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Abstract 
Game engines are relatively low-cost but powerful systems for creating and exploring virtual environments, and 
are increasingly used in the fields of architecture and urban planning. Traditionally urban planners and landscape 
architects used small-scale hand-modelled terrains. However, in order to increase both realism and modelling 
efficiency it is preferable to use computer generated terrains obtained from remote sensing data. Unfortunately 
many game engines are designed to use relatively small infinitely repeating terrain blocks. In this paper we 
analyse how the popular Torque terrain engine, which is used by the Department of Architecture of the 
University of Auckland, can be modified and extended for architectural purposes. The ultimate limitations of the 
terrain engine are identified and the terrain engine is evaluated on its suitability for architectural design. We 
explain how large scale terrains can be incorporated into the engine design and we propose a way to integrate the 
hardware-friendly chunked level-of-detail terrain rendering algorithm into the terrain engine. Our results show 
that the proposed implementation makes better use of the GPU of modern graphics cards and it frees CPU load 
for use by other modules of an architectural design tool. 
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1 Introduction 
Over the past couple of years architecture researchers 
have started to embrace game engines, which are 
programming frameworks for the rapid development 
of computer games, to visualize buildings and the 
outside world [1,2]. Game engines are a promising 
architectural design tool for the following reasons [1]: 

• They usually employ cutting-edge computer 
graphics techniques, to support enjoyable real-
time interactive exploration of the world.  

• They are usually designed for home PCs and thus 
they are cheap and don’t require expensive 
hardware devices.  

• On-line massive multiplayer (OMM) game 
engines provide a collaborative environment that 
is very suitable for architectural teamwork.   

The terrain rendering ability of game engines 
contributes greatly to the realism of a computer-
generated virtual environment where 3D building 
models are embedded. The School of Architecture of 
the University of Auckland has been exploring the 
usage of game engines since 2001 [3]. Their work is 
based on the Torque Game Engine (TGE) [4] which 

has a large user community for game development 
and simulations. 

1.1 Motivation 
User feedback from the School of Architecture 
identified the following limitations and shortcomings 
of the terrain engine in TGE:  

• The engine can load only 256×256 image files as 
terrain data. However, the real world terrain data 
exists in lots of different formats and different 
dimensions. Architects have to use pre-
processing tools to convert the data into image 
files, and divide the data manually into 256×256 
blocks before importing. Most of those 
processing tools are either expensive or not easy 
to use.  

• The TGE terrain engine only stores one terrain 
block. The whole world is constructed by tiling 
the same terrain block in all directions to infinity. 
Architects cannot represent a real area larger than 
one terrain block without repeating it. 

• Most architecture labs and workshops use 
modern rendering hardware. They want the 
engine to take full advantage of the hardware 



power. However, the TGE terrain engine does not 
make use of the capabilities of modern graphic 
cards.   

Although our motivations come from architects and 
refer to the Torque game engine, the listed problems 
are common to many publicly available game engines. 
Also in recent years an increasing part of the scientific 
community has started to utilize game engines as a 
freely available tool for interactive collaborative 
visualization of large and complex data sets. Hence 
our research is potentially of interest to a large part of 
the Science and Engineering community. 

This paper is structured into four parts. The next 
section gives an overview of terrain data formats and 
algorithms for terrain visualization. We then introduce 
the TGE terrain engine and explain its capabilities and 
limitations. The following section presents our 
modified terrain engine which makes it possible to 
load and process large out-of-core terrains. We 
conclude with an evaluation of our work and show a 
real-world example. 

2 Terrain Data and Terrain 
Visualization 

2.1 Terrain Data Formats 
Terrain data exists in various data formats; the two 
most popular categories are vector and raster data 
formats [5]. Vector data represents the terrain in terms 
of points (mountain peaks), lines (contour lines, rivers, 
coastlines) and polygons in a geographic coordinate 
system. Raster data represents the terrain as a grid of 
cells with one height value for each grid point. The 
resulting data sets are usually referred to as Digital 
Elevation Maps (DEM). The most popular terrain data 
formats in the field of architecture are:  

• AutoCAD DXF (.dxf) [6] is a vector data format 
created by AutoDesk and supported widely by 
CAD (Computer-Aided Design) applications. It is 
also an industry standard exchange file format for 
transferring data between CAD and GIS 
(Geographic Information System) applications. 
Most digital architectural designs (of buildings or 
terrains) are in AutoCAD DXF format.  

• ESRI Shape File (.shp) [7] is the native vector 
data format for ESRI products, such as ArcINFO. 
A large amount of GIS data exists in this format, 
which is supported by almost all GIS tools. 

• Image formats, such as PNG, JPEG, and TIFF 
are raster data formats that are commonly used 
among architects and are also used to represent 
GIS data in some GIS applications. An image 
represents a terrain as a digital elevation map 
where the colour (gray scale value) of a pixel 
corresponds to a height value. It is usually easy to 
convert between two different image formats and 

both lossless and lossy compression techniques 
are readily available.  

• USGS DEM (.dem) [8] is the raster data 
produced from map contours or aerial 
photography by the United States Geological 
Survey. The USGS DEM terrain data takes 
advantage of both the precision of vector data 
formats and the simplicity of raster data formats. 
However, it is not easy to find high resolution 
terrain data in this format for areas outside the 
U.S.A.  

Terrain data of New Zealand can be obtained from 
Land Information New Zealand (LINZ) [9] and exists 
in two formats: Topographic data is provided as 
digital vector data at 1:50,000 scale in ESRI Shape 
File format and comes from the New Zealand 
Topographic Database (NZTopo) [10]. Aerial 
photographs are available as low resolution JPEG 
satellite images with a resolution of 25m×25m, and as 
high resolution JPEG and TIFF satellite images with a 
resolution of 2.5m×2.5m [9]. 

2.2 Terrain Visualization 
Digital elevation maps (DEM) are most commonly 
stored as either regular grids or as Triangulated 
Irregular Networks (TIN) where irregular sample 
points are connected to form a triangle mesh. A 
regular grid based height field representation has the 
advantage of simplicity, since only the origin, grid 
spacing and height values need to be stored. Based on 
this, hierarchical tree structures can be defined by 
sub-dividing the grid, and mesh simplification 
algorithms can recursively process the hierarchies. 
However, since the sub-division of the grid is 
constrained by grid vertices, the generated 
approximation is not usually optimal considering all 
possible triangulations. TINs are a more general 
representation and for the same number of polygons 
usually result in meshes with a better visual quality. 
However, a TIN requires each sample value to be 
stored as a quadruple (x, y, z, height).  

Because of the storage simplicity and processing 
convenience, the regular grid based terrain 
representation is commonly adopted in game engines.  
In order to achieve fast rendering of large meshes 
view-dependent continuous level-of-detail (VLOD) 
methods are employed. VLOD algorithms represent 
different parts of a mesh at different resolutions in 
order to obtain approximately equally sized polygons 
after projection onto the view plane during rendering.  

3 The TGE Terrain Engine 
Figure 1 illustrates the design of the TGE terrain 
engine. The terrain itself is represented by a terrain 
block which is a 256x256 regular grid of height 
values (represented as a 256x256 gray scale image). 
The terrain block can be tiled in order to represent 



larger terrains. In order to render the resulting terrains 
efficiently the TGE terrain engine uses a variation of 
the ROAM algorithm [10] based on a quad-tree data 
structure. The highest resolution version of a terrain 
block has 256x256 grid cells, the lowest resolution 
version has 8x8 cells, each of which corresponds to 
32x32 high resolution grid cells. The rendering 
algorithm starts with the lowest resolution version of 
a block and splits it until the error with respect to the 
original mesh is within a predetermined range. An 
example is shown in figure 2. More details can be 
found in [11]. 

3.1 Terrain Texturing and Shading 
TGE uses 256x256 pixel images to texture terrains. 
Different texture mapping resolutions are employed 
according to the geometric level-of-detail of a terrain 
square which is a subset of a terrain block. Texture 
maps can be tiled over the entire terrain. The illusion 
of large high detailed texture maps can be obtained by 
blending texture maps of different resolution together, 
i.e. tiled high resolution textures are blended with 
large low resolution textures. The blending is 
performed by the Blender class and is controlled by 
alpha maps which determine an individual texture 

pixel’s contribution to the final texture.  An example 
is shown in figure 3. 

TGE illuminates a terrain by precomputing light maps 
which are texture maps storing the illumination of a 
surface for fixed light positions. In TGE light maps 
are always 512x512 pixels large and are mapped onto 
terrain blocks with 4x4 to 32x32 light map pixels per 
grid cell depending on the geometric detail level of 
the terrain. Hence light maps have always a higher 
resolution than the terrain texture maps. 

4 Rendering of Large Terrains 

4.1 Multiple Terrain Block Loading  
We modified the TGE terrain engine so that it can 
load multiple terrain blocks which are generated by 
automatically subdividing a terrain and aerial 
photographs into blocks. However, initial tests soon 
showed that the program runs out of memory for more 
than 3x4 terrain blocks. Closer analysis showed that 
preprocessing by the blender module of the terrain 
engine blends terrain textures with the light maps and 
stores them on the disk. The resulting texture maps 
are so large that they can exceed the available 
memory if multiple terrain blocks are loaded. The 

  

 

      

 

 
 Figure 1: Design of the TGE terrain engine.  

        

 
 

Figure 3: Texture mapped terrain with one low resolution texture (a) and with one (b) and two (c) 
additional high resolution textures blended in. 

Figure 2: Mesh subdivision for a terrain 
viewed from the bottom left corner. 



following example illustrates the problem: 

The TGE terrain engine stores terrain height values as 
4 byte floating point numbers. Thus, a single terrain 
block with 256× 256 height values requires 
4*256*256=218 bytes memory. Terrain textures at the 
highest level of detail have 32×32 pixel per grid cell. 
Each texel is stored as a 3 byte RGB triple. If the 
terrain textures are blended with the light map the 
resulting texture requires 3*32*32*256*256=3*226 ≈ 
200 MBytes memory. 

A possible solution is to dispense with light maps by 
using hardware lighting calculations and to blend in 
the multiple textures during rendering using the multi-
texturing capabilities of modern graphic cards. 
However, this is only a partial solution since today’s 
GIS and remote sensing techniques produce terrain 
height-field data and satellite images which are too 
large to be processed in main memory. Hence it is 
necessary to extend the TGE to handle out-of-core 
data sets.  

4.2 Chunked Level-of-Detail 
Implementation 

After researching various terrain rendering algorithms 
[11] we decided that the recently proposed Chunked 
Level-of-Detail (LOD) [13] algorithm is the most 
suitable solution for our problem. The chunked LOD 
algorithm is based on an adaptive quad-tree data 
structure of the mesh which is built in a pre-
processing step. Different levels in the tree store 
terrain chunks at different LODs, together with their 
bounding volumes and maximum geometric errors. 
The run-time routine then selects terrain chunks for 
rendering based on a view-dependent screen-space 
error metric that considers both the stored geometric 
errors and the moving view point. Cracks are filled 
with vertical patches, known as “skirts”. A vertex 
morphing technique is used to eliminate popping 
artefacts. Because the quad-tree representation of the 
mesh is precomputed fewer computations are 
performed on the CPU and selected chunks are sent to 
the graphics card and processed by the GPU. 

In order to integrate the Chunked LOD algorithm into 
Torque without affecting other Torque components 
we designed an interface between the terrain engine 
and the other modules of Torque. The interface hides 
methods and variables of the terrain engine. We 
extended the terrain loader of Torque so that it can 
load terrain data of different types and arbitrary 
dimensions. A Chunked LOD pre-processing tool is 
used to encode the loaded terrain data into an adaptive 
quad-tree structure which is a subclass of the Torque 
SceneObject class. We then integrated the Chunked 
LOD algorithm into the rendering engine of Torque. 
Hence when Torque traverses the scene graph for 
rendering, using polymorphism it automatically uses 
the Chunked LOD algorithm for a terrain in the above 
described format.  

In order to enable the user to use different terrain data 
formats we use the Geospatial Data Abstraction 
Library (GDAL) [12]. A dataset in the GDAL is a list 
of related data layers and some common information 
such as size, the geo-referencing transform, and the 
coordinate system definition. 

5 Results 
In order to test the framework with the Chunked LOD 
algorithm we use a height field and a satellite image 
of the Tongariro National Park as source data, both 
downloaded from the Land Information New Zealand 
(LINZ) web site [9]. The data is in Arc/Info GRID 
format, with a horizontal grid spacing of 50m and a 
vertical scale of 1. The height range is from 720m to 
2275m. The resolution of the height field is 
2048×2048 which corresponds to 8×8 terrain blocks. 
The height field terrain data was downloaded from 
LINZ’s NZTopoOnline facility, and the satellite 
images of the corresponding areas were downloaded 
from LINZ’s Aerial Photograph facility. Figure 5 
shows the height field (a), the terrain texture source 
data (b) and the resulting terrain rendered using our 
framework (c). The wire frame version (d) shows that 
the terrain mesh produced with our framework is 
triangulated with respect to terrain roughness and the 
viewing distance. 

The framework was tested on a PC with an Intel 1 
GHz Pentium III processor, 1 GByte of memory, and 
an nVidia GeForce 2 graphics card capable of 
displaying up to 25 million lit and textured triangles 
per second. Rendering the terrain with our program 
resulted in a frame rate of around 30fps with around 
200K triangles per frame. Hence the program outputs 
around six million triangles per second which is 24% 
of the peak GPU rendering speed under idealized 
conditions. It was found that the CPU usage was 
usually around 30%. This compares favourably with 
the original framework described in section 4.1 which 
uses for a smaller version of the above terrain 60% of 
the CPU power but only 1.6% of the GPU power. 

We found that the new framework is much less 
constrained in terms of memory than the original 
framework because the Chunked LOD allows more 
flexibility and adaptability on the terrain 
representation. During the pre-processing stage the 
algorithm can generate an adaptive quad-tree based on 
geometric properties of the terrain data set and the 
preferred maximum geometric error specified by the 
user. Since the texture quad-tree construction mirrors 
that of the geometry quad-tree, a large data set can be 
loaded into RAM by specifying a sufficiently big 
error bound. The same framework can be used for 
producing higher detailed out-of-core visualizations 
by specifying a smaller error bound. 

 

 



6 Conclusion 
Although the new framework is still a work in 
progress, it has been proven to have advantages over 
the original terrain engine framework in both 
CPU/GPU usage and RAM consumption. Compared 
with the original framework, which uses around 1.6% 
of the GPU power and 60% of the CPU power, the 
new framework represents a more balanced usage of 
the GPU and CPU. This frees CPU load for use by 
other modules of an architectural design tool. The 
new framework also provides a flexible mechanism to 
allow large out-of-core datasets to fit into RAM. It 
solves the fundamental problem with large-scale 
terrain rendering in the original framework and 
improves the engine design to be more compatible 
with modern graphics hardware. 
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