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Abstract 
Skeletally animated polygonal models are common in interactive 3d environments such as computer games. This 
paper presents an efficient technique for performing collision detection for such models with the possibility of 
integrating a skeletal animation system (based on pre-generated animations) with an existing physics engine in 
order to provide physically realistic responses to collisions.  The results are useful for 3d simulations in the areas 
of computer graphics, sport science, and computer games. 
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1 Introduction 
Collision detection is of extreme importance in visual 
simulations of 3d environments where various objects 
can interact with each other. The choice of a collision 
detection technique depends on the complexity and 3d 
representation of objects and the information required 
for the simulation of an object’s response to a 
collision such as elastic deformation.  
Collision detection can be divided into two phases: 
the broad phase quickly eliminates all objects that 
cannot possibly collide within a time frame. Examples 
are bounding volumes, octrees, BSP trees [1] and 
Hubbard’s space-time bounds [2]. The narrow phase 
examines pairs of objects identified as potentially 
colliding and detects (if necessary) where and how the 
objects collide. Examples are separating planes [2] 
and Lin-Canny closest features tracking [3].  
Presently there are a number of algorithms and 
libraries that provide fast collision detection in 3d 
environments, however, they typically require the 3d 
objects to consist of static geometry and they treat 
each object as one polygon mesh [4] or as a collection 
of basic primitive shapes such as spheres, capsules 
and boxes. Typically when a collision between 
objects is detected a list of pairs of polygons that 
intersect is produced, including for some libraries the 
intersection points. These results are not sufficient to 
obtain a higher-level description of the interaction 
between objects. In this work we will suggest a 
solution to this problem for objects, which consist of 
deformable meshes that represent humanoid models. 
As a simple scenario we consider a soccer game: most 
of the time each player is in contact with the ground, 
the soccer ball, or other players. Various types of 
collisions occur and must be handled in order to make 
the soccer ball fly with each kick and to prevent 
players from falling through the ground. For realistic 

simulations we need to know which limbs, and which 
parts of the limbs, are involved in an impact so that 
we can model the response of the players to the 
various impacts they experience. In order to obtain 
higher-level collision information the polygon mesh 
that makes up the player model must be subdivided 
into a number of groups representing individual limbs 
or limb parts.  
When a collision between objects has been detected 
the objects need to be repositioned to ensure they do 
not interpenetrate each other unless required. 
Furthermore in the case of humanoid models it must 
be possible to change the pose of a model in response 
to impacts.  
With animated articulated models there are generally 
two ways to respond to collisions. The simple way of 
producing a response to an impact involves creating a 
collection of pre-canned animations (i.e. pre-
recorded), and playing one of these depending on 
which limb or body part is hit; this has been widely 
used in computer games. However since there is only 
a fixed set of animations the end user will quickly 
notice that the responses to some impacts are not what 
one would expect to see in the real world.  
An alternative approach to producing more realistic 
responses involves the use of a physics engine. The 
player model can be approximated by a collection of 
rigid bodies that are connected together and are 
subjected to physical simulation. This approach 
doesn’t restrict the player model to a set of pre-canned 
animations; instead the player’s pose can be changed 
in an infinite number of ways based not only on the 
points of impact, but also the force of the impact. 
Our work uses the Open Dynamics Engine (ODE) [5] 
in order to provide physically realistic responses upon 
impact of the humanoid player models with their 
environment. ODE is a free, industrial quality library 
for simulating articulated rigid body dynamics. The 
player models in our simulation will be represented in 



ODE as a collection of rigid bodies, connected 
together by a number of joints that constrain the 
positions and orientations of the rigid bodies. While 
ODE has its own collision detection facilities they are 
not sufficient for interactive animations like the one 
described in our example scenario. Instead the results 
obtained with our algorithm are used by ODE, which 
will in turn try to ensure all constraints are satisfied 
and hence produce a visually realistic response to 
collisions in an interactive simulation.  
We implemented our simulations using the Nebula 
Device [6], which is a free modular framework for 
building 3d visualizations and game engines. Nebula 
provides a character animation system and contains a 
collision detection system that deals with static 
geometry by making use of the Optimised Collision 
Detection (OPCODE) [4] library. However the 
collision system is currently incapable of handling 
animated characters and our work presents a solution 
for this. 

2 Skeletal Animation 
Each player model consists of a single mesh that is 
deformed based on the underlying skeleton. 
Animation of the character using pre-canned character 
animation works by changing the pose of the skeleton. 
It is important to understand how this system works in 
detail since the collision detection and response 
techniques presented later on are geared towards 
working with such models. 

 
A model’s skeleton is made up of a collection of 
joints, arranged in a hierarchical structure. Figure 1 
shows the make-up of a player model. The bones are 
just a visual aid to make it easier to see the 
relationships between the joints and are typically only 
used by animators during the creation of the 
animations. Every vertex in the mesh is weighted by 
one to four joints (which is the maximum allowed 
number by Nebula) and the final position of each 
vertex (in model space) will be determined by the 
current pose of the skeleton.  
Each joint in the skeleton has two rotation and two 
translation components, and all joints except for the 

root joint have a parent joint. A rotation component is 
described by a quaternion, and a translation 
component is described by a 3-vector. One pair of 
rotation/translation components contains the initial 
position of the joint relative to its parent, and its initial 
orientation. The second pair of rotation/translation 
components contains the current position of each joint 
relative to its parent, and its current orientation. The 
algorithm for determining the final position of each 
vertex in the mesh is known as skinning and works as 
shown in Listing 1. 

 
 Tir and Tit represent the initial joint rotation and 

translation components, respectively.  
 Ti is known as the pose matrix and specifies the 

initial position of the joint in model space.  
 Tip is the pose matrix of the parent joint.  
 Tc, Tcr, Tct, Tcp are the equivalent matrices for 

the current joint rotation and translation. 
 Ts is known as the skinning matrix, and 

represents the transformation that needs to be 
applied to the initial joint pose in order to obtain 
the current joint pose (Tc). 

 vi and vc are the initial and current position of the 
vertex v in model space. 

 wjv is the weight (in the range 0-1) of a joint j on 
the vertex v. For each vertex the sum of the 
weights should add up to 1. 

In this listing and throughout the remainder of this 
paper matrices are homogeneous and are defined row-
wise. The Ti* matrices need only be computed once 
when the character skeleton is created 
The current rotation and translation components of 
each joint are obtained every frame from one or more 
animation curves. Each animation curve is obtained 
by recording the rotation/translation components of 
each joint at key frames of the animation. Rotation 
and translation components are obtained from 
separate curves. If multiple curves are used the 
samples obtained from each curve are blended 
together. If the skeleton bones remain the same length 
for each frame then only an animation curve for the 
rotation component is necessary for most joints. 
Hence an animation that runs at 30 fps and lasts for 2 
seconds would have an animation curve for the 
rotation component that contains 60 entries (assuming 
there are 60 key frames), with each entry specifying a 
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Figure 1: Low Resolution Character Model.

for each joint j 
 let Ti = Tir Tit 
 if j has a parent 
  let Ti = Ti Tip 
 let Tc = Tcr Tct 
 if j has a parent 

let Tc = Tc Tcp 
 let Ts = Ti

-1 Tc 
for each vertex v 
 let vc = (0,0,0) 
 for each joint j that v is weighted by 

let vc = vc +  vi
T Ts wjv 

Listing 1: Skinning 



quaternion that describes the rotation applied by the 
joint at that key frame. 

3 Collision Detection 
In a simulation where one or more objects are 
moving, the collision detection scheme must be 
capable of detecting collisions between stationary and 
moving objects. When checking for collisions 
between stationary objects it is sufficient to only 
consider their current position at the time at which the 
check is made, so the collision check becomes an 
intersection check. However with moving objects 
both the current position and the position at the 
previous animation step must be considered.  

 
 
Figure 2 illustrates that an intersection test between 
the two spheres at time t2 is not sufficient since the 
collision at time tc would be missed. Instead a number 
of tests along the object displacement vectors are 
performed to ensure a collision is detected if it has 
occurred between t1 and t2. In practice, detection of a 
contact between two moving spheres can be done 
using a simpler method [4]. Unfortunately most 
objects in our simulation consist of complex geometry 
so intersection tests aren’t as simple as they are for 
spheres. To improve performance a bounding sphere 
can encapsulate geometry and that sphere is then used 
for rough collision detection (other bounding volumes 
could be used instead). However, relying on the 
sphere alone would produce phantom collisions 
because the sphere is only an approximation of the 
real object and thus there is likely to be empty space 
inside the sphere that is not occupied by the object.  
Nebula’s collision detection system associates a 
bounding sphere with every object which may be 
involved in a collision at one time or the other and 
provides two methods to check for collision between 
a pair of moving objects, the quick swept sphere 
approach [7] or a more accurate (but slower) approach 
that places an upper bound on the maximum number 
of intersection tests that will be done and only 
performs multiple tests along the displacement vector 
if the object has travelled more than 1/8th its bounding 
sphere’s radius [8].  
In a simulation containing n different objects (that 
may collide with each other) a brute force collision 
detection system will have to test for collision 
between every pair of objects resulting in an O(n2) 
algorithm. If n is large and the objects themselves are 
complex the collision detection will be unacceptably 

slow. Spatial subdivision is one way to speed up 
collision detection. For our scenario it was deemed 
unnecessary to use an explicit spatial subdivision 
scheme because the soccer simulation is relatively 
small and the collision system in Nebula already uses 
some “early out” tests as described next. 
As mentioned previously the Nebula collision 
detection system associates a sphere with each object 
and keeps track of both the current and previous 
position of each sphere. Additionally each object 
belongs to a collision class, and the end user is able to 
specify the types of collision checks to be performed 
between each pair of classes, or whether collision 
between any pair of classes should be ignored 
entirely. Each frame the system computes an axis-
aligned bounding box (AABB) that encloses the two 
spheres (the past and the present). A collision can 
only occur between two moving objects if the 
corresponding AABBs overlap along all 3 global 
axes, existence of such an overlap would indicate that 
the two objects might have occupied the same space 
at the same time and further tests would need to be 
performed to determine whether they actually 
collided. The use of AABB boxes in this way to speed 
up collision detection is typically known as Sweep 
and Prune [9]. All objects are kept sorted by the 
system along the global x-axis using the 
corresponding AABBs. Collisions between stationary 
objects can be detected by checking for an 
intersection between the objects, and collision 
between moving objects can be handled by checking 
for collision between so called stationary objects in a 
number of snapshots of the moving objects taken in 
the time between the last and the current frame. 

3.1 The Character Collide Shape 
 
The deformable mesh of each character in the soccer 
simulation consists of up to 2000 triangles. Brute-
force collision detection is therefore impossible and 
we use instead the following two methods to improve 
interactivity: first the visual representation of the 
character (figure 3 left) is separated from the 
representation used for intersection tests (the collision 
mesh). The collision mesh is a low-resolution version 
of the original character mesh and in our case consists 
of around 280 triangles (figure 3 right).  

 
 

Figure 3: The high (left) and low (right) resolution 
mesh. 

Figure 2: Collision between moving objects. 



Additionally the collision mesh is subdivided so that 
only parts of the mesh are tested when necessary and 
triangle/triangle intersection tests are eliminated 
entirely. 
The Nebula collision detection system uses the term 
collide shape to refer to the data that describes the 
shape (i.e. geometry) of an object that may be 
involved in collisions. Nebula is currently only 
capable of dealing with collide shapes that consist of 
non-deformable geometry and are described by a 
triangle mesh and an AABB tree (that is built by 
OPCODE). Therefore a new collide shape was 
devised to represent characters.  
The new collide shape consists of 3 levels, and is used 
by the collision detection system for performing 
intersection tests between characters and other non-
deformable objects. Level-1, shown in figure 4, is 
made up of a collection of bounding volumes (spheres 
and capsules), each bounding volume contains a sub-
group of triangles from level-2 (the collision mesh). 
The remaining level-3 volume consists of another 
collection of volumes (spheres and capsules). 

 
 
Level-1 bounding volumes are used to subdivide the 
collision mesh into groups, such that each group 
coincides with a body part. This subdivision serves 
two distinct purposes. First of all by subdividing a 
character into parts the collision detection method 
doesn’t always have to process every triangle in the 
collision mesh, since it’s rare for all body parts to be 
in contact with something at the same time. Secondly, 
higher-level collision information becomes available, 
so the collision system can tell the user not just 
whether a character collided with some object, but 
also which parts of the character collided with that 
object. This additional information is extremely useful 
in trying to create a realistic simulation. For instance, 
in the soccer simulation the soccer player could be 
made to limp slightly if another player hits him in the 
foot, or could get a bloody nose as a result of the 
soccer ball hitting him in the face.  

The level-1 bounding volumes are attached to the 
character skeleton (and move with it) by associating 
each volume with a skeleton joint and positioning/ 
orienting the volume relative to that joint. Figure 5 
and the listing 2 provide a simple example of 
computing the position of the bounding volume for 
the wrist (in this case we assume there are only 3 
joints in the whole skeleton). 

 
The position of the sphere volume in model space is 
obtained by flattening the joint hierarchy at the joint 
to which the volume is attached, just as it is done 
during vertex skinning. Position and orientation is 
computed in a similar way for capsule volumes, the 
only difference being that two points are transformed 
instead of one. 

 
 
 Tflat is the result of flattening the joint hierarchy 

at the wrist joint. 
 usphere and vsphere are the coordinates of the centre 

of the sphere volume in the local wrist joint 
coordinate system and the model coordinate 
system, respectively. 

 
The collision mesh for a character is classified as 
level-2 and is shown in figure 6.  The mesh can be 
used to obtain more detailed information about which 
component of a character collided with an object. This 

Tflat = T2 T1 T0 
vsphere = usphere

T Tflat 

Figure 5: Attaching a volume to a skeleton joint. 

Listing 2: Computation of the position of a 
sphere in model space. 

Figure 4: Level -1 bounding volumes for a character. 

Figure 6: Level-2 collision mesh and triangle 
groups. 



IntersectCharacters( characterA, characterB ) 
{ 
    Transform level-1 and level-3 volumes to world space 
    For each level-1 volume volA-1 from characterA 
        For each level-1 volume volB-1 from characterB 
            IntersectLevel1( volA-1, volB-1 ) 
} 
 
IntersectLevel1( volA-1, volB-1 ) 
{ 
    if volA-1 and volB-1 overlap 
        transform all triangles in volB-1 to world space  
        for each Level-3 volume volA-3 in volA-1 
            for each triangle tri in volB-1 
                check for intersection between volA-3 and tri 
                if intersection exists store the contact point,  
                    contact normal and depth 
        if contact points are found then 
            combine all contacts into a single contact 
        else 
            transform all triangles in volA-1 to world space 
            for each level-3 volume volB-3 in volB-1 
                for each triangle tri in volA-1 
                    check for intersection between volB-3 and tri
                    if intersection exists store the contact point, 
                         contact normal and depth 
            if contact points are found then 
                combine all contacts into a single contact 
} 

is achieved by tagging each triangle in the collision 
mesh with a group identifier that allows for further 
subdivision of the collision mesh. For example the 
triangles belonging to the volume that bounds the left 
forearm can be separated into two groups, one group 
would consist of the triangles on the outer side of the 
forearm, the other would consist of the ones on the 
inner side. In the extreme each triangle can be 
identified uniquely. The extra information can be used 
to provide visual feedback to the user whenever the 
character experiences an impact by adding a decal to 
the character’s texture at the point of impact. 
 

 
The final level-3, shown in figure 7, is made up of a 
collection of volumes which are bound to the 
character skeleton just like level-1 volumes. However, 
each level-1 volume can consist of multiple level-3 
volumes. Unlike the level-1 volumes level-3 volumes 
do not contain triangles, and exist solely for the 
purpose of computing an estimate of the penetration 
depth between a character and some other object 
whenever a collision occurs, which is used for 
determining the collision response [8]. Ideally the 
level-3 volumes should approximate the collision 
mesh as closely as possible. 
During the search for an intersection between a 
character and some object, the bounding volumes 
provide a spatial subdivision that allows the fast 
elimination of whole groups of triangles at once if the 
bounding volumes enclosing these groups don’t 
overlap with the object. In order to provide an 
significant advantage over the brute force approach to 
finding intersections the bounding volumes need to 
satisfy a number of properties. The bounding volumes 
should encapsulate triangles as tightly as possible in 
order to minimize the number of “false positives” 
which leads to checking all triangles in the volume. 
The test to check whether two volumes overlap must 
be quick and the transformation of volumes as the 
character is animated must be computationally 
efficient. After some consideration we chose spheres 
and capsules as bounding volumes. The sphere has a 
quick overlap test and only the sphere centre needs to 
be transformed during animation. Unfortunately 
spheres usually do not provide a very tight fit. The 
capsule can be described by a line segment and a 
radius, and has a pretty quick overlap test (figure 8). 

Only the two endpoints of the line segments need to 
be transformed during animation. Capsules provide a 
better fit than spheres in many cases. Furthermore 
capsules and spheres allow for quick computation of 
penetration depth when two volumes or a volume and 
a triangle intersect (the depth value is necessary for 
providing proper collision response). 

 
Axis aligned bounding boxes (AABB) [10] and 
oriented bounding boxes (OBB) [11] were also taken 
into consideration. However, when the AABB needs 
to be transformed during animation there are two 
options. One is to compute a new AABB by finding 
the extents of the transformed geometry, but doing so 
is computationally expensive. Alternatively the 
previous AABB is transformed and a new one is 
computed based on the transformed vertices of the old 
AABB, but this may produce an AABB that is twice 
as large as the original. Oriented bounding boxes 
don’t suffer from this “growing” problem, but they 
take up more memory and are more expensive to 
transform [12]. 

 

Figure 7: Level-3 volumes (front & right view). 

Listing 3: Finding an intersection between characters.

Figure 8: Overlap of spheres and capsules.



IntersectCharacterOpcodeShape( character, opcShape ) 
{ 

transform all level-1 and level-3 volumes in character 
  to world space 

    for each level-1 volume volA-1 from character 
        obtain a list of triangles from opcShape that 
              overlap with volA-1 
        transform touched triangles to world space (if any) 
        for each level-3 volume volA-3 in volA-1 
            for each triangle tri of the transformed triangles  
                check for intersection between volA-3 and tri 
                if intersection exists store the contact point, 

     contact normal and depth 
        if contact points were found then 
                combine all contacts into a single contact 
} 

3.2 The Character Intersection 
Once the collide shape for a character has been 
defined the method in Listing 3 is used to find 
intersections with another character (intersection tests 
are done in world space). 
The method for finding the intersections between a 
character and a non-deformable object is slightly 
different and shown in listing 4. Recall that non-
deformable objects are handled by OPCODE, which 
builds an AABB tree from the mesh that is then used 
to quickly obtain a list of potentially colliding 
triangles. 

 
 
 
During the construction of the collide shape for the 
soccer player character we found that many level-1 
volumes contained only one level-3 volume, such was 
the case for legs and arms. The methods above can be 
improved by checking for this case and avoiding the 
level-1 overlap test altogether. Furthermore for 
character intersection it might be beneficial to buffer 
the transformed triangles. This means that if a 
character is involved in collisions with multiple 
objects the relevant parts of the collision mesh only 
need to be skinned once after the skeleton is 
repositioned for each frame. 

4 Results and Conclusion 
We have introduced a new collision detection 
algorithm for skeletally animated polygonal models. 
The technique described in this paper has been 
implemented as part of a soccer simulation. Initial 
results are encouraging and show that the collision 
detection techniques discussed are effective in 
practice and can be integrated with a physics engine 
to provide physically realistic responses to collisions. 
Many more improvements are possible and we are 
particularly interested in exploiting temporal 
coherence. It might also be worth considering other 
collision detection algorithms which compute the 
penetration depth between complex objects and using 
one of them instead of the approximation provided by 

level-3 volumes as described in this paper. An 
example is a novel variant of GJK presented in [13].  
Work on the integration of the ODE physics engine 
with Nebula’s skeletal animation system for the 
purpose of physically-based simulations is currently 
still in progress. A demo and source can be obtained 
from www.steelronin.com. 
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Listing 4: Detect character/OPCODE shape 
intersection. 


