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Abstract

Scientific Visualization is the process of transforming nu-
meric scientific data into an image or images that, when
presented to a human observer, convey insight or under-
standing of the data. The process is often described by
means of a visualization pipelinethat involves the stages of
transforming the data into an intermediate representation,
mapping the results into graphical entities termed visualiza-
tion iconsand displaying them. In this paper we extend the
traditional pipeline model to include two additional stages
that take place within the observer: visual perceptionby the
visual system and cognitionby the human brain. We review
the literature on the human visual system focusing on is-
sues relevant to scientific visualization, such as preattentive
processingand suggest a classification of visual attributes
according to information accuracy, information dimension
and spatial requirements. Using this schema we show how
concepts from human visual perception and cognitive sci-
ence are related to the visualization process and how this
relationship can be utilized for creating more effective visu-
alizations of scientific data sets.

Keywords: Scientific visualization, Human visual per-
ception, visual attributes, visualization icons

1. Introduction

A multidimensional data setLn
m

consists ofm indepen-
dent variables representing the data domain andn depen-
dent variables defined over the domain. In many applica-
tions the independent variables define a two or three dimen-
sional spatial domain and the data set is then referred to as
2D and 3D data, respectively. An additional independent
variable can be introduced by considering time. Both de-
pendent and independent variables can be eitherdiscrete or
continuous and can have afinite or aninfinite range of val-
ues. Common examples for dependent variables are scalar

fields (n = 1) such as temperature, vector fields (n = 3)
such as velocity, and symmetric tensor fields (n = 6)
such as stress. Many scientific data sets consist of multi-
ple fields defined over the same domain resulting in a high-
order space of dependent variables. Scientific visualization
is the process of representing multi-dimensional data by an
image (thevisualization) in order to improve its compre-
hensibility. The visualization process can be divided into
three stages [7]: Thedata transformation stage converts
raw data into a form more suitable for visualization. This
can involve resampling, data type changes, subset creation,
and the derivation of new quantities. The subsequentvisu-
alization mapping converts the raw data into a number of
graphical entities (visualization icons) which represent one
or more dependent variables over the whole or a subset of
the domain. The finalrendering stage displays the visual-
ization either on a screen or by printing.

In order to increase the information content of a visual-
ization it is important to understand how the rendered image
is perceived and interpreted. We therefore denote the tra-
ditional visualization pipeline as a data encoding step and
extend it by a data decoding step consisting ofvisual per-
ception andcognition.
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Figure 1. A visualization schema

The resulting visualization schema is shown in figure 1.
The encoding and decoding step of our schema are con-
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nected viavisual attributes such as geometry, position, and
color, andtextual attributes such as text and symbols which
themselves are represented by simple visual attributes. A
visualization is effective if the decoding can be performed
efficiently and correctly. “Correctly” means that perceived
data quantities and relationships between data reflect the ac-
tual data. “Efficiently” means that a maximum amount of
information is perceived in a minimal time.

The biggest challenge in visualizing multidimensional
data is that the visualization has to be displayed on a two-
dimensional screen using colour as an additional output di-
mension. Animating a visualization introduces an addi-
tional output dimension which is frequently reserved for the
independent time variable. Using the characteristics of hu-
man visual perception it is possible to simulate additional
output dimensions. A third spatial dimension is obtained
by using stereoscopic techniques or by using pictorial cues
to simulate depth perception (see section 2). Several au-
thors refer to texture as an independent output dimension
which makes use of the brain ability to identify patterns.
In addition the perceptual colour space is three-dimensional
though limitations in human colour vision restrict its full
usage and usually only two output dimensions, such as hue
and lightness or hue and saturation, are employed.

We claim that an understanding of the human visual per-
ception is important for the successful design and assembly
of visualization icons to a scene. In the next sections we
give an overview of human visual perception with particu-
lar emphasis on visual attributes and then explain how the
results can be applied in order to create more effective visu-
alizations.

2. Human Visual Perception

The human visual system consists of the eye which con-
verts incoming light into nerve signals, the visual pathway,
which transmits these signals and the visual cortex in the
brain which interprets visual information. Visual informa-
tion is processed by three types of nerve cells, which are
sensitive to colour and contrast, edge detection, and orienta-
tion and direction of movement [5]. Higher order process-
ing is responsible for the perception of stereoscopic depth
and complex forms and concepts. The most basic integrated
units of visual information are the visual attributes color,
line orientation , and contrast which is fundamental for the
perception of contours. Other basic perceptually significant
attributes are transparency, position and size [16].

The perception of a scene is the result of two major pro-
cessing stages. The initialpreattentive stage allows percep-
tion of very simple features without conscious attention.
An example is the instantaneous perception of a red dot
in a cloud of blue ones. The underlying mechanism has
been contributed to different sensory dimensions for ba-

sic visual attributes such that a unique feature in any di-
mension is immediately detected [3]. Preattentive vision
seems to be dependent on primitive textural features such
as length, width and orientation of simple elongated shape
as well their end connections, angle orientations, and inter-
sections [16]. Apart from these preattentive vision also ex-
ists for shape, curvature, closure, colour (hue), intensity and
more complex visual attributes such as texture and depth
[8]. Preattentive vision does not only apply to feature de-
tection but also to region segregation and basic quantitative
tasks such as estimating the percentage of red blobs in a
cloud of red and blue dots [8]. Research indicates that preat-
tentive features are ordered by importance with hue being
the most important especially in dynamic environments [8].

The second principal visual processing step is thefo-
cused attention stage which involves conscious examination
of a scene, rapid mental calculations and quantitative rea-
soning. This stage is responsible for identifying complex
unitary objects and complex quantitative information.

2.1. Visual Attributes

The previous section introduced color, line orientation,
contrast, transparency, position and size as basic visual at-
tributes.

Using the concept oftrichromacy a perceived colours
can be represented as weighted sum of threeprimary
colours red, green, and blue. A more intuitive represen-
tation of colour is given by the perceptual attributeshue,
brightness and saturation which reflect the physical at-
tributeswavelength, intensity, andspectral purity, respec-
tively. The brain’s ability to locate a colours in this 3D
space is limited and even colour experts have difficulties
separating hue and lightness [3]. Furthermore coulour per-
ception is influenced by the surrounding colours (colour il-
lusions). For example, a colour patch is perceptually shifted
by the colour of adjacent patches (simultaneous contrast). If
colours of different intensities meet, non-existing intensity
changes are perceived (Mach bands) [10]. Prolonged expo-
sure to a colour can change perception of subsequent visual
impressions since it produces an afterimage of the comple-
mentary colour [16]. In addition some black and white pat-
terns can cause colour sensations (subjective colours) [16]

The brain utilizes low-level visual attributes for perform-
ing more complex visual tasks such as the perception of
shape, Gestalt, and depth which together are referred to
as spatial vision [5]. Other higher order tasks are figure-
ground perception and texture perception. The involved vi-
sual attributes are called high-level visual attributes.

Texture is perceptually characterized by its spatial fre-
quency, contrast and orientation [16]. Recognition of fea-
ture patterns is accomplished using the same texture prim-
itives (textons) as for preattentive vision with line segment



orientation being particularly important. Pattern detection
is orientation dependent and is influenced by adaption (fa-
miliarity) [5].

Shape information is directly derived from luminance,
motion, binocular disparity, colour, and texture, with lumi-
nance yielding shadow and subjective (illusory) contour in-
formation [3]. Shape perception is dominated by the cur-
vature of the silhouette contour (figure-ground boundary)
and 3D surface shading [9]. Current results indicate that
diffuse shading is the most important shape cue whereas
adding specularity does not improve perception of shape
differences [15]. Shape perception is highly orientation de-
pendent such that rotated versions of the same form can be
perceived as different shapes. Perception can also be depen-
dent on previous stimuli [16]. Familiar shapes and configu-
rations can improve the recognition of a target if it is a part
of them [16].

Depth perception is achieved using binocular vision and
pictorial cues. Binocular vision includes disparity, conver-
gence and motion parallax. The first expression refers to
human beings having two eyes which are slightly displaced
and therefore perceive different images of the same object.
The displacement the retinal images of an object is con-
verted by the brain to a depth information. Motion parallax
is the effect that the relative distance an object moves deter-
mines the amount its image moves on the retina. Binocular
vision can be achieved in visualization by using stereo gog-
gles or VR Head Displays. Visual cues aiding depth percep-
tion are size, brightness, perspective, overlay (occlusion),
texture gradient, and aerial perspective [9]. Aerial perspec-
tive stems from the observation that colours on the horizon
usually appear bluish blurred. As a consequence the brain
associates such colours with large distances.

The concept ofGestalt originates from the fine arts and
expresses the notion that the “whole contains more informa-
tion than the parts” [4]. Perception of Gestalt is influenced
by proximity, similarity, continuation, closure, symmetry,
and thelaw of Prägnanz, which states the the eyes tends to
see the simplest and most stable figure [17, 16]. Context
might also play a role in Gestalt perception [9].

Figure-ground perception describes the observation that
an object can be instantly separated perceptually from its
background [16]. This is due to physically different attri-
butes of the figure and the background but is also influenced
by size, angle, and association with meaningful shapes [16].

2.2. Classification of Visual Attributes

Not all visual attributes are equally well suited to display
of quantitative information. For many attributes their per-
ceived scale is a power of the actual scale (Steven’s law)
[1]. The power is close to one for the perception of length
so that length variations can be estimated quite accurately.

For area and volume changes the power is smaller than one
so that small areas are usually perceived larger than they
actually are and vice versa for large areas. In addition per-
ception of visual attributes can be influenced by orientation,
e.g., angles with a horizontal bisector are seen larger than
angles with a vertical one [1]. Also it has been shown that
slope changes influence the perception of vertical distances.

As a consequence the suitability of visual attributes for
information encoding differs. We introduce the terminfor-
mation accuracy as a measure of how accurately a human
can estimate a quantitative variable represented by that vi-
sual attribute. Cleveland shows that such a variable is most
accurately represented by a position along a scale, and then
in decreasing order of accuracy by interval length, slope an-
gle, area, volume and colour as indicated below [1].

?

6highest accuracy
of representation

lowest accuracy
of representation

position on scale

interval length

slope angle

area

volume

colour

More complex visual attributes are based on basic visual
attributes. Depending which low level attributes dominate
in the perception of a high level visual attribute the suit-
ability for visualizing quantitative data can vary. For exam-
ple, a spot noise texture consists of “smeared dots” having
a length and direction [19]. The texture is therefore well
suited for representing vector fields.

We suggest further differentiating visual attributes by
their information dimension and spatial requirements.In-
formation dimension refers to the number of dimensions in-
herent in the visual attribute. Length and slope represent
only one dimension but colour can be used to represent at
least two dimensions. Texture is usually composed of sev-
eral basic visual attributes such as colour and the length and
orientation of texture elements. The total information di-
mension is therefore the sum of the dimensions of the in-
herent basic attributes. An additional output dimensions can
be represented by the spatial frequency of a texture. Simi-
larly shape has been shown to represent multiple indepen-
dent output dimensions.

We define thespatial requirement of a visual attribute as
the smallest unit of space (ie. pixels on a screen) necessary
to identify a piece of information. Whereas colour has a
minimal spatial requirement only limited by the resolution
of the human visual system a texture requires a much larger
space of the output medium to enable the viewer to identify
inherent information. For example, a pixel of a spot noise
texture contains no information since neither direction nor
length of the represented vector field are apparent.



Theinformation content of a visual attribute can now be
defined as the product of information accuracy and infor-
mation dimension. Theinformation density is given by di-
viding the information content of a visual attribute by its
spatial requirement.

3. Creating an Effective Visualization

In order to create an efficient visualization scientific data
must be mapped to visual attributes in a way that optimizes
perception and understanding. The task is difficult since the
perception, interpretation and comprehension of visual in-
put is influenced by context, attentional focus, expectations,
prior knowledge, past experiences and subjective biases [8].
The visualization task can be facilitated by using standard-
ized visualization icons for scalar, vector and tensor fields.
Often this requires an intermediate data transformation step
such as a tensor decomposition, coordinate transformation
or an interpolation. However considerable freedom remains
when mapping data to visual attributes of an icon. Also
when displaying multiple fields simultaneously perceptual
interferences between visualization icons can occur. The
next section summarizes issues concerning the application
of visualization icons.

3.1. Mapping Data onto Perceptual Attributes by
Using Visualization Icons

Visualization Icons are graphical objects which encode
scientific data by visual attributes. In general the indepen-
dent variables of scientific data are reflected in the spatial
(and temporal) positions of the icons leaving colour, tex-
tures, shape and orientation to encode the dependent vari-
ables. The mapping between variables and attributes is usu-
ally determined by the intended function of the icon, which
include display quantitative information, drawing attention,
and showing correlation.

Quantitative information is best displayed by length and
is therefore reflected in the shape of an icon. Example are
vector arrows and height fields. Attention can be drawn to
a target by using bright or highly saturated colours, move-
ment or change, and sharp boundaries [13]. Target identi-
fication is also influenced by linear separation, colour cat-
egory, and colour distance. If the complexity of the scene
allows it, instant target identification can be achieved by us-
ing preattentive features. Finally it has been suggested that
correlation between related data sets is perceived most eas-
ily when similar visualization icons are used [10].

Several other issues have to be considered when employ-
ing visual attributes:

Colour is a complex attribute due to non-linearity in hu-
man colour perception and psychological influences such as
colour metaphors. If colour is used in the segmentation of a

scene no more than five colours should be used [3]. Pastels
should be used to show continuities (since they blend into
each other) and clashing colours to discriminate areas [10].
Also colour should suggest meaning (metaphor) and related
colours should be used for clusters of similar values or se-
ries of images [2]. Colour discrimination just by hue is dif-
ficult [6] so if features are emphasized different saturations
should be employed. Gray scales minimize complexities
due to psychological influences and are especially popular
in medical imaging due to their greater range of contrast
[10].

Continuous data can be represented by associating scalar
values with a colour scale. A useful property of a scale is
that the the order and distance between perceived colours is
equivalent to that of the associated scalar values. The scale
should additionally accentuate important features while
minimizing less important or extraneous details. Artistic or
aesthetic quality can also be important. Note that a colour
scale can not be judged in isolation since colour illusions
such as simultaneous contrast can reduce its effectiveness.

Various colour scales have been presented in the litera-
ture [14, 12]. A special case is thelinear gray scale which
varies linearly from black to white. Levkowitz and Herman
report that this scale resulted in a better identification of
simulated features in medical images than any of the tested
colour scales [12]. Adding a constant hue to a gray scale
creates aunivariate colour scale. The main disadvantage of
gray scales is their limited perceived dynamic range of only
60-90 noticeable value [12].

Double ended colour scales are obtained by pasting to-
gether two monotonically increasing scales. Their advan-
tage is a clear visual differentiation between low, mid-
dle and high values [8]. Therainbow colour scale is de-
fined by the horseshoe shaped boundary of the CIE colour
model and contains all fully saturated colours. Rheingans
points out that it is potentially misleading since the bright-
est colour (yellow) is in the middle [13]. Theheated-object
scale from Pizer and Zimmermann increases monotonically
with brightness from black through red, orange and yel-
low to white [13]. Its main advantage is the association
of colours with high and low values (temperatures). The
optimal colour scales from Levkowitz and Herman maxi-
mizes the number of distinct perceived colours along the
scale and increases monotonically with both brightness and
RGB components [12]. The authors report that this scale
was preferable to the heated object scale when identifying
features in medical images.

Textures are used to create visual richness without
adding geometry. Van Wijk suggest that texture in data vi-
sualization is best used to symbolize global and quantita-
tive information rather than local and qualitative informa-
tion [19]. Treinish is quoted in [10] as saying that the eye is
more responsive to changes in texture than colour. Textures



are therefore useful as a redundant cue for shape discrim-
ination. Healey reports that texture and color can only be
combined if the texture has a strong textual salience [8].

The shape of an icon can encode three dimensions by
scaling it in the coordinate directions (e.g., tensor ellip-
soids). Additional information can be represented by its ori-
entation and using other shape related attributes such as cur-
vature and “bumps”. The fact that rotated unfamiliar shapes
are perceived as different indicates that icons encoding di-
rectional information should be simple and familiar to the
audience. Shape perception can be improved using lighting,
lightness and colour differences, texture, shadows, and con-
tours (both explicit and subjective ones). The principles of
Gestalt perception might be important in the design of visu-
alization icons since it has been shown that well-organized,
good figures in the Gestalt sense are more easily remem-
bered and make fewer demands on cognitive resources [16].

3.2. Combining Visualization Icons

Visualization icons can be combined into convey con-
taining more information than can be obtained from indi-
vidual icons [10]. Additional information may exist in the
form of correlation between multiple variables or as higher-
order visual information (Gestalt).

Correlation between related data sets is perceived most
easily when similar visualization icons are used [10]. Per-
ception can be further improved by employing multiple
visualization techniques simultaneously for the same data
[13].

Gestalt concepts are exploited in the visualization of data
by Laidlaw et al. who use densely-arranged normalized ten-
sor ellipsoids in order to obtain a texture-like representation
of a diffusion tensor field which improves the perception of
features and field properties [11].

In contrast to correlated variables unrelated variables
are best displayed using orthogonal (independent) visual
attributes such as shape, colour, movement, and texture.
Many visualization icons already utilize several visual at-
tributes so extra care has to be taken when combining them.
When multiple types of visualization icons are used simul-
taneously they must be visually distinguishable. Discrimi-
nation is achieved by careful use of different shape types,
colours and textures. In general it has been shown that
the brain can handle at most seven unrelated elements [10].
Note that different visualization icons can also be used to
display the same data in order to reinforce information or to
highlight different aspects of the data (explicit redundancy).

The effectiveness of visualization icons is influenced by
the chosen background. The background can be used to
highlight and support features in the image and can be used
to provide supplementary information and 3D perspective
[10]. Keller and Keller recommend that the background of

a visualization should have a neutral (unsaturated) colour
with good contrast to the foreground [10]. The authors
further recommend the use of a horizontal (portrait) view
since it corresponds to the normal field of vision. 3D scenes
should be oriented so that important features are in the fore-
ground and not covered by other scene components [10].

3.3. Increasing the Effectiveness of a Visualization

A general approach for the creation of an effective visu-
alization is given by the “Natural Scene Paradigm” which
is based on our ability to immediately perceive complex in-
formation in a natural scene. Implementing this paradigm
involves clear 3D structures and data being associated with
recognizable properties of objects. More concrete tech-
niques for improving perception and understanding are
shape cues, contextual cues and annotations.

Shape cues are used to improve the perception of the 3D
geometry of a scene. Two major classes of shape cues exist:
illumination and explicit redundancies. The single most im-
portant shape cue is diffuse illumination with shadows and
highlights also being important. Use of illumination can
be problematic since it influences the perception of colour
(e.g., if colour mapping is used). Explicit redundancies
include emphasizing the silhouette curves (figure-ground
boundary) and contour curves (depth discontinuities) and
the use of mirrors.

Contextual cues are used to improve perception by en-
abling the brain to relate abstract visualization icons to a
familiar objects or properties. Examples of contextual cues
are coastlines, bounding boxes, and model outlines which
improve the perception of positional information. Motion
blur is used to indicate velocities. Simple contextual cues
to make date more readable include numbered scales, grid
lines, and abstract objects to suggest value and relationships
(see [18]).

Annotations are used to identify features and to explain
relationships. Examples are legends, labels, and mark-
ers. Legends should be comprehensive, informative and
draw attention to important features in the data set [1] Even
though word recognition involves low level visual percep-
tion higher order processing tasks such as detection of let-
ters, spelling patterns, syllables, and phonological codes
are performed independent of the visual system [17]. This
might indicate that careful addition of text and symbols can
improve the perception of a visualization without degrading
the cognition of other visual information. Overuse of tex-
tual information must be avoided, though, since it leads to
visual cluttering and information obstruction [18].

The perception of a visualization is improved by allow-
ing user interaction such as paning, detail zoom, fish-eye
views and cut-away (clipping) techniques. Advanced 3D
interaction is accomplished using immersive environments.



4. Conclusion

We have presented a visualization schema which extends
the traditional visualization pipeline by a visual interpre-
tation step consisting of visual perception and cognition.
Whereas the traditional approach represents the encoding of
data into visual attributes, visual interpretation represents a
decoding of visual attributes. In order to create visualiza-
tion data or subsets of data must be mapped onto visual at-
tributes. We suggested a classification of visual attributes
according to information accuracy, information dimension
and spatial requirement. This classification can be used as
basis for mapping data into visual attributes. The visual-
ization process can be simplified by choosing standardized
visualization icons for the data or subsets of it. Care must
be taken to ensure that different visual attributes represent-
ing the icons do not interfere with each other. We provided
a set of guidelines for selecting suitable visualization icons,
for combing different visualization icons, and for increas-
ing the effectiveness of a visualization. It is our hope that
this work will enable the reader to create more effective and
efficient visualizations of scientific data sets.
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