
Modelling of Turbulent Water over Natural Terrain
Nathan Holmberg and Burkhard Wünsche

Graphics Group, University of Auckland, Auckland, New Zealand
{nhol021,bwue001}@ec.auckland.ac.nz

Abstract
Water phenomena are some of the most visually spectacular effects found in nature. This paper presents a novel
efficient hybrid method to model turbulent water such as fast flowing rivers and waterfalls with the intent that
the model can be used as part of a larger environment or scene. The model presented uses hydrostatic theory to
incorporate a 2D height field and a particle system to model respectively the main volume and spray of turbulent
water. The user is able to submit any environment formed from spheres and panels making the solution very
flexible and adaptable. Our results show that the model provides a nearly realistic simulation of turbulent water
and for simple scenes interactive speeds are possible which compares favourably with alternative techniques.

Keywords: physically-based modelling, turbulent water, water simulation

1 Introduction
The complexity and power of water flow in nature is
both impressive and beautiful. It is also a part of our
everyday lives and so well known to the human per-
ception that unrealistic motion is easily discernable.
It is no surprise therefore that much effort has been
applied in computer graphics to try to capture water in
a convincing way. This is far from trivial as most
phenomena can be attributed to complex molecular
interactions that occur trillions of times a second, and
as such are beyond the modelling power of today’s
computers. Instead it is the goal of computer graphics
to produce models with an underlying basis in
physical principles that create, as accurately as
possible, a large scale approximation of these local
interactions.
As research in this area has evolved models have
moved from only being able to represent certain
effects, such as the motion of deep water waves to the
exclusion of all else, to more general models with a
firmer basis in hydrodynamics capable of realistic
motion that follows expected behaviour in a range of
situations. These more recent models allow animators
to specify environments and start conditions and the
model will do the rest.
The purpose of this work is to build a general model
with a focus on the natural movement of rivers, rapids
and waterfalls. As such turbulence, spray, and the like
should be accounted for while not being treated as
special cases.
While not yet being complete and fully realistic, our
model has been able to produce results that show its
potential.

2 Previous Work
The earliest work on modelling water in computer
graphics used mathematical models and explicit

functions to model surface behaviour. Some, while
obeying physical equations, were very inflexible
outside their intended scope such as the modelling of
deep sea waves by Schachter [1] while others tried to
model surface phenomena in 2D velocity fields [2].
Later work introduced rudimentary particle systems.
Initially particle interaction was ignored and particles
simply bounced around the environment [3][4]. This
produced reasonable effects for waterfalls and other
instances where particle movement had enough
energy to break the molecular level bonds as needed.
In particle systems the equations for interaction can
be complex and computationally expensive as each
particle may be affected by every other resulting in a
computational complexity of O(n2) which is
unacceptably slow when dealing with hundreds of
thousands of particles. However, without inter-
particle forces volumes of water can not be modelled
well and the usually identifiable effects of adhesion
and cohesion are missing. Some of the work at
modelling these effects includes Miller and Pearce’s
[5] connected particle system which used forces to
imitate soft collisions based on the difference in
particle’s positions. This works well for viscous
fluids, as intended by the authors, but is unsuitable for
the number of particles or scale necessary to model
large bodies of water.
Kass & Miller [6] introduced column systems which
use simplified flow equations, based on hydrostatics,
between columns and treat the water volume as a 2D
height field. This implicitly allows for the modelling
of surface phenomena such as waves and can
efficiently model large bodies of water. O’Brien &
Hodgins [7] extended this model by incorporating the
interaction with external objects and splashes.
However, a column’s height is still represented by one
height variable meaning that vertical isotropy is
assumed and only very simple (flat) environments can
be used. Mould & Yang [8] furthered this work by

dividing each column into a user defined number of
cells, relaxing the assumption of vertical isotropy.
Another improvement was made by allowing for more
complex environments. Even with the use of cells,
however, column systems are still only a two and a
half dimensional model at best and many effects such
as the curling of waves cannot be reproduced. There
has also been some work at applying the 2D version
of the Navier-Stokes equations to column systems [9].
The most recently developed simulation methods use
the full Navier-Stokes equations to compute motion in
a 3D grid of voxels, examples of which can be found
in Enright et al. [10] and Foster & Fedwik [11]. The
solution is very expensive but also creates the most
realistic effects. It is obtained by calculating the
velocity of flow out of the 6 faces of each voxel using
the pressure, temperature etc. of each voxel. By
calculating which voxels contain water, objects, or
air, extremely realistic simulations are obtained for
complex environments. This method has been used in
movies such as Shrek and its difficulty is perhaps
illustrated in Jeffrey Katzenberg’s statement that the
pouring of milk into a glass was the hardest shot in
the movie [10][11]. This approach does have its
limitations of course with perhaps the largest being
the loss of information within cells, meaning that the
grid size plays an overly important role in the
accuracy of the model.

3 A Hybrid Model for Turbulent
Water

Initial tests with a particle only model showed that the
computation time for such a system is prohibitive for
large bodies of water. Instead we chose to use
different systems for spray and volume to create a
faster and more believable model.

3.1 Volume Model
Continuing the work of O’Brien & Hodges and Mould
& Yang [7][8] the volume model, representing the
main body of water in our model, is a column based
system. Using columns holds the advantages of easy
surface creation as the top of all columns are known
and less flow calculations are needed so the system is
less computationally intensive.
Our model divides the environment into equally sized
squares which form the base of columns as in figure
1. All columns start with a user defined height which
then varies over time dependent on the calculated
flows. Source and sink columns are the only ones to
retain their heights allowing for in and out flows to
the system. Pipes are then created between each of the
eight adjacent columns and each cell that could
overlap during the course of the simulation. Pipes are
also created between the cells of one column and the
air above the adjacent columns. At this point the
system is ready to begin simulation.
The underlying basis for the flow equations that are
used in this simulation is the science of hydrostatics,

which describes the pressure of fluids at rest. The
equations related with this approach are simple, both
to understand and to compute, and as a result are easy
to implement.
For any column in the grid the hydrostatic pressure
can be calculated from the equation

)(
2
1

0
2 EpvghQ +++= ρρ

which is based on the work of Bernoulli and where Q
is the total pressure, h the height of the column, g the
acceleration due to gravity, ρ the density of the fluid,
v the velocity of flow, p0 the air pressure and E the
pressure arising from external forces which together
form the pressure energy term. In this case the height
of the column is the height above some arbitrary point
in the world so long as the same point is used for all
columns.
Using the pressure differences between cells it is
possible to calculate the acceleration and from that the
flow that should occur between cells. The final
equation for the flow velocity (η) through a pipe is

)(0 l
QQ

tf tailhead

ρ
ηη

−
∆+=

where l is the pipe length, f is a friction coefficient (as
suggested in [8]), and η0 is the flow in the previous
time step. An interesting point to note is the lack of
any viscosity parameter in this equation. This is
because one of Bernoulli’s assumptions is that the
distances between points of measurement are so small
that viscous losses are negligible. Instead the friction
coefficient used allows energy to slowly escape from
the system. While not physically justified this
parameter serves as an ad-hoc method of including
viscosity and we found that setting it to 0.995 gave
good results in our examples.
Using the flow calculated for the pipe the volume of
water that should be moved through it is calculated
by:

ctV η∆=
where c is the cross-sectional area of the pipe, or the

a) Environment
before columns
are generated.

b) Top down view
with environment
split into grid for
columns.

c) Columns after
generation with
initial heights.

Figure 1. Column Generation from environment.
Arrows indicate position of some pipes.

amount of overlap between the cells. Because mass is
to be conserved the volume removed from one
column is the same as that added to the other. Care
must also be taken not to allow a volume of less than
zero to occur.
This system is very fast considering the mass of water
that is being represented but there are several
problems.
Columns pose a problem as a representation because
one of the classical characteristics of turbulence is that
it is a three dimensional feature [1]. While using the
‘cells’ given by Mould & Yang relaxes the assumption
of vertical isotropy this goes a long way to explaining
some of the model’s inability to simulate certain
situations. A second problem arises from the fact that
turbulence is a feature of flow and not of the fluid ‘at
rest’. This means that while hydrostatics may be easy
to use the equations generated for flow are incomplete
and ignore many of the visible characteristics of water
such as viscous shear stresses. This is perhaps the
largest flaw in the model and something that lends
itself to further research

3.2 Spray Model
The spray model is used to model water as it breaks
free of the main volume of water. There is no easy
physical solution to when spray should be created and
as such assumptions must be made instead. Earlier
work with column systems were concerned mainly
with generating splashes from hitting objects and as
such used vertical velocity thresholds for generating
spray. Because we also want to model waterfalls our
assumptions use research about the heights of wave
crests before they become unstable (when the wave
height is 0.78 of the water depth) [12]. This obviously
allows waterfalls to form easily but also works for
rapids as large flow velocities form ‘spikes’ of water
that while erroneous are then turned into spray due to
their large heights.
The spray system begins its evolution when particles
are generated. First the number of particles (or
volume) needs to be determined. Using the formula to
calculate flow through a weir [13] it is possible to
determine the required flow rate and hence volume:

gBHflowrate 2
3
2 2

3

=

where B is the base length, H the height and g the
acceleration due to gravity. The volume to pass
through in this time step is then given by flow rate *
time step. This determines the number of particles to
be created as all those generated are of a user defined
volume except the last which needs to be the
remainder of volume to be moved as mass must be
conserved and not created. Depending on the scale
and resolution of the model being used this can be set
to achieve the best looking results. The position of the
particles is also easily determined and is set at a
random position in the face that the particle is being
generated from. The final initial variable that is

needed for each particle is velocity which is generated
from the flow rate equation above. In this case the
velocity of flow through a column’s face is found to
be flow rate / face area. Flows within the column
structure may mean the velocity should not be
perpendicular to the front of the face; to account for
this the average flow from surrounding columns is
used to give a direction to the scalar velocity
calculated above.
In many cases the velocity imparted to the particle
should not only be horizontal but also include an
initial vertical velocity. To do this the difference in
total height between the column for which particles
are being generated and the column behind is used in
the classic formula

asuv 222 +=
Where v is the current velocity, u is the initial
velocity, a the acceleration, in this case gravity, and s
the distance covered. While only an approximation
this approach does manage to provide a more
believable representation.
One of the methods that were initially considered to
help create the illusion of water pooling and
incompressibility was the use of cohesion.
Intermolecular bonds are simulated by creating small
forces between water particles which attract and repel
neighbours in the effort of keeping an optimal
distance apart. However, we found that using
cohesion within the particle system is inefficient and
inaccurate. Furthermore other authors suggest that
cohesion is unnecessary due to the water’s low
viscosity so long as the movement is turbulent, such
as is the case with spray [4][14]. Consequently this
extension was excluded when the particle and column
systems were combined and the only active force
during a time step is gravity.
It remains to deal with the collision detection for
particles. Collision detection with the water volume
boundary is explained in the next section. It remains
to handle particle collisions with columns.
After calculating which column the particle is above
(or within), the particle’s y-coordinate value is tested
to see if it should be absorbed into the column.
However, simply increasing the column’s volume and
destroying the particle was found not to be accurate
enough as this can force the column’s height up, often
absorbing more particles in the process. While this is
not a problem for small scale splash effects
considerable problems occur when modelling, for
example, waterfalls where there are many particles
hitting at any one time. After trying to spread the
volume of a colliding particle over several columns it
was found that by instead modelling the force of
impact and subsequent pressure increase in the
column not only was the problem reduced but more
realistic effects were generated. The equations used
are the same as for external objects colliding with the
water presented in Mould and Yang. The force on the
object consists of two terms:

gVvF ρµ −−=

where v is the velocity of the object, µ is the viscosity,
V the volume of water displaced, ρ the density of the
fluid and g the acceleration due to gravity. The first
term describes the force of the fluid on the particle
and the second is the force due to buoyancy. Because
the forces on the fluid must be equal but oppositely
orientated to that on the water droplet, this formula
can then be used to determine the force on the
column. Using the formulas:

AmP /= and
a
Fm =

we can calculate the resultant pressure of this force on
the column, stopping it from rising unrealistically.

4 Implementation
The previous section presented the underlying physics
of our modelling approach. This section explains
several implementation details.

4.1 Particle System
Particles have a position, velocity, and mass but no
volume. They can be affected by forces, either from
outside the system or from other particles and can
represent anything from rigid structures to fluids (as
described earlier).
Our particle system is based on the work by Witkin
[15] and was written as general as possible to allow
for later extensions. All forces and environmental
constraints are represented by interfaces that can be
implemented as required. The system itself
implements the interface required by the solver and as
such represents itself as a point moving through 6n
dimensional space where n is the number of particles
and the position and velocity of each particles is
represented by a 6-dimensional vector. The derivative
of each particle’s state vector [x1,x2,x3,v1,v2,v3] is
[v1,v2,v3,f1/m,f2/m,f3/m] where f is the force acting on
the particle. By representing the system as a point in
6n-dim space, all forces between particles can be
applied simultaneously so that the system stays
consistent for each time step.
Solving for a particular time step begins with the
system calculating the initial forces acting on the
particles. The particle system can then pass itself to
the solver method of choice. Because the solver views
f(x,t) as a black box (i.e. doesn’t know how the
function is evaluated) it calls back for solutions at
intermediately positions. At these points the system
recalculates the forces and responds appropriately.
After the new positions and velocities are determined
collision detection with the environment is performed.
Panels defined in the environment file are used as
boundary conditions to stop particles escaping. While
any parallelogram is allowed as a panel it is important
to note that the collision detection used here is only
valid for rectangles. To find if a particle has passed a
panel our algorithm checks first using the following
formula which side of the panel the particle is on:

0)(1 ≤•− nVP
where P is the particles position, V1 is one of the
vertices of the panel and the unit normal of the plane
on which the panel rests. A further check is necessary
to see if the particle also lies within the rectangle
described by the panel. If the four conditions below
hold true then the point is within the parallelogram.

0)()(
0)()(
0)()(
0)()(

344

144

322

122

<−•−
<−•−
<−•−
<−•−

VVVP
VVVP
VVVP
VVVP

Where P is the particle’s position and V1 through V4
are the four vertices of the rectangle in anticlockwise
order. This is a simplification of the equation to check
which side of a line a point is. As the sign is the only
thing we are interested in it is more efficient to
disregard excess calculation.
A final check is made to ensure the particle is not
‘legally’ on the other side of the panel. By tracing the
particles path back one time step and checking that
the old position was ‘correct’ it can be assumed that
the particle has indeed hit the panel.
As described in the previous section particles also
have to be tested as to whether they have hit the main
volume of water. Because columns are stored in a 2D
array in their physical order it is very easy to
determine which column a particle is directly above.
The system’s minimum x and z points are stored as
global variables so it is simply a matter of finding the
difference between the particle’s position on the x/z
plane and the system minimums and scaling by the
resolution, i.e.

resolutionPindex iii ×−=)min(
where index is the array index, P the particle’s
position, min the minimum value for the system and
resolution the number of columns per unit length. If
the particle is outside the bounds of the column array
or its vertical position (y coordinate value) is below
all columns in the system the particle is destroyed.
Otherwise it is absorbed into the volume model as
described previously.
Finally each particle is checked to ensure it hasn’t
exceeded its lifetime after which the particle system
clock is increased by the time step given and the
system is again deemed stable.
Initially, when the particle system was being used
exclusively, it was considered appropriate to try to
model cohesion between the particles to mimic
molecular interaction. The first attempt was to apply a
simple spring with a limited area of effect. This spring
forced particles towards an equilibrium situation. This
then evolved through the application of the work done
by Miller & Pearce [5] to that shown in figure 2.
These forces were not found to be appropriate
however as they made the fluid appear too viscous to
be believable for water. They were also very slow.

4.2 Column System
As discussed above the volume model follows that
used by Mould & Yang [8] closely. Before the system
can be used columns must be generated from the
environment specified and pipes must be created
between all adjacent.
Using the same environment file format as that
originally used for the particle system, each shape is
cycled through checking if columns should be
created. Spheres, used to represent rocks and
obstacles are considered first. For each sphere in the
environment a cross-section along the xz-plane is
used. Taking the lower left corner of a bounding
rectangle each possible column position is checked to
determine if it is within the cross-section. For this an
approximation is used where each corner is checked
to see if it is inside, if two or more corners are inside
then a column is created in that position. The base
height of each column created is found by
determining the height of the centre as it would be
projected onto the sphere.
Each panel is also cycled through to create columns
although, unlike spheres, each panel can serve one of
three different purposes. If the area, on the xz-plane,
is zero and the panel is not a source panel it is treated
as a boundary panel for particle collision detection
and is stored for use as such. Source panels also have
no area but columns are still created along the line
described by the first and second vertices. These
columns have an initial height equal to the difference
between the first and third vertices’ y values which is
kept regardless of outflows. However, most panels act
in much the same way as all spheres by providing the
ground environment for the column system.
Once again finding the bounding rectangle into which
the projection of the panel onto the xz-plane fits, each
possible column position is checked as to if a column
should be created there. To do this opposite corners of
the column position are tested as to whether they are
left of the lines formed by V1 and V2, V2 and V3, V3
and V4, and V4 and V1. Each time a score is
incremented for each corner to the left of each line, if
both corners are outside a line then no column is
created otherwise if the ‘score’ is above six (there was
a maximum of two lines any corner was outside of)

then a column is created as appropriate. This method
is only an approximation but serves well enough.
After each shape has been cycled through we now
have an unordered array of columns. By sorting them
into a 2D array so they are placed according to their
physical position a much better representation of the
environment can be made, and more efficient
algorithms can be used later. If there are two columns
for any position then either the higher or source
column is taken.
Because the columns are stored in order the creation
of pipes is rudimentary. Each column is cycled
through creating pipes in the directions shown in
figure 1 (b). As described in the model section all
possible pipes are created and then checked for
validity later instead of dynamically creating pipes in
each time step.
To increment the system each pipe is cycled through
with the intention of calculating flow. If a pipe’s
cross-section is less than 0 (i.e. the two cells don’t
overlap) nothing occurs, for those that do the flow and
volume to be moved are calculated and the cells are
updated accordingly. The user can choose the
computational time step whereas the display time step
is set to 0.005.

5 Results
Using hydrostatics and drawing on information from
fluid dynamics the model described in this paper is
capable of creating realistic effects for the simulation
of rivers and waterfalls. The speed of the model
depends largely on the number of columns needed to
cover the area and the number of particles in the
scene. For example the simple river scene shown in

figure 3 runs on a 1.4GHz PC without optimizations
at 1 frame every 15 seconds with 13000 columns,

Figure 3. A Simple river with rapids around a
large rock. See video file for more details.

Figure 2. Frames (left to right and top to
bottom) showing cohesion in the particle
(spray) system.

each with 4 cells and just over 3700 particles.
Conversely the forked waterfall in figure 4 takes one
and a half minutes per frame and has 27500 columns,
each with 4 cells and 110000 particles.

The main drawback of the current model is the lack of
viscous shear forces which is needed for creating
eddies and visual effects such as shockwaves around
rocks and near the edges of the river. Also we haven’t
yet incorporated spray from water particles hitting
columns too hard. In reality this often causes a semi
permanent area of white water and mist around the
base of a waterfall.

6 Conclusion
Using hydrostatics and fluid dynamics our model is
capable of creating recognizable effects for the
simulation of rivers and waterfalls. The speed of the
model depends largely on the number of columns
needed to cover the area and the number of particles
in the scene.
While the representation used here provides only an
indication of the achievable effects and the current
results are not yet rendered photo-realistically, the
way in which the data from each frame is stored
means that integration with a third party renderer
would not be overly difficult. We are currently
implementing more advanced implicit ODE solvers
and current research indicates that this might lead to
an order of magnitude improvement in speed which
gets close to achieving interactive speeds.

7 References
[1] Schachter, B. J., “Long crested wave models”,

Computer Graphics and Image Processing,
12:187-201 (1980).

[2] Neyret, F. & Praizelin F., “Phenomenological

Simulation of Brooks”, Computer Animation and
Simulation, pp 53-64, September (2001).

[3] Reeves, W.T., “Particle Systems – A Technique

for Modelling a Class of Fuzzy Objects”.
Computer Graphics, 20(3), pp 359-376, July
(1993).

[4] Sims, K., “Particle Animation and Rendering

Using Data Parallel Computation”, Computer
Graphics (Proceedings of SIGGRAPH ’90),
24(4), pp 405-413, August (1990).

[5] Miller, G. & Pearce, A., “Globular Dynamics: A

Connected Particle System for Animating
Viscous Fluids”, Computer & Graphics, 13(3), pp
305-309 (1989).

[6] Kass, M. & Miller, G., “Rapid, Stable Fluid

Dynamics for Computer Graphics”. Computer
Graphics (Proceedings of SIGGRAPH ’90),
24(4), pp 49-57, August (1990).

[7] O’Brien, J.F. & Hodgins J.K., “Dynamic

Simulation of splashing fluids”, Proceedings of
Computer Animation ’95, pp 198-205 (1995).

[8] Mould, D. & Yang, Y.H., “Modeling Water for

Computer Graphics”. Computer & Graphics,
21(6), pp 801-814 (1997).

[9] Chen, J.X. & Lobo, N., “Towards Interactive-rate

Simulation of Fluids with Moving Obstacles by
Navier-Stokes Equations”. CVGIP: Graphical
Models and Image Processing, 54(3), (1995).

[10] Enright, D., Marschner, S. & Fedkiw, R.,

“Animation and Rendering of Complex Water
Surfaces”. Computer Graphics (Proceedings of
SIGGRAPH ’02), pp 736-744 (2002).

[11] Foster, N. & Fedkiw, R., “Practical Animation of

Liquids”. Computer Graphics (Proceedings of
SIGGRAPH ’01), pp 23-30 (2001).

[12] Thorton, E. & Guza, R., “Energy Saturation and

Phase Speeds Measured on a Natural Beach”.
Journal of Geophysical Research, 87(12), pp
9499-9508 (1982).

[13] Badger, W. & Banchero, J., Introduction to

Chemical Engineering, McGraw-Hill (1955).

[14] Stein, C. & Max, N., “A Particle-Based Model for

Water Simulation”, Technical Report UCRL-JC-
129378, Lawrence Livermore National
Laboratory, http://www.llnl.gov/tid/lof/docu
ments/pdf/ 233792.pdf, visited on 16/08/2003.

[15] Witkin, A., “Particle System Dynamics”.

SIGGRAPH ’94 Course Notes (1994).

Figure 4. A forked waterfall
(See video for details).

