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Abstract

Scientific data sets frequently consists of many multi-
dimensional variables. Visualizing such data enables the
user to understand and interpret the data. In many in-
stances, however, visualizing multiple individual variables
does not yield sufficient information and hidden structures
can be only be revealed by deriving new measures from
the existing variables. The derivation of new measures is
complicated by the fact that input data may exist in vari-
ous forms, such as discrete data at sample points, analytic
data (in form of a mathematical function) and finite element
data in which variables can be defined in either world or
material coordinates.

This paper proposes a new data structure and accom-
panying user interface which enables the scientist to inter-
actively derive new measures from the underlying data set.
The data structure is efficient in the sense that data values
are only evaluated at positions where they are needed. The
capabilities of our data structure are demonstrated using as
a case study the extraction of the nerve fiber structure of the
brain from diffusion tensor data.
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1 Introduction

Technological advances over the past decade have en-
abled scientist to create ever larger and more complex sets
scientific data. Examples are advanced numerical simu-
lations, satellite measurements and medical imaging data.
Consequently it has become increasingly difficult to under-
stand, analyse and communicate the resulting data sets. Sci-
entific Visualization is an attempt to simplify these tasks ac-
cording to the motto “An image says more than a thousand
words”. Representing scientific data as an image improves

the perception of features and pattern in the data, facili-
tates the navigation through and interaction with complex
and disparate sets of data and improves the communication
of scientific results with peers and the wider community.
The visualization process can be divided into three stages:
Thedata transformation stage converts raw data into a form
more suitable for visualization. The subsequentvisualiza-
tion mapping converts the raw data into a number of graph-
ical entities (visualization icons) which are displayed in the
final rendering stage. The following paragraphs formally
define the termmulti-dimensional data and explain how
such data can be transformed.

A multidimensional data setLn
m consists ofm indepen-

dent variables representing the data domain andn depen-
dent variables defined over the domain. In most applica-
tions the independent variables define a two or three dimen-
sional spatial domain and the data set is simply called 2D
and 3D data, respectively. An additional independent vari-
able can be introduced by considering time. Both dependent
and independent variables can be eitherdiscrete or contin-
uous and can have afinite or an infinite range of values.
Common examples for dependent variables are scalar fields
(n � �) such as temperature, vector fields (n � �) such as
velocity, and symmetric tensor fields (n � �) such as stress.
Many scientific data sets consist of multiple fields defined
over the same domain resulting in a high-order space of de-
pendent variables.

The data transformation step can refer to both the inde-
pendent and the dependent variable. The independent vari-
able can be transformed using, e.g., interpolation, sampling,
and projections. The dependent variable can be transformed
by reducing, modifying or expanding it.

Examples for data reduction techniques are the compu-
tation of vector magnitude, eigenvalues, eigenvectors and
components. Other applicable operators include the dot
product, matrix determinant, evaluating surface curvature
and distance metrics. Data expansion is achieved using a



gradient operator for scalars and a Jacobian for vector data.
Both of these operators give neighbourhood information at
a point and can be utilized to detect local features in a data
set (e.g., extrema, ridges). A more complete listing of data
transformation techniques can be found in [7].

In order to explore a data set efficiently and effectively it
is desirable to interactively choose and create new transfor-
mations. For example, the user might want to compare the
difference in velocity magnitude or flow direction of two
velocity fields. In this paper we present a data structure and
user interface designed for that purpose.

Previous work related to this area seems to be extremely
limited. Bryson et al. [3] describe aField Encapsulation Li-
brary which provides a grid independent interface to grid-
ded three dimensional field data. Moran and Henze [4] and
[8] suggest a tool where new fields can be created from ex-
isting fields using a list of predefined operators. The compu-
tation is efficient in the sense that the new field is only com-
puted at data point where it is needed. However, only fields
defined over the same grid can be combined. Our work al-
lows the combination of fields from different domains and
permits a more powerful variety of derived fields. Further-
more, since we don’t interpolate sample values but use the
representation of the underlying source field, the resulting
field values are more accurate.

The next section explains our field data structure and is
followed by a presentation of the accompanying user inter-
face. We conclude with a case study demonstrating the ca-
pabilities of our data structure.

2 The Field Data Structure

In order to unify different field representations we re-
quire that the domain of the entire data set (themodel) is
a finite element mesh. This requirement was motivated by
our work in bioengioneering where finite element models
are common. Employing the material coordinate system of
a FE model leads to more efficient and accurate visualiza-
tions [7]. Note that this prerequisite does not limit the range
of input data sets since, for example, the domain of a math-
ematical function or MRI data set can be represented by a
single trilinear interpolated cuboidal element enclosing the
region of interest.

The geometry of afinite element (FE) model is defined
by coordinates and interpolation functions. This is achieved
by first specifying a parent element (figure 1 (a)), which in
2D is a square in�-parameter space. The coordinates�i
(� � ��� �� � �) are called the element ormaterial coor-
dinates. The value of some variableu (e.g., temperature)
at the material coordinates� is then specified by interpo-
lating the variablesui and, depending on the degree of the

interpolation, its derivatives in�j-direction
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Figure 1. A Biubic Finite Element.

try of an element in world coordinates (figure 1 (b)) is then
obtained by specifying the world-coordinatesvi and the�j-

tangents
�

�v
��j

�
i
�i � �� � � � � �� j � �� �	 of the element

vertices and interpolating them.
When combining fields specified in different coordinate

systems (ie. world coordinates (x,y,z) or different material
coordinates) a mapping between coordinate system must be
accomplished. The mapping from material to world coordi-
nates is achieved by using the finite element interpolation.
The reverse mapping requires a multi-dimensional Newton
method. We found that 3 iterations are usually enough to
find a material point inside an element for a given point in
world coordinates.

This theoretical background allows us now to define
fields with differently defined domains and to combine them
using various operators. Our data structure consists of an
abstract field class that is first subclassed into a (symmet-
ric) tensor field, a vector field, a scalar field, and a gen-
eral n-d field class as shown in figure 2. These classes
contain attributes and methods common to their subclasses.
For example, for every symmetric tensor field the algorithm
to compute eigenvectors and eigenvalues is identical, and
for every vector field it must be distinguished whether it is
signed or unsigned. All of these classes are then subclassed
into defined fields, derived fields, analytic fields, or expres-
sion fields.

A defined field is associate with a sampling grid and a
set of interpolation functions. The interpolation functions
chosen for a derived field depend on the spatial variation
and continuity requirements of the field. In particular the
interpolation functions for derived fields are not necessarily
the same as the ones used to interpolate the geometry of the
underlying model.

A derived field is associated with a parent field and con-
tains a function specifying how a field value is derived from
the corresponding parent field value. As an example con-
sider an eigenvalue field which has a tensor field as a parent.
The eigenvalue field contains a link to the associated tensor
field, a variable specifying whether the major, medium, or
minor eigenvalue is selected and a method to compute the



eigenvalue at a point. Other examples of derived fields are
eigenvector fields (major, medium, or minor), vector length
fields, vector angle fields (specifying the angle with any
of the world or material axes), gradient fields, and vector
and tensor component fields. For most FE models the user
is interested in the components of a tensor with respect to
the material coordinate system of the model so that a ba-
sis transformation is performed if the tensor is defined with
respect to a different coordinate system.

Figure 2. Top-Level class diagram of the field
data structure.

Figure 3. Class diagram of (a subset of) the
scalar field data structure.

An analytic field is specified by an algebraic function
defined over a domain in world coordinates or element co-
ordinates. This type of field proves useful when creating
test cases for our visualization algorithms and can be used
in applications where the analytic solution to a problem is
known.

Finally an expression field contains an arithmetic expres-
sion tree where the leaves are numeric constants or are fields
themselves.

Figure 3 demonstrates the subclassing of the field data
structure in figure 2 by showing a subset of the scalar field
class hierarchy. Note that the computation of the gradient
function is implemented in subclasses since the most suit-
able computational method depends on the type of field. For

a regular trilinearly-interpolated sample grid finite differ-
ences can be employed, for analytic functions a numerical
approximation can be used and for higher-order finite ele-
ment meshes the derivatives of the interpolation functions
can be used to get the coordinate derivatives of the field.

The advantages our field data structure are threefold:

� we eliminate problems with the interpolation of de-
rived values. For example, directly interpolating the
eigenvalues of a tensor over a finite element gives usu-
ally the wrong results. Instead we rather interpolate the
tensor and compute the eigenvalues from the resulting
tensor.

� we can combine arbitrary fields through arithmetic
functions (e.g., the difference between two scalar
fields) even if they are defined over different grids.
Similarly, we can interactively derive new fields by
choosing a parent field for a derived fields.

� No additional sample errors are introduced as would
happen, for example, if sampling an analytic field in
order to create a new field over a fixed grid structure.

� Entities defined over a finite element grid can be repre-
sented with respect of either the world coordinates or
the material coordinates. This choice of representation
increases the power of the visualization (see [7]).

The disadvantage of the described field structure is that

� the computation of a derived field value is slower than
if the field values were precomputed at sample points.

3 Graphical User Interface

The graphical user interface for our field creation tool
was implemented using FLTK, a LGPL’d C++ graphical
user interface toolkit for X (UNIX), OpenGL, and WIN32.
It forms part of a visualization toolkit we designed for visu-
alizing biomedical datasets and models [7].

Figure 4 shows on the left the user interface used for con-
trolling the fields and visualization of a model. The right
hand side of the figure shows the user interface for creat-
ing a new field. The three output text components on the
top list the currently defined scalar, vector and tensor fields.
The user can create a new field by inputting a simple mathe-
matical expression. Currently an expression can contain the
following components:

Scalar field expressions for selecting eigenvalues and
components of tensors, components of vectors, numer-
ical constants, binary operators (+,-,*,/,ˆ), unary opera-
tors (sin, cos,...), vector length, trace, angle of a vector
with x,y,z,��,��, or ��-coordinate axis.



Vector field Expressions for selecting eigenvectors of a
tensor, gradient of a scalar field, binary operations (+,-
,*), vector constants.

Tensor field binary operations (+,-,*), tensor constants.

We have also implemented a conditional expression
switch��cond���field������default�fieldN�.
Currently the conditions are restricted to boolean expres-
sions containing scalar fields and comparison operators
only. The next section demonstrates how such an expres-
sion can be used for the visual segmentation of an image.

Figure 4. The control window for a model visu-
alization (left) and the user interface for cre-
ating new fields (right).

Figure 5. The visualization of the field defined
in figure 4 (left) and the user interface used to
edit an expression field (right).

The left part of figure 5 shows a visualization obtained
by using the field in figure 4. If the user is not satisfied with
the result the expression field can be edited in the modifica-
tion window shown on the right of figure 5. Using the up-
date button of the model control (figure 4 left) the user can
recompute any visualization icons dependent on that field.

Expression fields also offer a convenient way to create
visualizations for multiple versions of a fieldF. In order to
do this define a new fieldE equal to one version of the field
F and useE to derive other fields which are then visualized.
If we want to visualize a different version ofF, sayF’, it’s
sufficient to setE equal toF’ and to update all visualization
icons. This property is useful, e.g., when comparing visu-
alizations for raw and smoothed versions of the same data
set.

Figure 6. Defining a macro and using it to cre-
ate a new field.

Frequently used expressions can also be saved as a macro
and the macro name can then be used during field creation.
An example is given in figure 6.

4 Case Study: Visualizing the Nerve Fiber
Structure of the Brain

One recent advance in medical imaging has been the in-
troduction of diffusion tensor imaging (DTI) which allows
the measurement of water diffusion in the brain [1]. The
diffusion tensor describes the spatial distribution of water
molecules originating at a common location. Since the dif-
fusion of water depends on the micro-structure of the tis-
sue, visualizing the diffusion tensor field improves the un-
derstanding of the anatomy and the physiology of the brain.
The results can be used in surgical planning, cognitive sci-
ences, and the diagnosis and treatment of various white and
gray matter disorders [5]. Extraction and visualizing the
nerve fiber structure from the DTI data also represents a
valuable teaching tool.

DTI uses diffusion weighted MR imaging (DWI) and
almost completely suppresses water in blood vessels [Pe-
ter Basser, May 2000, private communication]. It there-
fore measures the diffusion of cerebral spinal fluid (CSF)
and fluid within the tissue. The results of the measurement
are the six components of the symmetric diffusion tensor
D and theT� weighted signal intensity in the absence of
diffusion sensitization. Images of water diffusion can pro-



vide pathophysiological information complementary toT�

andT� weighted MRI images. The technique is sensitive to
movements of the order of a few microns and is described
in more detail in [1, 5].

In the brain DTI can be used to differentiate two types of
structures. Fluid filled compartments are characterized by
a very highisotropic diffusion, i.e., the diffusion is similar
in all directions. In contrastwhite matter consists of nerve
fibers which restrict the diffusion to one direction only due
to the presence of cell membranes and myelin sheaths sur-
rounding the axons. Fiber tracts, consisting of parallel nerve
fibers, are therefore identified as areas of a high anisotropic
diffusion. The orientation of such fiber tracts is determined
from the principal directions (eigenvectors) of the diffusion
tensor. Finallygray matter consists of neural cell bod-
ies, support cells, intermingling nerve fibers and connecting
contacts, and is characterized by a low, isotropic diffusion.

Introducing scalar measures for the above diffusion
properties makes it possible to gain in vivo information
about the anatomy, microstructure and physiology of the
brain. In order to derive these measures it is convenient to
order the three eigenvalues of the diffusion tensorD by size
with �� being the biggest and�� being the smallest [5]. The
maximum diffusivity is then given by�max � ��. A high
isotropic diffusion can be measured by themean diffusivity
[1] which is defined as the average eigenvalue of the dif-
fusion tensor and is efficiently computed by using the first
tensor invariant

�mean �
�� 
 �� 
 ��

�
�

D�� 
D�� 
D��

�
(1)

The diffusion anisotropy is measured by [2]

�anisotropy � ��D��meanI	
T �D��meanI		��

�

mean (2)

Note that both expressions can be efficiently calculated
without computing the eigenvalues and eigenvectors.

Alternative measures have been proposed by Westin et
al. [6]. The authors define alinear isotropy cl, a planar
isotropy cp, and anisotropy cs as

cl�
�����

��
��
��
; cp�

�������	

��
��
��
; cs�

���
��
��
��

(3)

The measures fall in the range��� �� and sum up to 1 and
define therefore a barycentric space of anisotropies.

Using our field creation tool we can interactively define
and experiment with various diffusion measures. Figure 7
(a) shows a visualization of the mean diffusivity. The yel-
low and red coloured regions indicate fluid filled compart-
ments. Part (b) of the figure shows a visualization of the
diffusion anisotropy. The following white matter structures
are indicated by numbers: Genu (1) and splenium (2) of the
corpus callosum, genu (4), anterior limb (5) and posterior

limb (3) limb of the internal capsule, external capsule (6),
fornix (7), and optic radiation (8). The dark blue coloured
region enclosed by the corpus callosum and the internal cap-
sule represents the thalamus and the lateral ventricle. The
yellow dot in its centre is the fornix. The anisotropic re-
gions in the periphery of the brain are due to eddy currents
induced in the gradient/magnet system during DTI [5].

Figure 7. Horizontal slice showing the mean
diffusivity (a) and diffusion anisotropy (b).

Regions of gray matter, white matter, and CSF can be
displayed simultaneously using the segmentation function

�segmented �

����
���

� if �anisotropy � ���

� if �mean � ����

� if �mean � ���� and�anisotropy � ���

� otherwise

Figure 8. Horizontal slice coloured using a
segmentation function (a) and a barycentric
colour map (b).

The conditions for the values 1,2, and 3 are chosen so that
they indicate white matter, CSF and gray matter. Figure 8
(a) shows the resulting segmentation using the colours red,
green and blue, respectively. In contrast to the previous im-
ages this image allows the identification of the thalamus as
the two blue region between the lateral ventricle in green
and the internal capsule in red. The function is implemented
using a conditional expression. The user can interactively
adjust values to improve the segmentation result.



Finally we can also visualize nerve fiber tracts by inte-
grating streamlines in the direction of the maximum diffu-
sivity in regions of high diffusion anisotropy. Since simi-
lar diffusion properties can occur due to noise or eddy cur-
rents the maximum diffusivity at any step during the stream-
line integration must exceed a certain predefined minimum
value and the streamline must exceed a specified minimum
length [7]. An example is given in figure 9. In order to im-
prove perception of the 3D geometry we generate stream-
tubes by fitting a cylinder with constant radius around each
streamline. In order to reduce complexity the maximum
number of streamtubes intersecting a cell is limited to eight.

Figure 9. Fiber tracts visualized using cylin-
drical streamtubes colour mapped with the
diffusion anisotropy.

5 Conclusion

Scientific data sets are continuously increasing in size
and complexity. In this paper we presented a field data
structure, which allows the user to interactively derive new
measures in order to reveal structure in the data. The data
structure is efficient in the sense that derived measures are
only computed when required for the chosen visualization
icon.

In contrast to previous research efforts our data structure
allows the combination of different field types. A graphi-
cal user interface enables the user to define new measures
as simple mathematical expression. Conditional expression
can be used to visually segment data.

We demonstrated the capabilities of our data structure by
visualizing the diffusion tensor field in a brain. By defining

appropriate measures we visualized anatomical structures
hidden in the data. We intend to use our visualization envi-
ronment for the exploration of various white matter diseases
and hope to gain new insight into the progress of neurode-
generative diseases by employing the presented techniques.
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