
Automated Route Finding on Digital Terrains

D. R. Wichmann and B. C. Wünsche

Graphics Group, Dept. of Computer Science, University of Auckland, Private Bag 92019, Auckland,
New Zealand.

daniel.wichmann@gmail.com, burkhard@cs.auckland.ac.nz

Abstract
Path planning is an important problem in Artificial Intelligence and Robotics. In this paper we examine the
problem of finding an optimal path for a road connecting two points in a digital approximation of a real terrain.
Additional constraints, such as terrain gradients, will be introduced in order to achieve more realistic roads. A
performance comparison will be made between the standard A* algorithm and variations of it. Different
heuristics, which are used by the algorithms to guide them to the goal node, are presented and compared. To
overcome some of the computational constraints associated with route finding on large digital terrains we
introduce multi-resolution searching. We will show that multi-resolution searching greatly reduces the time
associated with the route finding process while still resulting in near optimal solutions.

Keywords: Digital terrains, route finding, path planning, terrain visualisation

1 Introduction
Path finding has many applications reaching from
computer games to helping robots navigate through an
environment. However, the literature offers little
research on route finding on terrains represented as
digital elevation maps (DEM). F. Markus Jönsson [1]
previously looked at path finding for vehicles in real
world digital terrains by focusing on terrain types,
which affect a vehicle’s speed, and on avoidance of
enemy units on the terrain. We present a tool for
finding plausible roads in a digital terrain; however,
the principles presented can also be used for routes
other than roads (e.g. railways, walking tracks).

The literature describes many algorithms for finding
the shortest path between two points. One of the
earliest solutions proposed is Dijkstra’s algorithm [2]
which finds the shortest paths to all other nodes in the
search space as opposed to finding the shortest path to
a single goal node. Dijktra’s algorithm always visits
the closest unvisited node from the starting node and
hence the search is not guided towards the goal node.
In contrast Best First Search [3] always selects the
node that is closest to the goal node. Since we do not
know the exact path from the current node to the goal
node, the distance to the goal node has to be
estimated. This estimate is referred to as the heuristic.
Best First Search does not keep track of the cost to the
current node and therefore does not necessarily find
an optimal solution. The A* search algorithm was
first introduced in 1968 [4] and is still widely used

today, especially in the interactive entertainment
industry. The A* algorithm combines the approaches
of Dijkstra’s algorithm and Best First Search. The A*
algorithm is guaranteed to find an optimal solution
(assuming no negative costs and an admissible
heuristic), but because it is guided towards the goal
node by the heuristic it will not visit as many nodes as
Dijkstra’s algorithm would do. This reduces both
memory and time requirements. Amit J. Patel [6]
presents a good comparison between the A*
algorithm, Dijkstra’s algorithm and Best First Search.

In this paper we develop and analyse different
heuristics and variations of the A* algorithm in order
to solve the shortest path problem under a variety of
user defined constraints. The main reason for using
the A* algorithm is that it is optimal and a heuristic
search. It also performs better than other search
strategies in many cases [6]. The search space, on
which the road finding takes place, can potentially be
quite large. This means that we must take steps to
ensure that we do not run out of memory or that the
search takes an excessive amount of time to run. Even
a relatively small terrain map of 300 by 300 pixels has
a search space of 90,000 nodes. Two possible
approaches to reduce these problems are a reduction
in the size of the search space by using multi-
resolution terrains and modifications to the search
algorithm.

2 Problem Space

2.1 Terrain Setup
The sampled digital terrain image is an approximation
to the real terrain. The higher the resolution of the
digital terrain image, the more realistic the
representation of the real terrain and the more
accurate the path finding will be. However, there
exists an upper limit on the resolution after which the
road will not be any more accurate and will
unnecessarily increase the running time of the path
finding algorithm. In order to visualize the results we
represent the terrain as a grey scale image with black
and white representing the lowest and highest
altitudes, respectively.

2.2 Adjacencies
To find a path from a starting node to a goal node, we
must define a way in which successor nodes can be
selected. While a real terrain allows stepping in any
direction for a digital terrain 4-adjacency and 8-
adjacency (see figure 1 (a) and (b), respectively) are
the most common approaches.

Our application additionally implements 16-adjacency
(see Figure 1 (c)) which allows even greater freedom
of movement as we can now move north-north-east,
north-east-east, etc. Using 16-adjacency, we can also
achieve a smoother looking road by reducing the
sharpness of the turns. To reduce sharp turns even
further we can penalize sharp turns, as described in
section 3.3.2. If we use the distance between nodes as
our cost function for the ‘standard costs’ then

neighbouring nodes that can be reached using 4-
adjacency cost 1, the ones that can be reached by the
diagonal steps of 8-adjacency have a cost of 2 and
nodes that can only be reached by the additional steps
of 16-adjacency have a cost of 5 . There are of
course other cost functions that can be chosen, rather
than just using the distance between two nodes.
Section 3.3 introduces additional parameters that will
influence the cost function.

3 The A* Algorithm
The A* algorithm finds the shortest path from a start
node to a goal node by using a heuristic which
estimates the cost to reach the goal node from the
current node. The heuristic estimate for node n is
usually referred to as h(n). The A* algorithm also
keeps track of the cost g(n) needed to get to the
current node from the start node. The total cost of a
node is hence f(n)= h(n)+ g(n).

3.1 Heuristics
The heuristic function h(n) guides the search towards
the goal node. If the heuristic function is admissible
(meaning it never overestimates the minimum cost to
the goal), then A* is guaranteed to find the cheapest
path. It is preferable to use a heuristic that
underestimates the minimum cost as little as possible,
as this will result in fewer nodes to be examined. An
ideal heuristic will always return the actual minimum
cost possible to reach the goal.

The Manhattan distance heuristic is illustrated in
figure 2 (a) and is defined as () a b a bh n x x y y= − + −

 Figure 1: Different adjacency definitions for route finding: (a) 4-adjacency, (b) 8-adjacency, (c) 16-

adjacency.

Figure 2: The Manhattan distance (a), Euclidian distance (b) and Diagonal Path Distance (c).

where (xa, ya) and (xb, yb) are the coordinates of the
current start and goal node, respectively. The heuristic
is ideal when using 4-adjacency.

The Euclidean heuristic (see figure 2 (b)) is defined as
() ()2 2() a b a bh n x x y y= − + − and is admissible, but

usually underestimates the actual cost by a significant
amount. This means that we may visit too many nodes
unnecessarily which in turn increases the time it takes
to find the road.

The diagonal distance heuristic is defined as
() ()() 2 2 min ,a b a b a b a bh n x x y y x x y y= − + − + − − −

[5] and is illustrated in figure 2 (c). The heuristic
combines aspects of both the Manhattan and
Euclidean heuristics and is admissible (unless 16-
adjacency is used). It has the advantage of always
giving the actual minimum possible cost to the goal if
8-adjacency is used and taking the square root is no
longer necessary, thus making it computationally
slightly more efficient than the Euclidean distance
heuristic. We found that using the Manhattan distance
heuristic is about 40% faster than the other two
heuristics with only a small increase in the cost of the
solution.

3.2 User Defined Constraints
We introduce gradient penalties since realistic roads
generally have a maximum gradient resulting from
safety considerations and vehicle limitations. The
Cornwall County Council, for instance, limits the
maximum gradient for traditional surfaced roads to
10% [7]. The gradient between 2 nodes is calculated
as 1tan ()h sθ −= ∆ ∆ where ∆h and ∆s are the height and
ground distance, respectively, between the two nodes.
The gradient penalties are cost multipliers with a user
defined cost factor. We also introduce direction
change penalties in order to keep the resulting roads
straight since unnecessary turns would obstruct the
traffic flow. The City of Hamilton in Montana, USA,
for example has a regulation that says that a curve
must have a minimum radius of 249 feet in order to
provide a design speed of 30mph [8]. The cost factors
can be again specified by the user in order to allow for
the creation of different types of road (motorway,
country road etc.).

3.3 Variations of the A* Algorithm
The A* will always select the cheapest node from all
nodes not previously visited. For large terrains this
process becomes inefficient and several modifications
have been suggested which minimise the search space
and improve the memory and time requirements of
the algorithm.

The Beam Search limits the size of the list of
unvisited nodes (“beam width”). Once the limit has
been reached the node with the highest cost is
dropped from the list if unvisited nodes to make room

for a new node. The major shortcoming of Beam
Search is that it is not optimal and not complete,
meaning it may not necessarily find the shortest path,
even if the heuristic is admissible.

Iterative Deepening A* [9] performs a series of
searches, where each search has a maximum cut-off
value, i.e. a limit on the f(n) value. The cut-off value
is increased with each iteration. The iterations
continue until the goal node has been reached or the
search space has been exhausted. Initially the cut-off
value should be the h(n) value of the start node. A
difficulty that arises, is finding an appropriate step
size for increasing the cut-off value with each
iteration.

Searching in one direction (unidirectional search)
involves searching a single search tree. An alternative
is to perform a bidirectional search that searches two
smaller trees instead. One search starts from the start
node searching forwards to the goal node, the other
one is searching backwards from the goal node to the
start node. Because the search trees grow
exponentially, the search space created by two small
search trees is generally less than the size of a single
large tree assuming that the bidirectional search meets
in the middle. However, Pohl [10] notes that if there
is more than one path from the start node to the goal
node, then the two search fronts seldom meet in the
middle. A variation of the bidirectional search is the
retargeting approach, first suggested by Pohl and
Politowsky [11]. The retargeting bidirectional search
does not perform the forward and backward searches
‘simultaneously’, but switches between them.

4 Multi-Resolution A* Search
As an alternative approach to reduce the memory and
time requirements of route finding we reduce the size
of the search space by computing a multi-resolution
representation of the terrain. We first find a route on
the lowest resolution version of the terrain (which has
the least nodes and hence allows a fast search) and
then use each pair of nodes of the resulting solution as
a start and goal node for a search on the next higher
resolution representation of the terrain. This process is
repeated until we obtain a route for the original terrain.
In the following discussion we use the term sub-
sampling factor to refer to the reduction of size of a
low-resolution terrain when compared to its full
resolution version.

We compute low resolution representations of the
digital terrain by using a mean and a median operator.
The mean operator just averages all the height values
of a group of cells and does not work well for groups
of cells that contain a ridge or sudden drop-off. For
example if we had a 5 by 5 group of cells where the
left half (first three columns) had height values of 10
and the other half (last two columns) had height
values of 140, then the single cell that will represent
this group of cells will have a value of 62. As a result

steep gradients in the original terrain become
‘smudged’ which makes taking that path more
appealing due to the lower gradient penalty. Once the
path on the sub-sampled terrain map has been found,
and we perform the searches between the road points,
we are now forced to traverse the steep gradient on
the original terrain.

The median operator picks the middle value (median)
of all the height values in the current group of cells;
this requires the height values to be sorted. Using the
example mentioned above, the median operator would
be 10, i.e. the median operator preserves the steep
gradient in this hypothetical data set. More advanced
sub-sampling operators could be used to improve the
outcome.

5 Results

5.1 Multi-Resolution Route Planning
We have compared different parameter settings for
multi-resolution route planning using a variety of
different terrains. A typical result is shown in table 1.

In general we found that as the sub-sampling factor
increases, the smoothness of the road decreases. The
roads found using sub-sampling factors of 5 and 10
produced reasonable roads, while the quality of the
roads found using sub-sampling factors of 3 and 20
produced less satisfying roads. Also interesting are
the differences in the running times of the various
sub-sampling factors. Using sub-sampling factors of 5
and 10 proved to be the quickest, whereas using the
sub-sampling 3 took nearly a second and the sub-
sampling factor 20 took longest about 6s. The reason
for the factors 5 and 10 being the quickest is that
those sub-sampling factors represent equilibrium of
large scale and small scale searches. When sub-
sampling with a very small factor (e.g. 3) the search
between the way points is very fast but we still have
to search a reasonable large low-resolution terrain.
When using a high sub-sampling factor (e.g. 20) the
low-resolution terrain is much smaller but the way
points are further apart which results in a slower
secondary search. Note that the point of equilibrium
depends on the size of the terrain, i.e. for a very large

Sub-sampling factor Time taken Number of nodes visited Total Cost of Path
No sub-sampling 2 min 32 s 70788 297.10

3 992 ms 12581 423.76
5 281 ms 8687 369.98

10 266 ms 8869 315.41
20 6 s 27122 362.50

Table 1: Typical results for multi-resolution route planning with different sampling factors.

Sub-sampling Type No sub-sampling Single sub-sampling Single sub-sampling

Image

Factor(s) None 5 10

Time 12 m 34 s 1 s 9 s
Nodes visited 146,772 20,882 36,534

Total Cost 534.71 614.07 580.65

Sub-sampling Type Multi sub-sampling Multi sub-sampling Multi sub-sampling

Image

Factor(s) 5, 10 3, 5, 10 3, 5, 10, 15

Time 1 s 484 ms 437 ms
Nodes visited 21,029 18,695 21,546

Total Cost 641.63 717.28 1040.13

Table 2: Comparison of multi-resolution route planning with multiple levels of sub-sampling.

terrain a higher sub-sampling factor is necessary to
minimise the running time. In summary we found that
using large sub-sampling factors reduces the size of
the search space but it has several disadvantages: The
greater the sub-sampling factor, the more cells get
merged into one cell, thus making it easier to lose fine
terrain structures, e.g. a narrow passage between two
hills. Also the use of large cells can cause a
magnification of bends (‘detours’) in a route which
can not be removed in the final iteration of the
algorithm since the way points found during the low
resolution passes are fixed. Large sub-sampling
factors decrease the number of way points along the
road, thus increasing the distance between them on
the original terrain map. This means that we are
running the path finding algorithm less often on the
original terrain map. However, it is usually less
expensive to run the path finding algorithm more
often but with a shorter distance between the each
start and goal node.

We also examined the performance of the algorithm
when using multiple levels of sub-sampling. In
general we found that this decreases the running time
but it also reduces the quality of the solution found.
For small terrains two levels of sub-sampling seem to
be sufficient whereas for very large terrains more
levels can be necessary. Also we found that sub-
sampling factors which are close together (e.g. 3, 5,
10, 15) should be avoided. A typical example for a
small terrain is shown in table 2. Note that in all cases

the resulting solutions must be smoothed before using
them as a plausible route.

5.2 Comparison of Different Algorithms
We compared different variations of the A*
algorithms. A typical (unsmoothed) result of is shown
in table 3.

It can be seen that both the A* algorithm and the
Iterative Deepening A* algorithm produce an optimal
route (minimal cost). The only efficient variation of
the A* algorithm was in our experiments the
retargeting search which produced however poor
roads having the largest total cost. Using multi-
resolution terrains we obtain the best performance
while still getting solutions of an acceptable quality.
We also found that the results obtained with an A*
search with sub-sampling are similar to those obtained
using a Beam Search with sub-sampling (see the
above example). This is due to the fact that we usually
reach our current goal before the width of the beam is
exceeded.

6 Conclusion
Finding a path between two points on a digital terrain
map can take a considerable amount of time and
memory using the standard A* algorithm. We have
defined additional constraints, so-called gradient
penalties and direction change penalties, in order to

a)

b)

c)

d)

e)

f)

Image Algorithm (& sampling factor if applicable) Time taken Number of
nodes visited

Total Cost of
Path

a) A* (with no sub-sampling) 14 s 21,720 222.47
b) A* (with sub-sampling factor 5) 187 ms 7,431 428.99

c) Iterative Deepening A* (no sub-sampling,
10% f(n) increase with each iteration) 24 s 51,728 222.47

d) Beam Search (no sub-sampling, beam width
= 300, beam cutoff = 100 23 s 27,190 294.66

e) Beam Search (sub-sampling factor 5, beam
width = 300, beam cutoff = 100) 203 ms 7,983 447.05

f) Retargeting Search (no sub-sampling, each
search front visits 100 nodes at a time) 218 ms 13,934 470.36

Table 3: Comparison of results obtained with different variations of the A* algorithm.

increase the realism of the solutions. Additional
constraints can be added in order to allow for the
creation of bridges and tunnels. We have analysed
several variations of the A* algorithm in order to
address the time and memory issues, but we found
that the only variation that significantly reduced the
running time of the road finding was the retargeting
approach which produces low quality solutions. As an
alternative we presented multi-resolution route
finding methods which result in a large reduction of
the search space and hence yield a dramatic
improvement of running times and memory
requirements. The road finding takes place on the sub-
sampled terrain and after the road is found, all the
points along the road are transformed back to the
corresponding locations on the original terrain. We
then find the road between each consecutive pair of
the road points. We found that the optimal sub-
sampling factor depends on the size of the terrain and
represents equilibrium of high-resolution local
searches and low-resolution global searches. However,
the quality of a solution usually decreases with an
increasing sub-sampling factor. The choice of the sub-
sampling filter is important and we found that a
median filter works best since it maintains gullies and
ridges. We have also introduced multi-resolution sub-
sampling which uses intermediate resolutions between
the high and low resolutions. The motivation behind
multi-resolution sub-sampling is that we can increase
the performance when using large sub-sampling
factors so that the distances between the way points is
reduced by using an intermediate resolution before
going back to the high resolution terrain. The
performance gain from using multi-resolution sub-
sampling over single sub-sampling is usually not very
significant but the loss in the quality of the road is
significant. Thus the use of multi-resolution sub-
sampling is only appropriate on large high resolution
terrains.

7 References
[1] F. M. Jönsson, An optimal pathfinder for

vehicles in real-world digital terrain maps,
(1997) URL: http://www.student.nada.kth.se
/~f93-maj/pathfinder/.

[2] E. W. Dijkstra, A note on two problems in

connection with graphs, Numerische
Mathematik, vol. 1, (1959) 269-271.

[3] S. Russell and P. Norvig, Best First Search,

Artificial Intelligence – A modern approach,
Prentice Hall, (1995) 94-97.

[4] P. Hart, N. Nilson, and B. Raphael, "A
 Formal Basis for the Heuristic
 Determination of Minimum Cost Paths."
 IEEE Transactions on Systems Science and
 Cybernetics, vol. 4, no. 2, July, (1968) 100-
 107.

[5] D. R. Wichmann, “Automated Route Finding

on Digital Terrains”, COMPSCI 780 Project
Report, Graphics Group, Dept. of Computer
Science, University of Auckland, New
Zealand, February 2004.

[6] “Amit's Thoughts on Path-Finding and A-
Star”, Introduction, URL: http://theory.
stanford.edu/~amitp/GameProgramming/ASt
arComparison.html#S2.

[7] Cornwall County Council, “Vertical
Design”, URL: http://www.cornwall.gov.
uk/environment/design/section5/des53.htm,
February 2004.

[8] City of Hamilton, Section 16.32.090 Streets

and roads, URL: http://www.cityofhamilton.
net/codes/Title_16/32/090.html, 1999.

[9] R. E. Korf, “Iterative-Deepening A*: An

Optimal Admissible Tree Search”.
Proceedings of the International Joint
Conference on Artificial Intelligence, Los
Altos, California, Morgan Kaufmann, (1985)
1034-1036.

[10] I. Pohl, “Bi-directional search”, Machine

Intelligence, vol. 6 (1971) 127-140.

[11] G. Politowski and I. Pohl, “D-node

retargeting in bidirectional heuristic
search”, Proc. AAAI-84, Austin, Texas,
(1984) 274-277.

