used

in some other terrain rendering demonstrations, we
found them to be insufficient for one or more of the
following reasons:

• Requiring the use of a keyboard, sometimes in
combination with a mouse.

• The need to memorise numerous non-intuitive
key assignments and key combinations.

• Non- and counter-intuitive rotation controls,
for example with gimbal locking problems, or
controls which invert when going backwards.

• Overly simple controls, for example allowing
only one or two speeds.

• Overly complex controls, for example an accu-
rate simulation of an advanced fighter aircraft
or helicopter.

• Inability to use the controls for both small
scale and large scale examination, for example
requiring minutes to cross the entire terrain,
or always moving too fast to concentrate on
small details.

• Requiring the use of non-standard hardware,
for example a 6 degree of freedom mouse.

Having come to the conclusion that existing meth-
ods were unsuitable for our terrain navigation ap-
plications, we developed the Strider controller.

3.1 The model

In order for the controller to be intuitive it should
be based on a model that the user is naturally fa-
miliar with. A common choice is to model the oper-
ation of a vehicle. In these models the user controls
the movement of some airborne or ground-based
vehicle, such as a helicopter or car. Keyboard and
mouse controls are mapped to simulations of real-
world controls, such as a steering wheel, gas and
break pedals, or rudder.

There are several problems with vehicular models
that makes them unsuitable for our task. In the
real world, driving a car or flying an aircraft typ-
ically requires the use of both hands and feet. In
contrast, interacting with a computer is commonly
done through keyboard and mouse, both hands-
only devices. Familiar vehicles also have a range of
motion that is either too limited or too broad for
easy use. For example, a car can not turn around
its own axis, and is restricted to movement on the
surface of the terrain. A helicopter on the other
has has a large number of degrees of freedom, but
requires the simultaneous use of a number of con-
trols for stable flight, and many hours of practice
to master.

For Strider we chose one of the most basic and
familiar forms of locomotion: walking. Not only
is walking a model that is instantly familiar to
everyone, it is also one of the most common ways
of real-world exploration of terrain.

There are two disadvantages with a simple walking
model however. First, walking is slow compared
with many other modes of transport, especially
when considering that the typical size of the terrain
of interest is tens to hundreds of kilometres square.
The second disadvantage of walking is that the
height above the terrain is fixed, or limited to a few
metres variation at best by crouching and jumping.
Overviews of large areas of the terrain can only be
obtained by walking to the top of a high mountain.

We alleviate both these disadvantages with a single
elegant solution: the Strider can grow and shrink
in size at will. A larger Strider sees a larger area of
the terrain by being taller. Furthermore, a taller
Strider also takes larger strides thereby traversing
the terrain faster (figure 1).

3.2 Basic movements

The Strider controller has the following
movements:

• Move forward and backward

• Turn left and right

• Grow and shrink

• Look up and down

The movements are designed to minimise any pos-
sible confusion about what direction the Strider is
moving in. For this reason there is no look left and
look right movement. Looking left, for example,
would be visually indistinguishable from turning
left. The difference only shows up when the user
attempts to move forward. The apparent direction
of motion would differ depending on what direction
the user is looking at. Unless there is a visual or
other cue to indicate whether or not the user is
facing in the direction of forward movement, it is
difficult to anticipate where the camera is going
to move to. We therefore defined Strider to al-
ways move forward relative to the camera viewing
direction. Note that there is no such ambiguity
in relation with looking up and down. Walking
always occurs parallel to the terrain, no matter how
far up or down the user is looking.

The four basic movements are mapped to a com-
monly available mouse pointer device (figure 2).
Moving forward and backward is linked with mov-
ing the mouse forward and backward. Turning is

Figure 1: The Strider concept: as you grow larger, you see the terrain at a larger scale and move faster.

Figure 2: Strider movements mapped to a mouse.

done by moving the mouse left and right. Growing
and shrinking is achieved by pressing the left and
right mouse buttons. Looking up and down is
controlled through the use of the scroll wheel.

Moving the mouse forward and backward acts like
an accelerator. The more forward the mouse is
moved, the faster the Strider goes. As it is com-
mon for the user to want to stand still and look
around, there is a “dead-zone” for movement when
the Strider is standing still. The mouse needs to be
moved forwards or backwards by some minimum
amount in order for the Strider to once again start
moving. Whenever the Strider movement changes
from forward to backward or vice versa the speed
is set to zero, thereby activating the dead-zone.
This size of the dead-zone is one of a number of
parameters that can be set which are explained
later.

Looking up and down is limited to a range of ±90◦.
This avoids any confusion that may be caused by
walking while looking upside down and backwards,
and approximates the natural range of head move-
ment.

4 Height and speed

Two of the issues that have occupied us the most in
the development of Strider are the rate of change
in Strider height as a function of height, and the
relation between height and Strider speed.

First we have to define what height means. There
are two possible interpretations of height when
used in terrain visualisation:

1. The vertical distance between the camera
and the terrain, with positive height meaning
above the terrain.

2. The vertical distance of the camera above
some fixed datum, such as sea level.

We refer to the height above terrain as the Strider’s
eye height, while the second defines the datum
height or altitude.

As the Strider moves, do we keep the eye height
fixed or the datum height? There are advantages
and disadvantages to both methods. Fixing eye
height matches the intuitive walking model, but
subjects the viewer to up and down movement for
every bump in the terrain. This becomes partic-
ularly acute when moving fast where small scale
variations in terrain height cause high frequency
bouncing of the Strider. The alternative of fixing
datum height avoids this bouncing, but does not
correspond with the natural way of walking.

Various intermediate representations and fixes can
be used to lessen the disadvantages of either height
method. For example, some speed- and height-
sensitive smoothing could be used with a fixed eye
height to reduce the high frequency bouncing. Or
a fixed eye height could be used when the cam-
era is near the ground, and a fixed datum height
when the camera is far above the terrain, with an
interpolation used in between the two regimes. As
yet we have not explored all these possibilities. In
our currently implemented Strider controller, we
fix the datum height.

4.1 Changing height

The height of the Strider is changed by using the
left and right mouse buttons. Holding down one
button causes the Strider to grow, while the other
makes the Strider shrink. Having a constant rate
of change is simple to implement, but proved frus-
trating to use in practice while exploring terrain. If
the rate of change is set to be small, fine corrections
while low to the ground are easy, but growing to a
great height takes too long. Similarly, a large rate
of change means that the Strider can go through
the entire range of heights at which the user wants
to explore quickly, but small changes in height are
virtually impossible. Even the briefest of button
clicks can cause the height of the Strider to jump
by an overly large amount.

When the user wishes to explore small scale details
of the terrain the height of the Strider is typically
set to be close to the terrain. It is here that the rate
of change in height should be small. In contrast,
when high up looking at an overview of the terrain,
changes in height should be large. The higher one
is above the terrain, the greater the height of the
Strider has to change in order for the change to
become noticeable.

It is therefore clear that the rate of change in
the height of the Strider should be a function of
the current height, with greater height leading to
greater change. A simple way to achieve this is by
setting the change in height ∆h per time step to
be linear with respect to the eye height heye above
the terrain:

∆h = a heye + b

Rather than a linear relationship, after some ex-
perimentation we chose a polynomial:

∆h = a (heye + 1)
1
2

This results in a natural feel, with a perceptually
fairly constant rate of change. This phenomenon
seems to be related to other visual perception
tasks, such as area and volume perception, which

have been shown to be non-linear (see for example
Steven’s Law [5], which states that the perceived
scale of many attributes is a power of their actual
scale).

4.2 Changing position

As with the change in height, the amount of change
in position per time step should be dependent on
the height. With “position” we mean the loca-
tion of the Strider projected onto the horizontal
plane. It is independent of height. The speed of
the Strider is the change in this position. Speed
does not include any changes in height, only the
change in projected position.

The perception of speed is related to the size of de-
tail seen, and hence the eye height of the Strider. A
user exploring a terrain from a great height would
want to move faster (in absolute terms) than look-
ing at the terrain from near ground level. The
rate of change in horizontal position is the Strider’s
speed s. Reasoning that it should be similar in
scale to the rate of change in height, we use the
same relation as with height:

s = s′ (heye + 1)
1
2

where s′ is the perceptual speed set by the user.
The perceptual speed is controlled by moving the
mouse forwards and backwards. It remains con-
stant with eye height, unlike the actual speed s.

4.3 Terrain avoidance

The Strider should not go below the terrain. For
rendering purposes it is desirable that the camera
remains at least some small distance above the
terrain. This distance is the minimum eye height
of the Strider. When the Strider hits the side of a
mountain for example, it needs to be moved up by
changing the datum height.

We distinguish between a requested datum height
and the actual datum height. The requested da-
tum height is set by the user using the Strider
controls. The actual datum height is set based on
the requested height and the terrain height.

When the user changes the requested datum
height, the new requested height is set to be
at least the height of the terrain at the current
Strider position plus the minimum eye height. If
this were not done, there would be a confusing
delay when increasing the requested datum height
until it catches up with the actual Strider height.

5 Implementation

The implementation of the Strider controller con-
sists of four routines:

• MouseMove: process a change in mouse posi-
tion into a new perceptual speed and heading.

• MouseButton: process a change in mouse but-
ton state into a change in requested height.

• MouseWheel: process mouse wheel scrolling
into a new look up/down direction.

• MoveStrider: to move the Strider with
a given timestep using the current speed,
heading, height, and look direction.

Pseudo-code for the Strider controller is given in
the appendix. In total the controller requires about
30 to 40 lines of code to implement. We have
successfully implemented Strider in C++ and Java.
The important state variables for the controller are
given in table 1. There are a number of parameters
that control the sensitivity of the controller and
ranges of the state variables. These may be tuned
to the application and user.

6 Results

The Strider controller has been implemented in
several terrain exploration applications, both ex-
isting and new. We used Strider to replace the F16
fighter airplane controller in the JCanyon terrain
visualisation demonstration Java program [7], and
implemented Strider in a custom terrain renderer
used to investigate aspects of terrain rendering.

Although entertaining, using an F16 to explore a
terrain proved limiting. The user was required to
spend a significant amount of time concentrating
on flying the aircraft rather than effectively explor-
ing the terrain. Empirical observation showed that
using the Strider controller allowed to user to easily
navigate to any point on the terrain and explore at
all scales from small detail to large overviews.

Strider also proved more friendly for onlookers,
who weren’t subjected to frequent loss of view of
the terrain as the user tries to loop an aircraft back
towards an area of interest, or had to be bored
passengers on a long road trip.

Visitors to the research group who were unfamiliar
with the Strider controller were asked to try it out
with little or no explanation of its operation. In
general the Strider controller was mastered within
a period of seconds to a minute.

One feature that some users asked for is the ability
to move in the viewing direction while looking up
or down. This is more in line with an aircraft or
spacecraft model. At the same time, the users liked
the ability to move over the terrain with the move-
ment direction uncoupled from the look up/down

direction. We haven’t yet resolved these conflicting
requirements while maintaining simplicity.

The parameters of the Strider controller can be
tuned to suit the user, but in practice we have
found it unnecessary to change them from their
initial settings.

7 Conclusion

Strider has proven for us to be an easy and ef-
fective controller for exploring virtual terrain. In-
formal experiments have shown that people un-
familiar with the controller can use it effectively
within a very short time. The use of an intuitive
walking metaphor means that the user can pay
more attention to exploring the terrain rather than
concentrating on using the controller. Fast ter-
rain navigation at any scale is achieved by scaling
the rate of change in position and Strider height
as a function of the eye height above the terrain.
The Strider controller has no special hardware or
software requirements, being based on a standard
mouse device, which has allowed us to implement
it in several existing and new applications.

There are still many areas that remain to be in-
vestigated. A formal useability study is yet to be
done. The perceptual effect of various speed scal-
ing functions needs to be looked at more closely.
There is a significant body of research on the effects
of perspective and scale on perceived motion. It is
our hope to be able to derive a scaling function
based on these models of perception.

References

[1] D. S. Tan, G. G. Robertson, and
M.Czerwinski: Exploring 3D navigation:
combining speed-coupled flying with
orbiting. Proceedings of the SIGCHI
conference on Human factors in computing
systems. (2001) 418–425. ACM SIGCHI.

[2] C.Ware, and D.Fleet: Context sensitive fly-
ing interface. Proceedings of the 1997 sym-
posium on Interactive 3D graphics. (1997)
127–ff. ACM SIGGRAPH.

[3] M. Usoh et al.: Walking > walking-in-place
> flying, in virtual environments. Proceed-
ings of the 26th annual conference on Com-
puter graphics and interactive techniques.
(1999) 359–364. ACM SIGGRAPH.

[4] L. Bouguila, M. Ishii, and M. Sato: Realiz-
ing a new step-in-place locomotion interface
for virtual environment with large display
system. Proceedings of the workshop on

State Meaning and range Controlled by

position Horizontal position on terrain
[(−∞,−∞) .. (∞,∞)]

reqspeed Perceptual rate of change in position Mouse forward/backward
[−maxbackwardreqspeed .. maxforwardreqspeed]

speed Actual rate of change in position
[−maxbackwardspeed .. maxforwardspeed]

changeheight Requested perceptual change in height Mouse buttons
{−heightsensitivity, heightsensitivity}

reqheight Requested height of Strider from datum
[terrain height at position + eye height .. maxheight]

height Actual height of Strider from datum
[reqheight .. maxheight]

heading Heading direction of travel Mouse left/right
[0.. 2π)

pitch Look up/down direction Mouse wheel
[−π/2 .. π/2]

Table 1: Important state variables for the Strider controller.

Virtual environments 2002. (2002) 197–207.
Eurographics.

[5] W. S. Cleveland: The elements of graphing
data. Murray Hill, N.J. : AT&T Bell Labo-
ratories, 1985.

[6] The SpaceBall motion controller:
http://www.3dconnexion.com/-
spaceball5000.htm.

[7] JCanyon: Grand Canyon for Java:
http://java.sun.com/j2se/1.4/-
demos/jcanyon/.

Appendix: Strider pseudo-code
MouseMove(delta.{x,y})
{

// Update absolute pointer position
mouse.{x,y} := mouse.{x,y} + delta.{x,y}

// Change speed if current speed is not zero, or if
// zero, when the mouse has moved out of the deadzone
if((reqspeed != 0) || (|mouse.y - stop.y| >= deadzone))
{

// Compute new speed
newreqspeed := reqspeed - delta.y * speedsensitivity
// If sign has changed, force Strider to stop
if(((reqspeed > 0) && (newreqspeed <= 0)) ||

((reqspeed < 0) && (newreqspeed >= 0)))
{

newreqspeed := 0
stop := mouse

}

// Limit speed
reqspeed := Limit(newreqspeed,

-maxbackwardreqspeed,
maxforwardreqspeed)

}

// Change heading, modulo 2 PI
heading := header + delta.x * headingsensitivity
heading := Wrap(heading, 0, 2*PI)

}

MouseWheel(delta_wheel)
{

// Change pitch with wheel movement
pitch := pitch + delta_wheel * pitchsensitivity
// Limit pitch between looking straight up and down
pitch := Limit(pitch, -PI/2, PI/2)

}

MouseButton(button, state)
{

// Left button adds to height
if((button == LEFT) && (state == DOWN))

changeheight := heightsensitivity

// Right button subtracts from height
else if((button == RIGHT) && (state == DOWN))

changeheight := -heightsensitivity

// Stop changing height when button released
else

changeheight := 0
}

MoveStrider(delta_time)
{

// Compute desired movement direction
aim.x := sin(heading)
aim.z := cos(heading)

// Compute movement scale based on current height
// above the terrain
terrain_height := GetTerrainHeight(position.{x,z})
scale := sqrt(max((height - terrain_height + 1) / 2, 1))

// Scale the movement
speed := Limit(reqspeed * scale,

-maxbackwardspeed, maxforwardspeed)
scaled_changeheight := changeheight * scale

// Change strider position by adding scaled movement
position.{x,z} := position.{x,z} +

aim.{x,z} * speed * delta_time
reqheight := reqheight + scaled_changeheight * delta_time
reqheight := min(reqheight, maxheight)

// Terrain avoidance
terrain_height := GetTerrainHeight(position.{x,z})
min_height := terrain_height + eye_height
if(reqheight < min_height)
{

// Always stay above the terrain
height := min_height

// When changing height, make sure requested
// height is at least the actual height
if(changeheight != 0)

reqheight := height
}
else
{

height := reqheight
}

}

