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Abstract 
Path planning is an important problem in Artificial Intelligence and Robotics. In this paper we examine the 
problem of finding an optimal path for a road connecting two points in a digital approximation of a real terrain. 
Additional constraints, such as terrain gradients, will be introduced in order to achieve more realistic roads. A 
performance comparison will be made between the standard A* algorithm and variations of it. Different 
heuristics, which are used by the algorithms to guide them to the goal node, are presented and compared. To 
overcome some of the computational constraints associated with route finding on large digital terrains we 
introduce multi-resolution searching. We will show that multi-resolution searching greatly reduces the time 
associated with the route finding process while still resulting in near optimal solutions. 
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1 Introduction 
Path finding has many applications reaching from 
computer games to helping robots navigate through an 
environment. However, the literature offers little 
research on route finding on terrains represented as 
digital elevation maps (DEM). F. Markus Jönsson [1] 
previously looked at path finding for vehicles in real 
world digital terrains by focusing on terrain types, 
which affect a vehicle’s speed, and on avoidance of 
enemy units on the terrain. We present a tool for 
finding plausible roads in a digital terrain; however, 
the principles presented can also be used for routes 
other than roads (e.g. railways, walking tracks). 

The literature describes many algorithms for finding 
the shortest path between two points. One of the 
earliest solutions proposed is Dijkstra’s algorithm [2] 
which finds the shortest paths to all other nodes in the 
search space as opposed to finding the shortest path to 
a single goal node. Dijktra’s algorithm always visits 
the closest unvisited node from the starting node and 
hence the search is not guided towards the goal node. 
In contrast Best First Search [3] always selects the 
node that is closest to the goal node. Since we do not 
know the exact path from the current node to the goal 
node, the distance to the goal node has to be 
estimated. This estimate is referred to as the heuristic. 
Best First Search does not keep track of the cost to the 
current node and therefore does not necessarily find 
an optimal solution. The A* search algorithm was 
first introduced in 1968 [4] and is still widely used 

today, especially in the interactive entertainment 
industry. The A* algorithm combines the approaches 
of Dijkstra’s algorithm and Best First Search. The A* 
algorithm is guaranteed to find an optimal solution 
(assuming no negative costs and an admissible 
heuristic), but because it is guided towards the goal 
node by the heuristic it will not visit as many nodes as 
Dijkstra’s algorithm would do. This reduces both 
memory and time requirements. Amit J. Patel [6] 
presents a good comparison between the A* 
algorithm, Dijkstra’s algorithm and Best First Search. 

In this paper we develop and analyse different 
heuristics and variations of the A* algorithm in order 
to solve the shortest path problem under a variety of 
user defined constraints. The main reason for using 
the A* algorithm is that it is optimal and a heuristic 
search. It also performs better than other search 
strategies in many cases [6]. The search space, on 
which the road finding takes place, can potentially be 
quite large. This means that we must take steps to 
ensure that we do not run out of memory or that the 
search takes an excessive amount of time to run. Even 
a relatively small terrain map of 300 by 300 pixels has 
a search space of 90,000 nodes. Two possible 
approaches to reduce these problems are a reduction 
in the size of the search space by using multi-
resolution terrains and modifications to the search 
algorithm. 

 

 



2 Problem Space 

2.1 Terrain Setup 
The sampled digital terrain image is an approximation 
to the real terrain. The higher the resolution of the 
digital terrain image, the more realistic the 
representation of the real terrain and the more 
accurate the path finding will be. However, there 
exists an upper limit on the resolution after which the 
road will not be any more accurate and will 
unnecessarily increase the running time of the path 
finding algorithm. In order to visualize the results we 
represent the terrain as a grey scale image with black 
and white representing the lowest and highest 
altitudes, respectively. 

2.2 Adjacencies 
To find a path from a starting node to a goal node, we 
must define a way in which successor nodes can be 
selected. While a real terrain allows stepping in any 
direction for a digital terrain 4-adjacency and 8-
adjacency (see figure 1 (a) and (b), respectively) are 
the most common approaches. 

Our application additionally implements 16-adjacency 
(see Figure 1 (c)) which allows even greater freedom 
of movement as we can now move north-north-east, 
north-east-east, etc. Using 16-adjacency, we can also 
achieve a smoother looking road by reducing the 
sharpness of the turns. To reduce sharp turns even 
further we can penalize sharp turns, as described in 
section 3.3.2. If we use the distance between nodes as 
our cost function for the ‘standard costs’ then 

neighbouring nodes that can be reached using 4-
adjacency cost 1, the ones that can be reached by the 
diagonal steps of 8-adjacency have a cost of 2  and 
nodes that can only be reached by the additional steps 
of 16-adjacency have a cost of 5 . There are of 
course other cost functions that can be chosen, rather 
than just using the distance between two nodes. 
Section 3.3 introduces additional parameters that will 
influence the cost function. 

3 The A* Algorithm 
The A* algorithm finds the shortest path from a start 
node to a goal node by using a heuristic which 
estimates the cost to reach the goal node from the 
current node. The heuristic estimate for node n is 
usually referred to as h(n). The A* algorithm also 
keeps track of the cost g(n) needed to get to the 
current node from the start node. The total cost of a 
node is hence f(n)= h(n)+ g(n). 

3.1 Heuristics 
The heuristic function h(n) guides the search towards 
the goal node. If the heuristic function is admissible 
(meaning it never overestimates the minimum cost to 
the goal), then A* is guaranteed to find the cheapest 
path. It is preferable to use a heuristic that 
underestimates the minimum cost as little as possible, 
as this will result in fewer nodes to be examined. An 
ideal heuristic will always return the actual minimum 
cost possible to reach the goal.  

The Manhattan distance heuristic is illustrated in 
figure 2 (a) and is defined as ( ) a b a bh n x x y y= − + −  

 
 Figure 1: Different adjacency definitions for route finding: (a) 4-adjacency, (b) 8-adjacency, (c) 16-

adjacency. 

 
 

 
 

 
Figure 2: The Manhattan distance (a), Euclidian distance (b) and Diagonal Path Distance (c). 



where (xa, ya) and (xb, yb) are the coordinates of the 
current start and goal node, respectively. The heuristic 
is ideal when using 4-adjacency.  

The Euclidean heuristic (see figure 2 (b)) is defined as 
( ) ( )2 2( ) a b a bh n x x y y= − + −  and is admissible, but 

usually underestimates the actual cost by a significant 
amount. This means that we may visit too many nodes 
unnecessarily which in turn increases the time it takes 
to find the road.  

The diagonal distance heuristic is defined as 
( ) ( )( ) 2 2 min ,a b a b a b a bh n x x y y x x y y= − + − + − − −

[5] and is illustrated in figure 2 (c). The heuristic 
combines aspects of both the Manhattan and 
Euclidean heuristics and is admissible (unless 16-
adjacency is used). It has the advantage of always 
giving the actual minimum possible cost to the goal if 
8-adjacency is used and taking the square root is no 
longer necessary, thus making it computationally 
slightly more efficient than the Euclidean distance 
heuristic. We found that using the Manhattan distance 
heuristic is about 40% faster than the other two 
heuristics with only a small increase in the cost of the 
solution. 

3.2 User Defined Constraints 
We introduce gradient penalties since realistic roads 
generally have a maximum gradient resulting from 
safety considerations and vehicle limitations. The 
Cornwall County Council, for instance, limits the 
maximum gradient for traditional surfaced roads to 
10% [7]. The gradient between 2 nodes is calculated 
as 1tan ( )h sθ −= ∆ ∆  where ∆h and ∆s are the height and 
ground distance, respectively, between the two nodes. 
The gradient penalties are cost multipliers with a user 
defined cost factor. We also introduce direction 
change penalties in order to keep the resulting roads 
straight since unnecessary turns would obstruct the 
traffic flow. The City of Hamilton in Montana, USA, 
for example has a regulation that says that a curve 
must have a minimum radius of 249 feet in order to 
provide a design speed of 30mph [8]. The cost factors 
can be again specified by the user in order to allow for 
the creation of different types of road (motorway, 
country road etc.). 

3.3 Variations of the A* Algorithm 
The A* will always select the cheapest node from all 
nodes not previously visited.  For large terrains this 
process becomes inefficient and several modifications 
have been suggested which minimise the search space 
and improve the memory and time requirements of 
the algorithm.  

The Beam Search limits the size of the list of 
unvisited nodes (“beam width”). Once the limit has 
been reached the node with the highest cost is 
dropped from the list if unvisited nodes to make room 

for a new node. The major shortcoming of Beam 
Search is that it is not optimal and not complete, 
meaning it may not necessarily find the shortest path, 
even if the heuristic is admissible.  

Iterative Deepening A* [9] performs a series of 
searches, where each search has a maximum cut-off 
value, i.e. a limit on the f(n) value. The cut-off value 
is increased with each iteration. The iterations 
continue until the goal node has been reached or the 
search space has been exhausted. Initially the cut-off 
value should be the h(n) value of the start node. A 
difficulty that arises, is finding an appropriate step 
size for increasing the cut-off value with each 
iteration.  

Searching in one direction (unidirectional search) 
involves searching a single search tree. An alternative 
is to perform a bidirectional search that searches two 
smaller trees instead. One search starts from the start 
node searching forwards to the goal node, the other 
one is searching backwards from the goal node to the 
start node. Because the search trees grow 
exponentially, the search space created by two small 
search trees is generally less than the size of a single 
large tree assuming that the bidirectional search meets 
in the middle. However, Pohl [10] notes that if there 
is more than one path from the start node to the goal 
node, then the two search fronts seldom meet in the 
middle. A variation of the bidirectional search is the 
retargeting approach, first suggested by Pohl and 
Politowsky [11]. The retargeting bidirectional search 
does not perform the forward and backward searches 
‘simultaneously’, but switches between them. 

4 Multi-Resolution A* Search 
As an alternative approach to reduce the memory and 
time requirements of route finding we reduce the size 
of the search space by computing a multi-resolution 
representation of the terrain. We first find a route on 
the lowest resolution version of the terrain (which has 
the least nodes and hence allows a fast search) and 
then use each pair of nodes of the resulting solution as 
a start and goal node for a search on the next higher 
resolution representation of the terrain. This process is 
repeated until we obtain a route for the original terrain. 
In the following discussion we use the term sub-
sampling factor to refer to the reduction of size of a 
low-resolution terrain when compared to its full 
resolution version. 

We compute low resolution representations of the 
digital terrain by using a mean and a median operator. 
The mean operator just averages all the height values 
of a group of cells and does not work well for groups 
of cells that contain a ridge or sudden drop-off. For 
example if we had a 5 by 5 group of cells where the 
left half (first three columns) had height values of 10 
and the other half (last two columns) had height 
values of 140, then the single cell that will represent 
this group of cells will have a value of 62. As a result 



steep gradients in the original terrain become 
‘smudged’ which makes taking that path more 
appealing due to the lower gradient penalty. Once the 
path on the sub-sampled terrain map has been found, 
and we perform the searches between the road points, 
we are now forced to traverse the steep gradient on 
the original terrain.  

The median operator picks the middle value (median) 
of all the height values in the current group of cells; 
this requires the height values to be sorted. Using the 
example mentioned above, the median operator would 
be 10, i.e. the median operator preserves the steep 
gradient in this hypothetical data set. More advanced 
sub-sampling operators could be used to improve the 
outcome. 

5 Results 

5.1 Multi-Resolution Route Planning 
We have compared different parameter settings for 
multi-resolution route planning using a variety of 
different terrains. A typical result is shown in table 1. 

In general we found that as the sub-sampling factor 
increases, the smoothness of the road decreases. The 
roads found using sub-sampling factors of 5 and 10 
produced reasonable roads, while the quality of the 
roads found using sub-sampling factors of 3 and 20 
produced less satisfying roads. Also interesting are 
the differences in the running times of the various 
sub-sampling factors. Using sub-sampling factors of 5 
and 10 proved to be the quickest, whereas using the 
sub-sampling 3 took nearly a second and the sub-
sampling factor 20 took longest about 6s. The reason 
for the factors 5 and 10 being the quickest is that 
those sub-sampling factors represent equilibrium of 
large scale and small scale searches. When sub-
sampling with a very small factor (e.g. 3) the search 
between the way points is very fast but we still have 
to search a reasonable large low-resolution terrain. 
When using a high sub-sampling factor (e.g. 20) the 
low-resolution terrain is much smaller but the way 
points are further apart which results in a slower 
secondary search. Note that the point of equilibrium 
depends on the size of the terrain, i.e. for a very large 

Sub-sampling factor Time taken Number of nodes visited Total Cost of Path 
No sub-sampling 2 min 32 s 70788 297.10 

3 992 ms 12581 423.76 
5 281 ms 8687 369.98 

10 266 ms 8869 315.41 
20 6 s 27122 362.50 

Table 1: Typical results for multi-resolution route planning with different sampling factors. 

 

 
Sub-sampling Type No sub-sampling Single sub-sampling Single sub-sampling 

Image 

   
Factor(s) None 5 10 

Time 12 m 34 s 1 s 9 s 
Nodes visited 146,772 20,882 36,534 

Total Cost 534.71 614.07 580.65 
 

Sub-sampling Type Multi sub-sampling Multi sub-sampling Multi sub-sampling 

Image 

   
Factor(s) 5, 10 3, 5, 10 3, 5, 10, 15 

Time 1 s 484 ms 437 ms 
Nodes visited 21,029 18,695 21,546 

Total Cost 641.63 717.28 1040.13 

Table 2: Comparison of multi-resolution route planning with multiple levels of sub-sampling. 



terrain a higher sub-sampling factor is necessary to 
minimise the running time. In summary we found that 
using large sub-sampling factors reduces the size of 
the search space but it has several disadvantages: The 
greater the sub-sampling factor, the more cells get 
merged into one cell, thus making it easier to lose fine 
terrain structures, e.g. a narrow passage between two 
hills. Also the use of large cells can cause a 
magnification of bends (‘detours’) in a route which 
can not be removed in the final iteration of the 
algorithm since the way points found during the low 
resolution passes are fixed. Large sub-sampling 
factors decrease the number of way points along the 
road, thus increasing the distance between them on 
the original terrain map. This means that we are 
running the path finding algorithm less often on the 
original terrain map. However, it is usually less 
expensive to run the path finding algorithm more 
often but with a shorter distance between the each 
start and goal node.  

We also examined the performance of the algorithm 
when using multiple levels of sub-sampling. In 
general we found that this decreases the running time 
but it also reduces the quality of the solution found. 
For small terrains two levels of sub-sampling seem to 
be sufficient whereas for very large terrains more 
levels can be necessary. Also we found that sub-
sampling factors which are close together (e.g. 3, 5, 
10, 15) should be avoided. A typical example for a 
small terrain is shown in table 2. Note that in all cases 

the resulting solutions must be smoothed before using 
them as a plausible route. 

5.2 Comparison of Different Algorithms 
We compared different variations of the A* 
algorithms. A typical (unsmoothed) result of is shown 
in table 3.  

It can be seen that both the A* algorithm and the 
Iterative Deepening A* algorithm produce an optimal 
route (minimal cost). The only efficient variation of 
the A* algorithm was in our experiments the 
retargeting search which produced however poor 
roads having the largest total cost. Using multi-
resolution terrains we obtain the best performance 
while still getting solutions of an acceptable quality. 
We also found that the results obtained with an A* 
search with sub-sampling are similar to those obtained 
using a Beam Search with sub-sampling (see the 
above example). This is due to the fact that we usually 
reach our current goal before the width of the beam is 
exceeded.  

6 Conclusion 
Finding a path between two points on a digital terrain 
map can take a considerable amount of time and 
memory using the standard A* algorithm. We have 
defined additional constraints, so-called gradient 
penalties and direction change penalties, in order to 
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Image Algorithm (& sampling factor if applicable) Time taken Number of 
nodes visited 

Total Cost of 
Path 

a) A* (with no sub-sampling) 14 s 21,720 222.47 
b) A* (with sub-sampling factor 5) 187 ms 7,431 428.99 

c) Iterative Deepening A* (no sub-sampling, 
10% f(n) increase with each iteration) 24 s 51,728 222.47 

d) Beam Search (no sub-sampling, beam width 
= 300, beam cutoff = 100 23 s 27,190 294.66 

e) Beam Search (sub-sampling factor 5, beam 
width = 300, beam cutoff = 100) 203 ms 7,983 447.05 

f) Retargeting Search (no sub-sampling, each 
search front visits 100 nodes at a time) 218 ms 13,934 470.36 

 

Table 3: Comparison of results obtained with different variations of the A* algorithm. 



increase the realism of the solutions. Additional 
constraints can be added in order to allow for the 
creation of bridges and tunnels. We have analysed 
several variations of the A* algorithm in order to 
address the time and memory issues, but we found 
that the only variation that significantly reduced the 
running time of the road finding was the retargeting 
approach which produces low quality solutions. As an 
alternative we presented multi-resolution route 
finding methods which result in a large reduction of 
the search space and hence yield a dramatic 
improvement of running times and memory 
requirements. The road finding takes place on the sub-
sampled terrain and after the road is found, all the 
points along the road are transformed back to the 
corresponding locations on the original terrain. We 
then find the road between each consecutive pair of 
the road points. We found that the optimal sub-
sampling factor depends on the size of the terrain and 
represents equilibrium of high-resolution local 
searches and low-resolution global searches. However, 
the quality of a solution usually decreases with an 
increasing sub-sampling factor. The choice of the sub-
sampling filter is important and we found that a 
median filter works best since it maintains gullies and 
ridges. We have also introduced multi-resolution sub-
sampling which uses intermediate resolutions between 
the high and low resolutions. The motivation behind 
multi-resolution sub-sampling is that we can increase 
the performance when using large sub-sampling 
factors so that the distances between the way points is 
reduced by using an intermediate resolution before 
going back to the high resolution terrain. The 
performance gain from using multi-resolution sub-
sampling over single sub-sampling is usually not very 
significant but the loss in the quality of the road is 
significant. Thus the use of multi-resolution sub-
sampling is only appropriate on large high resolution 
terrains. 
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