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Abstract 
Water phenomena are some of the most visually spectacular effects found in nature. This paper presents a novel 
efficient hybrid method to model turbulent water such as fast flowing rivers and waterfalls with the intent that 
the model can be used as part of a larger environment or scene. The model presented uses hydrostatic theory to 
incorporate a 2D height field and a particle system to model respectively the main volume and spray of turbulent 
water. The user is able to submit any environment formed from spheres and panels making the solution very 
flexible and adaptable. Our results show that the model provides a nearly realistic simulation of turbulent water 
and for simple scenes interactive speeds are possible which compares favourably with alternative techniques. 
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1 Introduction 
The complexity and power of water flow in nature is 
both impressive and beautiful. It is also a part of our 
everyday lives and so well known to the human per-
ception that unrealistic motion is easily discernable.  
It is no surprise therefore that much effort has been 
applied in computer graphics to try to capture water in 
a convincing way. This is far from trivial as most 
phenomena can be attributed to complex molecular 
interactions that occur trillions of times a second, and 
as such are beyond the modelling power of today’s 
computers. Instead it is the goal of computer graphics 
to produce models with an underlying basis in 
physical principles that create, as accurately as 
possible, a large scale approximation of these local 
interactions. 
As research in this area has evolved models have 
moved from only being able to represent certain 
effects, such as the motion of deep water waves to the 
exclusion of all else, to more general models with a 
firmer basis in hydrodynamics capable of realistic 
motion that follows expected behaviour in a range of 
situations. These more recent models allow animators 
to specify environments and start conditions and the 
model will do the rest. 
The purpose of this work is to build a general model 
with a focus on the natural movement of rivers, rapids 
and waterfalls. As such turbulence, spray, and the like 
should be accounted for while not being treated as 
special cases.  
While not yet being complete and fully realistic, our 
model has been able to produce results that show its 
potential. 

2 Previous Work 
The earliest work on modelling water in computer 
graphics used mathematical models and explicit 

functions to model surface behaviour. Some, while 
obeying physical equations, were very inflexible 
outside their intended scope such as the modelling of 
deep sea waves by Schachter [1] while others tried to 
model surface phenomena in 2D velocity fields [2]. 
Later work introduced rudimentary particle systems. 
Initially particle interaction was ignored and particles 
simply bounced around the environment [3][4]. This 
produced reasonable effects for waterfalls and other 
instances where particle movement had enough 
energy to break the molecular level bonds as needed. 
In particle systems the equations for interaction can 
be complex and computationally expensive as each 
particle may be affected by every other resulting in a 
computational complexity of O(n2) which is 
unacceptably slow when dealing with hundreds of 
thousands of particles. However, without inter-
particle forces volumes of water can not be modelled 
well and the usually identifiable effects of adhesion 
and cohesion are missing. Some of the work at 
modelling these effects includes Miller and Pearce’s 
[5] connected particle system which used forces to 
imitate soft collisions based on the difference in 
particle’s positions. This works well for viscous 
fluids, as intended by the authors, but is unsuitable for 
the number of particles or scale necessary to model 
large bodies of water. 
Kass & Miller [6] introduced column systems which 
use simplified flow equations, based on hydrostatics, 
between columns and treat the water volume as a 2D 
height field. This implicitly allows for the modelling 
of surface phenomena such as waves and can 
efficiently model large bodies of water. O’Brien & 
Hodgins [7] extended this model by incorporating the 
interaction with external objects and splashes. 
However, a column’s height is still represented by one 
height variable meaning that vertical isotropy is 
assumed and only very simple (flat) environments can 
be used. Mould & Yang [8] furthered this work by 



dividing each column into a user defined number of 
cells, relaxing the assumption of vertical isotropy. 
Another improvement was made by allowing for more 
complex environments. Even with the use of cells, 
however, column systems are still only a two and a 
half dimensional model at best and many effects such 
as the curling of waves cannot be reproduced. There 
has also been some work at applying the 2D version 
of the Navier-Stokes equations to column systems [9]. 
The most recently developed simulation methods use 
the full Navier-Stokes equations to compute motion in 
a 3D grid of voxels, examples of which can be found 
in Enright et al. [10] and Foster & Fedwik [11]. The 
solution is very expensive but also creates the most 
realistic effects. It is obtained by calculating the 
velocity of flow out of the 6 faces of each voxel using 
the pressure, temperature etc. of each voxel. By 
calculating which voxels contain water, objects, or 
air, extremely realistic simulations are obtained for 
complex environments. This method has been used in 
movies such as Shrek and its difficulty is perhaps 
illustrated in Jeffrey Katzenberg’s statement that the 
pouring of milk into a glass was the hardest shot in 
the movie [10][11]. This approach does have its 
limitations of course with perhaps the largest being 
the loss of information within cells, meaning that the 
grid size plays an overly important role in the 
accuracy of the model. 

3 A Hybrid Model for Turbulent 
Water 

Initial tests with a particle only model showed that the 
computation time for such a system is prohibitive for 
large bodies of water. Instead we chose to use 
different systems for spray and volume to create a 
faster and more believable model. 

3.1 Volume Model 
Continuing the work of O’Brien & Hodges and Mould 
& Yang [7][8] the volume model, representing the 
main body of water in our model, is a column based 
system. Using columns holds the advantages of easy 
surface creation as the top of all columns are known 
and less flow calculations are needed so the system is 
less computationally intensive. 
Our model divides the environment into equally sized 
squares which form the base of columns as in figure 
1. All columns start with a user defined height which 
then varies over time dependent on the calculated 
flows. Source and sink columns are the only ones to 
retain their heights allowing for in and out flows to 
the system. Pipes are then created between each of the 
eight adjacent columns and each cell that could 
overlap during the course of the simulation. Pipes are 
also created between the cells of one column and the 
air above the adjacent columns. At this point the 
system is ready to begin simulation. 
The underlying basis for the flow equations that are 
used in this simulation is the science of hydrostatics, 

which describes the pressure of fluids at rest. The 
equations related with this approach are simple, both 
to understand and to compute, and as a result are easy 
to implement. 
For any column in the grid the hydrostatic pressure 
can be calculated from the equation  
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which is based on the work of Bernoulli and where Q 
is the total pressure, h the height of the column, g the 
acceleration due to gravity, ρ the density of the fluid, 
v the velocity of flow, p0 the air pressure and E the 
pressure arising from external forces which together 
form the pressure energy term. In this case the height 
of the column is the height above some arbitrary point 
in the world so long as the same point is used for all 
columns.  
Using the pressure differences between cells it is 
possible to calculate the acceleration and from that the 
flow that should occur between cells. The final 
equation for the flow velocity (η) through a pipe is 
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where l is the pipe length, f is a friction coefficient (as 
suggested in [8]), and η0 is the flow in the previous 
time step. An interesting point to note is the lack of 
any viscosity parameter in this equation. This is 
because one of Bernoulli’s assumptions is that the 
distances between points of measurement are so small 
that viscous losses are negligible. Instead the friction 
coefficient used allows energy to slowly escape from 
the system. While not physically justified this 
parameter serves as an ad-hoc method of including 
viscosity and we found that setting it to 0.995 gave 
good results in our examples. 
Using the flow calculated for the pipe the volume of 
water that should be moved through it is calculated 
by: 

ctV η∆=  
where c is the cross-sectional area of the pipe, or the 

a) Environment 
before columns 
are generated. 

b) Top down view 
with environment 
split into grid for 
columns. 

c) Columns after 
generation with 
initial heights. 

Figure 1. Column Generation from environment. 
Arrows indicate position of some pipes. 



amount of overlap between the cells. Because mass is 
to be conserved the volume removed from one 
column is the same as that added to the other. Care 
must also be taken not to allow a volume of less than 
zero to occur. 
This system is very fast considering the mass of water 
that is being represented but there are several 
problems. 
Columns pose a problem as a representation because 
one of the classical characteristics of turbulence is that 
it is a three dimensional feature [1]. While using the 
‘cells’ given by Mould & Yang relaxes the assumption 
of vertical isotropy this goes a long way to explaining 
some of the model’s inability to simulate certain 
situations. A second problem arises from the fact that 
turbulence is a feature of flow and not of the fluid ‘at 
rest’. This means that while hydrostatics may be easy 
to use the equations generated for flow are incomplete 
and ignore many of the visible characteristics of water 
such as viscous shear stresses. This is perhaps the 
largest flaw in the model and something that lends 
itself to further research 

3.2 Spray Model 
The spray model is used to model water as it breaks 
free of the main volume of water. There is no easy 
physical solution to when spray should be created and 
as such assumptions must be made instead. Earlier 
work with column systems were concerned mainly 
with generating splashes from hitting objects and as 
such used vertical velocity thresholds for generating 
spray. Because we also want to model waterfalls our 
assumptions use research about the heights of wave 
crests before they become unstable (when the wave 
height is 0.78 of the water depth) [12]. This obviously 
allows waterfalls to form easily but also works for 
rapids as large flow velocities form ‘spikes’ of water 
that while erroneous are then turned into spray due to 
their large heights.   
The spray system begins its evolution when particles 
are generated. First the number of particles (or 
volume) needs to be determined. Using the formula to 
calculate flow through a weir [13] it is possible to 
determine the required flow rate and hence volume: 
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where B is the base length, H the height and g the 
acceleration due to gravity. The volume to pass 
through in this time step is then given by flow rate * 
time step. This determines the number of particles to 
be created as all those generated are of a user defined 
volume except the last which needs to be the 
remainder of volume to be moved as mass must be 
conserved and not created. Depending on the scale 
and resolution of the model being used this can be set 
to achieve the best looking results. The position of the 
particles is also easily determined and is set at a 
random position in the face that the particle is being 
generated from. The final initial variable that is 

needed for each particle is velocity which is generated 
from the flow rate equation above. In this case the 
velocity of flow through a column’s face is found to 
be flow rate / face area. Flows within the column 
structure may mean the velocity should not be 
perpendicular to the front of the face; to account for 
this the average flow from surrounding columns is 
used to give a direction to the scalar velocity 
calculated above. 
In many cases the velocity imparted to the particle 
should not only be horizontal but also include an 
initial vertical velocity. To do this the difference in 
total height between the column for which particles 
are being generated and the column behind is used in 
the classic formula 
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Where v is the current velocity, u is the initial 
velocity, a the acceleration, in this case gravity, and s 
the distance covered. While only an approximation 
this approach does manage to provide a more 
believable representation. 
One of the methods that were initially considered to 
help create the illusion of water pooling and 
incompressibility was the use of cohesion. 
Intermolecular bonds are simulated by creating small 
forces between water particles which attract and repel 
neighbours in the effort of keeping an optimal 
distance apart. However, we found that using 
cohesion within the particle system is inefficient and 
inaccurate. Furthermore other authors suggest that 
cohesion is unnecessary due to the water’s low 
viscosity so long as the movement is turbulent, such 
as is the case with spray [4][14]. Consequently this 
extension was excluded when the particle and column 
systems were combined and the only active force 
during a time step is gravity.  
It remains to deal with the collision detection for 
particles. Collision detection with the water volume 
boundary is explained in the next section. It remains 
to handle particle collisions with columns.  
After calculating which column the particle is above 
(or within), the particle’s y-coordinate value is tested 
to see if it should be absorbed into the column. 
However, simply increasing the column’s volume and 
destroying the particle was found not to be accurate 
enough as this can force the column’s height up, often 
absorbing more particles in the process. While this is 
not a problem for small scale splash effects 
considerable problems occur when modelling, for 
example, waterfalls where there are many particles 
hitting at any one time. After trying to spread the 
volume of a colliding particle over several columns it 
was found that by instead modelling the force of 
impact and subsequent pressure increase in the 
column not only was the problem reduced but more 
realistic effects were generated. The equations used 
are the same as for external objects colliding with the 
water presented in Mould and Yang. The force on the 
object consists of two terms: 

gVvF ρµ −−=  



where v is the velocity of the object, µ is the viscosity, 
V the volume of water displaced, ρ the density of the 
fluid and g the acceleration due to gravity. The first 
term describes the force of the fluid on the particle 
and the second is the force due to buoyancy. Because 
the forces on the fluid must be equal but oppositely 
orientated to that on the water droplet, this formula 
can then be used to determine the force on the 
column. Using the formulas: 
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we can calculate the resultant pressure of this force on 
the column, stopping it from rising unrealistically. 

4 Implementation 
The previous section presented the underlying physics 
of our modelling approach. This section explains 
several  implementation details. 

4.1 Particle System 
Particles have a position, velocity, and mass but no 
volume. They can be affected by forces, either from 
outside the system or from other particles and can 
represent anything from rigid structures to fluids (as 
described earlier). 
Our particle system is based on the work by Witkin 
[15] and was written as general as possible to allow 
for later extensions. All forces and environmental 
constraints are represented by interfaces that can be 
implemented as required. The system itself 
implements the interface required by the solver and as 
such represents itself as a point moving through 6n 
dimensional space where n is the number of particles 
and the position and velocity of each particles is 
represented by a 6-dimensional vector. The derivative 
of each particle’s state vector [x1,x2,x3,v1,v2,v3] is 
[v1,v2,v3,f1/m,f2/m,f3/m] where f is the force acting on 
the particle. By representing the system as a point in 
6n-dim space, all forces between particles can be 
applied simultaneously so that the system stays 
consistent for each time step.  
Solving for a particular time step begins with the 
system calculating the initial forces acting on the 
particles. The particle system can then pass itself to 
the solver method of choice. Because the solver views 
f(x,t) as a black box (i.e. doesn’t know how the 
function is evaluated) it calls back for solutions at 
intermediately positions. At these points the system 
recalculates the forces and responds appropriately. 
After the new positions and velocities are determined 
collision detection with the environment is performed. 
Panels defined in the environment file are used as 
boundary conditions to stop particles escaping. While 
any parallelogram is allowed as a panel it is important 
to note that the collision detection used here is only 
valid for rectangles. To find if a particle has passed a 
panel our algorithm checks first using the following 
formula which side of the panel the particle is on: 

0)( 1 ≤•− nVP  
where P is the particles position, V1 is one of the 
vertices of the panel and the unit normal of the plane 
on which the panel rests. A further check is necessary 
to see if the particle also lies within the rectangle 
described by the panel. If the four conditions below 
hold true then the point is within the parallelogram. 
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Where P is the particle’s position and V1 through V4 
are the four vertices of the rectangle in anticlockwise 
order. This is a simplification of the equation to check 
which side of a line a point is. As the sign is the only 
thing we are interested in it is more efficient to 
disregard excess calculation. 
A final check is made to ensure the particle is not 
‘legally’ on the other side of the panel. By tracing the 
particles path back one time step and checking that 
the old position was ‘correct’ it can be assumed that 
the particle has indeed hit the panel. 
As described in the previous section particles also 
have to be tested as to whether they have hit the main 
volume of water. Because columns are stored in a 2D 
array in their physical order it is very easy to 
determine which column a particle is directly above.  
The system’s minimum x and z points are stored as 
global variables so it is simply a matter of finding the 
difference between the particle’s position on the x/z 
plane and the system minimums and scaling by the 
resolution, i.e. 

resolutionPindex iii ×−= )min(  
where index is the array index, P the particle’s 
position, min the minimum value for the system and 
resolution the number of columns per unit length. If 
the particle is outside the bounds of the column array 
or its vertical position (y coordinate value) is below 
all columns in the system the particle is destroyed. 
Otherwise it is absorbed into the volume model as 
described previously. 
Finally each particle is checked to ensure it hasn’t 
exceeded its lifetime after which the particle system 
clock is increased by the time step given and the 
system is again deemed stable. 
Initially, when the particle system was being used 
exclusively, it was considered appropriate to try to 
model cohesion between the particles to mimic 
molecular interaction. The first attempt was to apply a 
simple spring with a limited area of effect. This spring 
forced particles towards an equilibrium situation. This 
then evolved through the application of the work done 
by Miller & Pearce [5] to that shown in figure 2. 
These forces were not found to be appropriate 
however as they made the fluid appear too viscous to 
be believable for water. They were also very slow. 



4.2 Column System 
As discussed above the volume model follows that 
used by Mould & Yang [8] closely. Before the system 
can be used columns must be generated from the 
environment specified and pipes must be created 
between all adjacent. 
Using the same environment file format as that 
originally used for the particle system, each shape is 
cycled through checking if columns should be 
created. Spheres, used to represent rocks and 
obstacles are considered first. For each sphere in the 
environment a cross-section along the xz-plane is 
used. Taking the lower left corner of a bounding 
rectangle each possible column position is checked to 
determine if it is within the cross-section. For this an 
approximation is used where each corner is checked 
to see if it is inside, if two or more corners are inside 
then a column is created in that position. The base 
height of each column created is found by 
determining the height of the centre as it would be 
projected onto the sphere. 
Each panel is also cycled through to create columns 
although, unlike spheres, each panel can serve one of 
three different purposes. If the area, on the xz-plane, 
is zero and the panel is not a source panel it is treated 
as a boundary panel for particle collision detection 
and is stored for use as such. Source panels also have 
no area but columns are still created along the line 
described by the first and second vertices. These 
columns have an initial height equal to the difference 
between the first and third vertices’ y values which is 
kept regardless of outflows. However, most panels act 
in much the same way as all spheres by providing the 
ground environment for the column system. 
Once again finding the bounding rectangle into which 
the projection of the panel onto the xz-plane fits, each 
possible column position is checked as to if a column 
should be created there. To do this opposite corners of 
the column position are tested as to whether they are 
left of the lines formed by V1 and V2, V2 and V3, V3 
and V4, and V4 and V1. Each time a score is 
incremented for each corner to the left of each line, if 
both corners are outside a line then no column is 
created otherwise if the ‘score’ is above six (there was 
a maximum of two lines any corner was outside of) 

then a column is created as appropriate. This method 
is only an approximation but serves well enough. 
After each shape has been cycled through we now 
have an unordered array of columns. By sorting them 
into a 2D array so they are placed according to their 
physical position a much better representation of the 
environment can be made, and more efficient 
algorithms can be used later. If there are two columns 
for any position then either the higher or source 
column is taken. 
Because the columns are stored in order the creation 
of pipes is rudimentary. Each column is cycled 
through creating pipes in the directions shown in 
figure 1 (b). As described in the model section all 
possible pipes are created and then checked for 
validity later instead of dynamically creating pipes in 
each time step.  
To increment the system each pipe is cycled through 
with the intention of calculating flow. If a pipe’s 
cross-section is less than 0 (i.e. the two cells don’t 
overlap) nothing occurs, for those that do the flow and 
volume to be moved are calculated and the cells are 
updated accordingly. The user can choose the 
computational time step whereas the display time step 
is set to 0.005.  

5 Results 
Using hydrostatics and drawing on information from 
fluid dynamics the model described in this paper is 
capable of creating realistic effects for the simulation 
of rivers and waterfalls. The speed of the model 
depends largely on the number of columns needed to 
cover the area and the number of particles in the 
scene. For example the simple river scene shown in 

 

figure 3 runs on a 1.4GHz PC without optimizations 
at 1 frame every 15 seconds with 13000 columns, 

Figure 3. A Simple river with rapids around a 
large rock. See video file for more details. 

Figure 2. Frames (left to right and top to
bottom) showing cohesion in the particle
(spray) system.  



each with 4 cells and just over 3700 particles. 
Conversely the forked waterfall in figure 4 takes one 
and a half minutes per frame and has 27500 columns, 
each with 4 cells and 110000 particles. 

 
The main drawback of the current model is the lack of 
viscous shear forces which is needed for creating 
eddies and visual effects such as shockwaves around 
rocks and near the edges of the river. Also we haven’t 
yet incorporated spray from water particles hitting 
columns too hard. In reality this often causes a semi 
permanent area of white water and mist around the 
base of a waterfall. 

6 Conclusion 
Using hydrostatics and fluid dynamics our model is 
capable of creating recognizable effects for the 
simulation of rivers and waterfalls. The speed of the 
model depends largely on the number of columns 
needed to cover the area and the number of particles 
in the scene.  
While the representation used here provides only an 
indication of the achievable effects and the current 
results are not yet rendered photo-realistically, the 
way in which the data from each frame is stored 
means that integration with a third party renderer 
would not be overly difficult. We are currently 
implementing more advanced implicit ODE solvers 
and current research indicates that this might lead to 
an order of magnitude improvement in speed which 
gets close to achieving interactive speeds. 
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Figure 4. A forked waterfall 
(See  video for details). 


