
Efficient Collision Detection for Skeletally Animated Models
in Interactive Environments

Vadim Macagon1 and Burkhard Wünsche2
Graphics Group, University of Auckland, Auckland, New Zealand

1vadim_mcagon@hotmail.com, 2burkhard@cs.auckland.ac.nz

Abstract
Skeletally animated polygonal models are common in interactive 3d environments such as computer games. This
paper presents an efficient technique for performing collision detection for such models with the possibility of
integrating a skeletal animation system (based on pre-generated animations) with an existing physics engine in
order to provide physically realistic responses to collisions. The results are useful for 3d simulations in the areas
of computer graphics, sport science, and computer games.

Keywords: collision detection, skeletally animated models, interactive immerse environments

1 Introduction
Collision detection is of extreme importance in visual
simulations of 3d environments where various objects
can interact with each other. The choice of a collision
detection technique depends on the complexity and 3d
representation of objects and the information required
for the simulation of an object’s response to a
collision such as elastic deformation.
Collision detection can be divided into two phases:
the broad phase quickly eliminates all objects that
cannot possibly collide within a time frame. Examples
are bounding volumes, octrees, BSP trees [1] and
Hubbard’s space-time bounds [2]. The narrow phase
examines pairs of objects identified as potentially
colliding and detects (if necessary) where and how the
objects collide. Examples are separating planes [2]
and Lin-Canny closest features tracking [3].
Presently there are a number of algorithms and
libraries that provide fast collision detection in 3d
environments, however, they typically require the 3d
objects to consist of static geometry and they treat
each object as one polygon mesh [4] or as a collection
of basic primitive shapes such as spheres, capsules
and boxes. Typically when a collision between
objects is detected a list of pairs of polygons that
intersect is produced, including for some libraries the
intersection points. These results are not sufficient to
obtain a higher-level description of the interaction
between objects. In this work we will suggest a
solution to this problem for objects, which consist of
deformable meshes that represent humanoid models.
As a simple scenario we consider a soccer game: most
of the time each player is in contact with the ground,
the soccer ball, or other players. Various types of
collisions occur and must be handled in order to make
the soccer ball fly with each kick and to prevent
players from falling through the ground. For realistic

simulations we need to know which limbs, and which
parts of the limbs, are involved in an impact so that
we can model the response of the players to the
various impacts they experience. In order to obtain
higher-level collision information the polygon mesh
that makes up the player model must be subdivided
into a number of groups representing individual limbs
or limb parts.
When a collision between objects has been detected
the objects need to be repositioned to ensure they do
not interpenetrate each other unless required.
Furthermore in the case of humanoid models it must
be possible to change the pose of a model in response
to impacts.
With animated articulated models there are generally
two ways to respond to collisions. The simple way of
producing a response to an impact involves creating a
collection of pre-canned animations (i.e. pre-
recorded), and playing one of these depending on
which limb or body part is hit; this has been widely
used in computer games. However since there is only
a fixed set of animations the end user will quickly
notice that the responses to some impacts are not what
one would expect to see in the real world.
An alternative approach to producing more realistic
responses involves the use of a physics engine. The
player model can be approximated by a collection of
rigid bodies that are connected together and are
subjected to physical simulation. This approach
doesn’t restrict the player model to a set of pre-canned
animations; instead the player’s pose can be changed
in an infinite number of ways based not only on the
points of impact, but also the force of the impact.
Our work uses the Open Dynamics Engine (ODE) [5]
in order to provide physically realistic responses upon
impact of the humanoid player models with their
environment. ODE is a free, industrial quality library
for simulating articulated rigid body dynamics. The
player models in our simulation will be represented in

ODE as a collection of rigid bodies, connected
together by a number of joints that constrain the
positions and orientations of the rigid bodies. While
ODE has its own collision detection facilities they are
not sufficient for interactive animations like the one
described in our example scenario. Instead the results
obtained with our algorithm are used by ODE, which
will in turn try to ensure all constraints are satisfied
and hence produce a visually realistic response to
collisions in an interactive simulation.
We implemented our simulations using the Nebula
Device [6], which is a free modular framework for
building 3d visualizations and game engines. Nebula
provides a character animation system and contains a
collision detection system that deals with static
geometry by making use of the Optimised Collision
Detection (OPCODE) [4] library. However the
collision system is currently incapable of handling
animated characters and our work presents a solution
for this.

2 Skeletal Animation
Each player model consists of a single mesh that is
deformed based on the underlying skeleton.
Animation of the character using pre-canned character
animation works by changing the pose of the skeleton.
It is important to understand how this system works in
detail since the collision detection and response
techniques presented later on are geared towards
working with such models.

A model’s skeleton is made up of a collection of
joints, arranged in a hierarchical structure. Figure 1
shows the make-up of a player model. The bones are
just a visual aid to make it easier to see the
relationships between the joints and are typically only
used by animators during the creation of the
animations. Every vertex in the mesh is weighted by
one to four joints (which is the maximum allowed
number by Nebula) and the final position of each
vertex (in model space) will be determined by the
current pose of the skeleton.
Each joint in the skeleton has two rotation and two
translation components, and all joints except for the

root joint have a parent joint. A rotation component is
described by a quaternion, and a translation
component is described by a 3-vector. One pair of
rotation/translation components contains the initial
position of the joint relative to its parent, and its initial
orientation. The second pair of rotation/translation
components contains the current position of each joint
relative to its parent, and its current orientation. The
algorithm for determining the final position of each
vertex in the mesh is known as skinning and works as
shown in Listing 1.

 Tir and Tit represent the initial joint rotation and

translation components, respectively.
 Ti is known as the pose matrix and specifies the

initial position of the joint in model space.
 Tip is the pose matrix of the parent joint.
 Tc, Tcr, Tct, Tcp are the equivalent matrices for

the current joint rotation and translation.
 Ts is known as the skinning matrix, and

represents the transformation that needs to be
applied to the initial joint pose in order to obtain
the current joint pose (Tc).

 vi and vc are the initial and current position of the
vertex v in model space.

 wjv is the weight (in the range 0-1) of a joint j on
the vertex v. For each vertex the sum of the
weights should add up to 1.

In this listing and throughout the remainder of this
paper matrices are homogeneous and are defined row-
wise. The Ti* matrices need only be computed once
when the character skeleton is created
The current rotation and translation components of
each joint are obtained every frame from one or more
animation curves. Each animation curve is obtained
by recording the rotation/translation components of
each joint at key frames of the animation. Rotation
and translation components are obtained from
separate curves. If multiple curves are used the
samples obtained from each curve are blended
together. If the skeleton bones remain the same length
for each frame then only an animation curve for the
rotation component is necessary for most joints.
Hence an animation that runs at 30 fps and lasts for 2
seconds would have an animation curve for the
rotation component that contains 60 entries (assuming
there are 60 key frames), with each entry specifying a

Joint
Bone
Mesh

Figure 1: Low Resolution Character Model.

for each joint j
 let Ti = Tir Tit
 if j has a parent
 let Ti = Ti Tip
 let Tc = Tcr Tct
 if j has a parent

let Tc = Tc Tcp
 let Ts = Ti

-1 Tc
for each vertex v
 let vc = (0,0,0)
 for each joint j that v is weighted by

let vc = vc + vi
T Ts wjv

Listing 1: Skinning

quaternion that describes the rotation applied by the
joint at that key frame.

3 Collision Detection
In a simulation where one or more objects are
moving, the collision detection scheme must be
capable of detecting collisions between stationary and
moving objects. When checking for collisions
between stationary objects it is sufficient to only
consider their current position at the time at which the
check is made, so the collision check becomes an
intersection check. However with moving objects
both the current position and the position at the
previous animation step must be considered.

Figure 2 illustrates that an intersection test between
the two spheres at time t2 is not sufficient since the
collision at time tc would be missed. Instead a number
of tests along the object displacement vectors are
performed to ensure a collision is detected if it has
occurred between t1 and t2. In practice, detection of a
contact between two moving spheres can be done
using a simpler method [4]. Unfortunately most
objects in our simulation consist of complex geometry
so intersection tests aren’t as simple as they are for
spheres. To improve performance a bounding sphere
can encapsulate geometry and that sphere is then used
for rough collision detection (other bounding volumes
could be used instead). However, relying on the
sphere alone would produce phantom collisions
because the sphere is only an approximation of the
real object and thus there is likely to be empty space
inside the sphere that is not occupied by the object.
Nebula’s collision detection system associates a
bounding sphere with every object which may be
involved in a collision at one time or the other and
provides two methods to check for collision between
a pair of moving objects, the quick swept sphere
approach [7] or a more accurate (but slower) approach
that places an upper bound on the maximum number
of intersection tests that will be done and only
performs multiple tests along the displacement vector
if the object has travelled more than 1/8th its bounding
sphere’s radius [8].
In a simulation containing n different objects (that
may collide with each other) a brute force collision
detection system will have to test for collision
between every pair of objects resulting in an O(n2)
algorithm. If n is large and the objects themselves are
complex the collision detection will be unacceptably

slow. Spatial subdivision is one way to speed up
collision detection. For our scenario it was deemed
unnecessary to use an explicit spatial subdivision
scheme because the soccer simulation is relatively
small and the collision system in Nebula already uses
some “early out” tests as described next.
As mentioned previously the Nebula collision
detection system associates a sphere with each object
and keeps track of both the current and previous
position of each sphere. Additionally each object
belongs to a collision class, and the end user is able to
specify the types of collision checks to be performed
between each pair of classes, or whether collision
between any pair of classes should be ignored
entirely. Each frame the system computes an axis-
aligned bounding box (AABB) that encloses the two
spheres (the past and the present). A collision can
only occur between two moving objects if the
corresponding AABBs overlap along all 3 global
axes, existence of such an overlap would indicate that
the two objects might have occupied the same space
at the same time and further tests would need to be
performed to determine whether they actually
collided. The use of AABB boxes in this way to speed
up collision detection is typically known as Sweep
and Prune [9]. All objects are kept sorted by the
system along the global x-axis using the
corresponding AABBs. Collisions between stationary
objects can be detected by checking for an
intersection between the objects, and collision
between moving objects can be handled by checking
for collision between so called stationary objects in a
number of snapshots of the moving objects taken in
the time between the last and the current frame.

3.1 The Character Collide Shape

The deformable mesh of each character in the soccer
simulation consists of up to 2000 triangles. Brute-
force collision detection is therefore impossible and
we use instead the following two methods to improve
interactivity: first the visual representation of the
character (figure 3 left) is separated from the
representation used for intersection tests (the collision
mesh). The collision mesh is a low-resolution version
of the original character mesh and in our case consists
of around 280 triangles (figure 3 right).

Figure 3: The high (left) and low (right) resolution
mesh.

Figure 2: Collision between moving objects.

Additionally the collision mesh is subdivided so that
only parts of the mesh are tested when necessary and
triangle/triangle intersection tests are eliminated
entirely.
The Nebula collision detection system uses the term
collide shape to refer to the data that describes the
shape (i.e. geometry) of an object that may be
involved in collisions. Nebula is currently only
capable of dealing with collide shapes that consist of
non-deformable geometry and are described by a
triangle mesh and an AABB tree (that is built by
OPCODE). Therefore a new collide shape was
devised to represent characters.
The new collide shape consists of 3 levels, and is used
by the collision detection system for performing
intersection tests between characters and other non-
deformable objects. Level-1, shown in figure 4, is
made up of a collection of bounding volumes (spheres
and capsules), each bounding volume contains a sub-
group of triangles from level-2 (the collision mesh).
The remaining level-3 volume consists of another
collection of volumes (spheres and capsules).

Level-1 bounding volumes are used to subdivide the
collision mesh into groups, such that each group
coincides with a body part. This subdivision serves
two distinct purposes. First of all by subdividing a
character into parts the collision detection method
doesn’t always have to process every triangle in the
collision mesh, since it’s rare for all body parts to be
in contact with something at the same time. Secondly,
higher-level collision information becomes available,
so the collision system can tell the user not just
whether a character collided with some object, but
also which parts of the character collided with that
object. This additional information is extremely useful
in trying to create a realistic simulation. For instance,
in the soccer simulation the soccer player could be
made to limp slightly if another player hits him in the
foot, or could get a bloody nose as a result of the
soccer ball hitting him in the face.

The level-1 bounding volumes are attached to the
character skeleton (and move with it) by associating
each volume with a skeleton joint and positioning/
orienting the volume relative to that joint. Figure 5
and the listing 2 provide a simple example of
computing the position of the bounding volume for
the wrist (in this case we assume there are only 3
joints in the whole skeleton).

The position of the sphere volume in model space is
obtained by flattening the joint hierarchy at the joint
to which the volume is attached, just as it is done
during vertex skinning. Position and orientation is
computed in a similar way for capsule volumes, the
only difference being that two points are transformed
instead of one.

 Tflat is the result of flattening the joint hierarchy

at the wrist joint.
 usphere and vsphere are the coordinates of the centre

of the sphere volume in the local wrist joint
coordinate system and the model coordinate
system, respectively.

The collision mesh for a character is classified as
level-2 and is shown in figure 6. The mesh can be
used to obtain more detailed information about which
component of a character collided with an object. This

Tflat = T2 T1 T0
vsphere = usphere

T Tflat

Figure 5: Attaching a volume to a skeleton joint.

Listing 2: Computation of the position of a
sphere in model space.

Figure 4: Level -1 bounding volumes for a character.

Figure 6: Level-2 collision mesh and triangle
groups.

IntersectCharacters(characterA, characterB)
{
 Transform level-1 and level-3 volumes to world space
 For each level-1 volume volA-1 from characterA
 For each level-1 volume volB-1 from characterB
 IntersectLevel1(volA-1, volB-1)
}

IntersectLevel1(volA-1, volB-1)
{
 if volA-1 and volB-1 overlap
 transform all triangles in volB-1 to world space
 for each Level-3 volume volA-3 in volA-1
 for each triangle tri in volB-1
 check for intersection between volA-3 and tri
 if intersection exists store the contact point,
 contact normal and depth
 if contact points are found then
 combine all contacts into a single contact
 else
 transform all triangles in volA-1 to world space
 for each level-3 volume volB-3 in volB-1
 for each triangle tri in volA-1
 check for intersection between volB-3 and tri
 if intersection exists store the contact point,
 contact normal and depth
 if contact points are found then
 combine all contacts into a single contact
}

is achieved by tagging each triangle in the collision
mesh with a group identifier that allows for further
subdivision of the collision mesh. For example the
triangles belonging to the volume that bounds the left
forearm can be separated into two groups, one group
would consist of the triangles on the outer side of the
forearm, the other would consist of the ones on the
inner side. In the extreme each triangle can be
identified uniquely. The extra information can be used
to provide visual feedback to the user whenever the
character experiences an impact by adding a decal to
the character’s texture at the point of impact.

The final level-3, shown in figure 7, is made up of a
collection of volumes which are bound to the
character skeleton just like level-1 volumes. However,
each level-1 volume can consist of multiple level-3
volumes. Unlike the level-1 volumes level-3 volumes
do not contain triangles, and exist solely for the
purpose of computing an estimate of the penetration
depth between a character and some other object
whenever a collision occurs, which is used for
determining the collision response [8]. Ideally the
level-3 volumes should approximate the collision
mesh as closely as possible.
During the search for an intersection between a
character and some object, the bounding volumes
provide a spatial subdivision that allows the fast
elimination of whole groups of triangles at once if the
bounding volumes enclosing these groups don’t
overlap with the object. In order to provide an
significant advantage over the brute force approach to
finding intersections the bounding volumes need to
satisfy a number of properties. The bounding volumes
should encapsulate triangles as tightly as possible in
order to minimize the number of “false positives”
which leads to checking all triangles in the volume.
The test to check whether two volumes overlap must
be quick and the transformation of volumes as the
character is animated must be computationally
efficient. After some consideration we chose spheres
and capsules as bounding volumes. The sphere has a
quick overlap test and only the sphere centre needs to
be transformed during animation. Unfortunately
spheres usually do not provide a very tight fit. The
capsule can be described by a line segment and a
radius, and has a pretty quick overlap test (figure 8).

Only the two endpoints of the line segments need to
be transformed during animation. Capsules provide a
better fit than spheres in many cases. Furthermore
capsules and spheres allow for quick computation of
penetration depth when two volumes or a volume and
a triangle intersect (the depth value is necessary for
providing proper collision response).

Axis aligned bounding boxes (AABB) [10] and
oriented bounding boxes (OBB) [11] were also taken
into consideration. However, when the AABB needs
to be transformed during animation there are two
options. One is to compute a new AABB by finding
the extents of the transformed geometry, but doing so
is computationally expensive. Alternatively the
previous AABB is transformed and a new one is
computed based on the transformed vertices of the old
AABB, but this may produce an AABB that is twice
as large as the original. Oriented bounding boxes
don’t suffer from this “growing” problem, but they
take up more memory and are more expensive to
transform [12].

Figure 7: Level-3 volumes (front & right view).

Listing 3: Finding an intersection between characters.

Figure 8: Overlap of spheres and capsules.

IntersectCharacterOpcodeShape(character, opcShape)
{

transform all level-1 and level-3 volumes in character
 to world space

 for each level-1 volume volA-1 from character
 obtain a list of triangles from opcShape that
 overlap with volA-1
 transform touched triangles to world space (if any)
 for each level-3 volume volA-3 in volA-1
 for each triangle tri of the transformed triangles
 check for intersection between volA-3 and tri
 if intersection exists store the contact point,

 contact normal and depth
 if contact points were found then
 combine all contacts into a single contact
}

3.2 The Character Intersection
Once the collide shape for a character has been
defined the method in Listing 3 is used to find
intersections with another character (intersection tests
are done in world space).
The method for finding the intersections between a
character and a non-deformable object is slightly
different and shown in listing 4. Recall that non-
deformable objects are handled by OPCODE, which
builds an AABB tree from the mesh that is then used
to quickly obtain a list of potentially colliding
triangles.

During the construction of the collide shape for the
soccer player character we found that many level-1
volumes contained only one level-3 volume, such was
the case for legs and arms. The methods above can be
improved by checking for this case and avoiding the
level-1 overlap test altogether. Furthermore for
character intersection it might be beneficial to buffer
the transformed triangles. This means that if a
character is involved in collisions with multiple
objects the relevant parts of the collision mesh only
need to be skinned once after the skeleton is
repositioned for each frame.

4 Results and Conclusion
We have introduced a new collision detection
algorithm for skeletally animated polygonal models.
The technique described in this paper has been
implemented as part of a soccer simulation. Initial
results are encouraging and show that the collision
detection techniques discussed are effective in
practice and can be integrated with a physics engine
to provide physically realistic responses to collisions.
Many more improvements are possible and we are
particularly interested in exploiting temporal
coherence. It might also be worth considering other
collision detection algorithms which compute the
penetration depth between complex objects and using
one of them instead of the approximation provided by

level-3 volumes as described in this paper. An
example is a novel variant of GJK presented in [13].
Work on the integration of the ODE physics engine
with Nebula’s skeletal animation system for the
purpose of physically-based simulations is currently
still in progress. A demo and source can be obtained
from www.steelronin.com.

5 References
[1] Watt, A. and Policarpo, F., 3D Games: Real-time

Rendering and Software Technology, Addison-
Wesley (2001).

[2] Hubbard, P. M., “Collision detection for interac-
tive graphics applications”, IEEE Transactions
on Visualization and Computer Graphics, 1(3),
pp 218-230, September (1995).

[3] Lin, M. C., “Efficient collision detection for
animation and robotics”, PhD Thesis, University
of California, Berkeley (1993).

[4] Terdima, P., “OPCODE home page”, http://www
.codercorner.com/Opcode.htm, visited on
20/08/2003.

[5] Smith, R. et al., “Open Dynamics Engine home
page”, http://opende.sourceforge.net, visited on
20/08/2003.

[6] The Nebula Device Wiki., “home page”,
http://nebuladevice.sourceforge.net, visited on
20/08/2003.

[7] Gomez, M., “Simple intersection tests for
games”, Gamasutra.com, October 18, (1999).

[8] Macagon, V., “Collision detection and response
of skeletally animated models”, FoS Summer
Scholarship Project Report, University of
Auckland, March (2003).

[9] Cohen, J.D., Lin, M.C., Manocha, D., Ponamgi,
M.K., “I-COLLIDE: An interactive and exact
collision detection system for large-scale
environments”, Proceedings of ACM Interactive
3D Graphics, pp 189-196 (1995).

[10] Lander, J., “When two hearts collide: axis
aligned bounding boxes”, Gamasutra.com,
February 3, (2000).

[11] Bobic, N., “Advanced Collision Detection
Techniques”, Gamasutra.com, March 30, (2000).

[12] van den Bergen, G., “Efficient collision detection
of complex deformable models using AABB
trees”, Journal of Graphics Tools, 2(4), pp 1-14
(1997).

[13] van den Bergen, G., “Proximity queries and
penetration depth computation on 3d game
objects”, Proceedings of the Game Developers
Conference 2001, http://www.gdconf.com/archi
ves/2001/vdbergen/vdbergen.doc, visited on
20/08/2003.

Listing 4: Detect character/OPCODE shape
intersection.

