
Game Engine Support for Terrain Rendering in
Architectural Design

T. Yang, B. C. Wünsche, and R. J. Lobb

Graphics Group, Dept. of Computer Science, University of Auckland, Private Bag 92019, Auckland,
New Zealand.

Kelly.Ting.Yang@gmail.com, burkhard@cs.auckland.ac.nz, richard.lobb@canterbury.ac.nz

Abstract
Game engines are relatively low-cost but powerful systems for creating and exploring virtual environments, and
are increasingly used in the fields of architecture and urban planning. Traditionally urban planners and landscape
architects used small-scale hand-modelled terrains. However, in order to increase both realism and modelling
efficiency it is preferable to use computer generated terrains obtained from remote sensing data. Unfortunately
many game engines are designed to use relatively small infinitely repeating terrain blocks. In this paper we
analyse how the popular Torque terrain engine, which is used by the Department of Architecture of the
University of Auckland, can be modified and extended for architectural purposes. The ultimate limitations of the
terrain engine are identified and the terrain engine is evaluated on its suitability for architectural design. We
explain how large scale terrains can be incorporated into the engine design and we propose a way to integrate the
hardware-friendly chunked level-of-detail terrain rendering algorithm into the terrain engine. Our results show
that the proposed implementation makes better use of the GPU of modern graphics cards and it frees CPU load
for use by other modules of an architectural design tool.

Keywords: Game engine, architectural design, terrain visualization, level-of-detail

1 Introduction
Over the past couple of years architecture researchers
have started to embrace game engines, which are
programming frameworks for the rapid development
of computer games, to visualize buildings and the
outside world [1,2]. Game engines are a promising
architectural design tool for the following reasons [1]:

• They usually employ cutting-edge computer
graphics techniques, to support enjoyable real-
time interactive exploration of the world.

• They are usually designed for home PCs and thus
they are cheap and don’t require expensive
hardware devices.

• On-line massive multiplayer (OMM) game
engines provide a collaborative environment that
is very suitable for architectural teamwork.

The terrain rendering ability of game engines
contributes greatly to the realism of a computer-
generated virtual environment where 3D building
models are embedded. The School of Architecture of
the University of Auckland has been exploring the
usage of game engines since 2001 [3]. Their work is
based on the Torque Game Engine (TGE) [4] which

has a large user community for game development
and simulations.

1.1 Motivation
User feedback from the School of Architecture
identified the following limitations and shortcomings
of the terrain engine in TGE:

• The engine can load only 256×256 image files as
terrain data. However, the real world terrain data
exists in lots of different formats and different
dimensions. Architects have to use pre-
processing tools to convert the data into image
files, and divide the data manually into 256×256
blocks before importing. Most of those
processing tools are either expensive or not easy
to use.

• The TGE terrain engine only stores one terrain
block. The whole world is constructed by tiling
the same terrain block in all directions to infinity.
Architects cannot represent a real area larger than
one terrain block without repeating it.

• Most architecture labs and workshops use
modern rendering hardware. They want the
engine to take full advantage of the hardware

power. However, the TGE terrain engine does not
make use of the capabilities of modern graphic
cards.

Although our motivations come from architects and
refer to the Torque game engine, the listed problems
are common to many publicly available game engines.
Also in recent years an increasing part of the scientific
community has started to utilize game engines as a
freely available tool for interactive collaborative
visualization of large and complex data sets. Hence
our research is potentially of interest to a large part of
the Science and Engineering community.

This paper is structured into four parts. The next
section gives an overview of terrain data formats and
algorithms for terrain visualization. We then introduce
the TGE terrain engine and explain its capabilities and
limitations. The following section presents our
modified terrain engine which makes it possible to
load and process large out-of-core terrains. We
conclude with an evaluation of our work and show a
real-world example.

2 Terrain Data and Terrain
Visualization

2.1 Terrain Data Formats
Terrain data exists in various data formats; the two
most popular categories are vector and raster data
formats [5]. Vector data represents the terrain in terms
of points (mountain peaks), lines (contour lines, rivers,
coastlines) and polygons in a geographic coordinate
system. Raster data represents the terrain as a grid of
cells with one height value for each grid point. The
resulting data sets are usually referred to as Digital
Elevation Maps (DEM). The most popular terrain data
formats in the field of architecture are:

• AutoCAD DXF (.dxf) [6] is a vector data format
created by AutoDesk and supported widely by
CAD (Computer-Aided Design) applications. It is
also an industry standard exchange file format for
transferring data between CAD and GIS
(Geographic Information System) applications.
Most digital architectural designs (of buildings or
terrains) are in AutoCAD DXF format.

• ESRI Shape File (.shp) [7] is the native vector
data format for ESRI products, such as ArcINFO.
A large amount of GIS data exists in this format,
which is supported by almost all GIS tools.

• Image formats, such as PNG, JPEG, and TIFF
are raster data formats that are commonly used
among architects and are also used to represent
GIS data in some GIS applications. An image
represents a terrain as a digital elevation map
where the colour (gray scale value) of a pixel
corresponds to a height value. It is usually easy to
convert between two different image formats and

both lossless and lossy compression techniques
are readily available.

• USGS DEM (.dem) [8] is the raster data
produced from map contours or aerial
photography by the United States Geological
Survey. The USGS DEM terrain data takes
advantage of both the precision of vector data
formats and the simplicity of raster data formats.
However, it is not easy to find high resolution
terrain data in this format for areas outside the
U.S.A.

Terrain data of New Zealand can be obtained from
Land Information New Zealand (LINZ) [9] and exists
in two formats: Topographic data is provided as
digital vector data at 1:50,000 scale in ESRI Shape
File format and comes from the New Zealand
Topographic Database (NZTopo) [10]. Aerial
photographs are available as low resolution JPEG
satellite images with a resolution of 25m×25m, and as
high resolution JPEG and TIFF satellite images with a
resolution of 2.5m×2.5m [9].

2.2 Terrain Visualization
Digital elevation maps (DEM) are most commonly
stored as either regular grids or as Triangulated
Irregular Networks (TIN) where irregular sample
points are connected to form a triangle mesh. A
regular grid based height field representation has the
advantage of simplicity, since only the origin, grid
spacing and height values need to be stored. Based on
this, hierarchical tree structures can be defined by
sub-dividing the grid, and mesh simplification
algorithms can recursively process the hierarchies.
However, since the sub-division of the grid is
constrained by grid vertices, the generated
approximation is not usually optimal considering all
possible triangulations. TINs are a more general
representation and for the same number of polygons
usually result in meshes with a better visual quality.
However, a TIN requires each sample value to be
stored as a quadruple (x, y, z, height).

Because of the storage simplicity and processing
convenience, the regular grid based terrain
representation is commonly adopted in game engines.
In order to achieve fast rendering of large meshes
view-dependent continuous level-of-detail (VLOD)
methods are employed. VLOD algorithms represent
different parts of a mesh at different resolutions in
order to obtain approximately equally sized polygons
after projection onto the view plane during rendering.

3 The TGE Terrain Engine
Figure 1 illustrates the design of the TGE terrain
engine. The terrain itself is represented by a terrain
block which is a 256x256 regular grid of height
values (represented as a 256x256 gray scale image).
The terrain block can be tiled in order to represent

larger terrains. In order to render the resulting terrains
efficiently the TGE terrain engine uses a variation of
the ROAM algorithm [10] based on a quad-tree data
structure. The highest resolution version of a terrain
block has 256x256 grid cells, the lowest resolution
version has 8x8 cells, each of which corresponds to
32x32 high resolution grid cells. The rendering
algorithm starts with the lowest resolution version of
a block and splits it until the error with respect to the
original mesh is within a predetermined range. An
example is shown in figure 2. More details can be
found in [11].

3.1 Terrain Texturing and Shading
TGE uses 256x256 pixel images to texture terrains.
Different texture mapping resolutions are employed
according to the geometric level-of-detail of a terrain
square which is a subset of a terrain block. Texture
maps can be tiled over the entire terrain. The illusion
of large high detailed texture maps can be obtained by
blending texture maps of different resolution together,
i.e. tiled high resolution textures are blended with
large low resolution textures. The blending is
performed by the Blender class and is controlled by
alpha maps which determine an individual texture

pixel’s contribution to the final texture. An example
is shown in figure 3.

TGE illuminates a terrain by precomputing light maps
which are texture maps storing the illumination of a
surface for fixed light positions. In TGE light maps
are always 512x512 pixels large and are mapped onto
terrain blocks with 4x4 to 32x32 light map pixels per
grid cell depending on the geometric detail level of
the terrain. Hence light maps have always a higher
resolution than the terrain texture maps.

4 Rendering of Large Terrains

4.1 Multiple Terrain Block Loading
We modified the TGE terrain engine so that it can
load multiple terrain blocks which are generated by
automatically subdividing a terrain and aerial
photographs into blocks. However, initial tests soon
showed that the program runs out of memory for more
than 3x4 terrain blocks. Closer analysis showed that
preprocessing by the blender module of the terrain
engine blends terrain textures with the light maps and
stores them on the disk. The resulting texture maps
are so large that they can exceed the available
memory if multiple terrain blocks are loaded. The

 Figure 1: Design of the TGE terrain engine.

Figure 3: Texture mapped terrain with one low resolution texture (a) and with one (b) and two (c)
additional high resolution textures blended in.

Figure 2: Mesh subdivision for a terrain
viewed from the bottom left corner.

following example illustrates the problem:

The TGE terrain engine stores terrain height values as
4 byte floating point numbers. Thus, a single terrain
block with 256× 256 height values requires
4*256*256=218 bytes memory. Terrain textures at the
highest level of detail have 32×32 pixel per grid cell.
Each texel is stored as a 3 byte RGB triple. If the
terrain textures are blended with the light map the
resulting texture requires 3*32*32*256*256=3*226 ≈
200 MBytes memory.

A possible solution is to dispense with light maps by
using hardware lighting calculations and to blend in
the multiple textures during rendering using the multi-
texturing capabilities of modern graphic cards.
However, this is only a partial solution since today’s
GIS and remote sensing techniques produce terrain
height-field data and satellite images which are too
large to be processed in main memory. Hence it is
necessary to extend the TGE to handle out-of-core
data sets.

4.2 Chunked Level-of-Detail
Implementation

After researching various terrain rendering algorithms
[11] we decided that the recently proposed Chunked
Level-of-Detail (LOD) [13] algorithm is the most
suitable solution for our problem. The chunked LOD
algorithm is based on an adaptive quad-tree data
structure of the mesh which is built in a pre-
processing step. Different levels in the tree store
terrain chunks at different LODs, together with their
bounding volumes and maximum geometric errors.
The run-time routine then selects terrain chunks for
rendering based on a view-dependent screen-space
error metric that considers both the stored geometric
errors and the moving view point. Cracks are filled
with vertical patches, known as “skirts”. A vertex
morphing technique is used to eliminate popping
artefacts. Because the quad-tree representation of the
mesh is precomputed fewer computations are
performed on the CPU and selected chunks are sent to
the graphics card and processed by the GPU.

In order to integrate the Chunked LOD algorithm into
Torque without affecting other Torque components
we designed an interface between the terrain engine
and the other modules of Torque. The interface hides
methods and variables of the terrain engine. We
extended the terrain loader of Torque so that it can
load terrain data of different types and arbitrary
dimensions. A Chunked LOD pre-processing tool is
used to encode the loaded terrain data into an adaptive
quad-tree structure which is a subclass of the Torque
SceneObject class. We then integrated the Chunked
LOD algorithm into the rendering engine of Torque.
Hence when Torque traverses the scene graph for
rendering, using polymorphism it automatically uses
the Chunked LOD algorithm for a terrain in the above
described format.

In order to enable the user to use different terrain data
formats we use the Geospatial Data Abstraction
Library (GDAL) [12]. A dataset in the GDAL is a list
of related data layers and some common information
such as size, the geo-referencing transform, and the
coordinate system definition.

5 Results
In order to test the framework with the Chunked LOD
algorithm we use a height field and a satellite image
of the Tongariro National Park as source data, both
downloaded from the Land Information New Zealand
(LINZ) web site [9]. The data is in Arc/Info GRID
format, with a horizontal grid spacing of 50m and a
vertical scale of 1. The height range is from 720m to
2275m. The resolution of the height field is
2048×2048 which corresponds to 8×8 terrain blocks.
The height field terrain data was downloaded from
LINZ’s NZTopoOnline facility, and the satellite
images of the corresponding areas were downloaded
from LINZ’s Aerial Photograph facility. Figure 5
shows the height field (a), the terrain texture source
data (b) and the resulting terrain rendered using our
framework (c). The wire frame version (d) shows that
the terrain mesh produced with our framework is
triangulated with respect to terrain roughness and the
viewing distance.

The framework was tested on a PC with an Intel 1
GHz Pentium III processor, 1 GByte of memory, and
an nVidia GeForce 2 graphics card capable of
displaying up to 25 million lit and textured triangles
per second. Rendering the terrain with our program
resulted in a frame rate of around 30fps with around
200K triangles per frame. Hence the program outputs
around six million triangles per second which is 24%
of the peak GPU rendering speed under idealized
conditions. It was found that the CPU usage was
usually around 30%. This compares favourably with
the original framework described in section 4.1 which
uses for a smaller version of the above terrain 60% of
the CPU power but only 1.6% of the GPU power.

We found that the new framework is much less
constrained in terms of memory than the original
framework because the Chunked LOD allows more
flexibility and adaptability on the terrain
representation. During the pre-processing stage the
algorithm can generate an adaptive quad-tree based on
geometric properties of the terrain data set and the
preferred maximum geometric error specified by the
user. Since the texture quad-tree construction mirrors
that of the geometry quad-tree, a large data set can be
loaded into RAM by specifying a sufficiently big
error bound. The same framework can be used for
producing higher detailed out-of-core visualizations
by specifying a smaller error bound.

6 Conclusion
Although the new framework is still a work in
progress, it has been proven to have advantages over
the original terrain engine framework in both
CPU/GPU usage and RAM consumption. Compared
with the original framework, which uses around 1.6%
of the GPU power and 60% of the CPU power, the
new framework represents a more balanced usage of
the GPU and CPU. This frees CPU load for use by
other modules of an architectural design tool. The
new framework also provides a flexible mechanism to
allow large out-of-core datasets to fit into RAM. It
solves the fundamental problem with large-scale
terrain rendering in the original framework and
improves the engine design to be more compatible
with modern graphics hardware.

7 Acknowledgements
We would like to thank Jules Moloney from the
School of Architecture of the University of Auckland,
New Zealand, for suggesting this topic and for his
help and enthusiasm.

8 References
[1] J. Dijkstra, B. de Vries, J. Brosens, R.

Hoekman and D. Willems, Game engines in
architecture, URL: http://www.ds.arch.tue.nl/
education/projects/game_engines/index.html.

[2] M. M. F. Shiratuddin and W. Thabet, Virtual
 Office Walkthrough Using a 3D Game
 Engine, International Journal of Design
 Computing, Vol. 4 (2002), URL: http://www.
 arch. usyd. edu.au/kcdc/journal/vol4/.

[3] J. Moloney and R. Armor, StringCVE:

Advances in a Game Engine Based
Collaborative Virtual Environment for
Architectural Design, Proc. 2nd conference
on Construction Applications of Virtual
Reality, Virginia Tech., Blacksburg U.S.A.
(2003).

[4] The Torque Game Engine, URL: http://
 www.garagegames.com/pg/product/view.php
 ?i=1.

Figure 5: A height field (a) and satellite image (b) of the Tongariro National Park and the resulting terrain
rendered with our framework using shaded polygons (c) and a wire frame representation (d).

[5] The Essential Guide to GIS, URL:
 http://easyweb.easynet.co.uk/~edp/esguide/e
 g-data/eg-data.htm.

[6] Data Exchange File (DXF), URL:
 http://www.cknow.com/ckinfo/acro_d/dxf_1.
 shtml.

[7] Environmental Systems Research Institute,
 Inc., “ESRI Shapefile Technical Descrip-
 tion”, 1998, URL: http://www.esri.com/
 library/whitepapers/pdfs/shapefile.pdf.

[8] USGS Digital Elevation Model, URL:

http://rockyweb.cr.usgs.gov/elevation/dpi_de
m.html.

[9] Land Information New Zealand (LINZ),
 URL: http://www.linz.govt.nz/rcs/linz/pub/
 web/root/home/index.jsp.

[10] M. Duchaineau, M. Wolinsky, D. E. Sigeti,

M. C. Miller, C. Aldrich, and M. B. Mineev-
Weinstein, “ROAMing Terrain: Real-time
optimally adapting meshes”, Proc.
Visualization ’97, pages 81-88, 1997.

[11] T. Yang, Game Engine Support for Terrain

Rendering in Architectural Design, MSc
thesis, Dept. of Computer Science,
University of Auckland, submitted for
publication (2004).

[12] GDAL homepage, URL: http://www.

remotesensing.org/gdal/.

[13] T. Ulrich, Chunked Level-of-Detail
 homepage, URL: http://tulrich.com/geekstuff
 /chunklod.html.

