
3D VIRTUAL INTERFACE FOR UBIQUITOUS
INTELLIGENT ENVIRONMENTS

Kevin I-Kai Wang*, Ian Yen-Hung Chen*, Waleed H. Abdulla*, Zoran Salcic*, Burkhard C.
W nsche

*Department of Electrical and Computer Engineering
University of Auckland, Private Bag 92019, Auckland, New Zealand 

{kevin.wang, i.chen, w.abdulla, z.salcic}@auckland.ac.nz 
FAX. +64 9 373 7461 

Department of Computer Science 
University of Auckland, New Zealand 

burkhard@cs.auckland.ac.nz

Keywords: Virtual Environment, Intelligent Environment,
Multi-Agent System, Game Technology.

Abstract
In this paper, a 3D virtual interface and its corresponding
physical testbed are introduced. The physical testbed
named Distributed Embedded Intelligence Room (DEIR)
realises a true ubiquitous intelligent environment by
embedding sensors, actuators and computing devices and
providing means of communication through various
device networks. With the support of multi-agent control
system, the 3D virtual interface is able to act both like a
remote control interface or virtual simulator of the room.
The 3D virtual interface has demonstrated the ability to
perform real-time operations from remote locations and to
facilitate research progress by allowing virtual simulations.

1 Introduction
Ubiquitous Intelligent Environments have recently
become a popular research spot for many disciplines.
Enormous time and expertises are required to construct a
physical intelligent environment. The long process of
constructing a physical environment very often delays the
research process or even makes the project infeasible. This
motivates the need of having virtual replications of
physical environments to achieve cost-effective researches.
3D virtual simulations have been used in many
applications such as robotics [5, 15], e-commerce [9] and
intelligent environments [10, 11]. Technologies used to
create computer games provide a quick and effective way
to develop 3D virtual simulations and have become
popular in various research areas. It can be commonly
found in multi-robot simulators such as the USARsim
project [15] which created virtual hazardous environments
for the simulation of search and rescue robot operations.
Faust et. al. [5] also used video game technology to
perform Human-Robot Interaction (HRI) and
collaboration studies. There are also many virtual
simulators available that provide remote interfaces for
teleoperating devices. An example is the real time 3D

interface for remote control mission planning of
unmanned aerial vehicle developed at the University of
Auckland for the Defence Technology Agency (DTA) of
New Zealand Defence Force [3].

In this paper, a novel 3D virtual environment is proposed
and implemented using game technologies and multi-
agent techniques. Game technologies have large user
community and frequent update. They can easily provide
interfaces with high quality graphics and network
communication ability, which suit the objective of
designing a high quality remote interface and virtual
simulator. A 3D model of a physical ubiquitous intelligent
environment named Distributed Embedded Intelligence
Room (DEIR) has been constructed using 3dsMax [1].
The 3D model is exported and then rendered using an
open source graphics engine, Ogre3D [7]. By integrating
with the Multi-Agent control System (MAS) of DEIR, the
3D visualisation can be used not only as a remote control
interface, but also as a virtual simulator for realistic
experimentation.

The rest of the paper is presented as follows. Section 2
describes the physical intelligent environment and the
control system architecture. Section 3 explains the
development tools, communication protocol and system
architecture of the 3D virtual environment. Section 4
presents the system evaluation and section 5 concludes the
paper.

Fig. 1 Distributed Embedded Intelligence Room (DEIR).



Fig. 2 DEIR system architecture.

2 Physical intelligent environment
In order to perform realistic real-time evaluation, a
ubiquitous intelligent environment testbed named
Distributed Embedded Intelligence Room (DEIR) has
been constructed at the University of Auckland [12]. A
picture of DEIR is depicted in Fig. 1. A number of sensors,
actuators and computing devices are embedded within
DEIR and interconnected through various physical
networks. Embedded sensors such as light intensity,
temperature, humidity, pressure, smoke and motion
sensors are spread within the environment to monitor
environmental context. Embedded actuators are used to
automate windows, curtains, dimmable lights and other
office appliances. Fig. 2 illustrates the system architecture
of DEIR from physical layer up to the user application
layer. In general, the complete system architecture can be
described in 3 components: the physical infrastructure, the
middleware and MAS, and intelligent control components.
Details of each component are discussed in the following
subsections.

2.1 Physical infrastructure

In the current DEIR system architecture, four different
physical networks, RS-485, LonWorks network [4],
Ethernet/Wi-Fi, and Zigbee have been used to control the

embedded devices. RS-485 peer to peer (P2P) network
links most of the actuators for windows, curtains and
dimmable lights and a small portion of embedded sensors
such as motion sensors. RS-485 devices are managed by a
smart switch device that resembles traditional switch
interface. The smart switch contains a M16C micro-
controller that enables RS-485 communication and certain
low level automation. LonWorks network connects part of
the embedded sensors and the connected devices are
managed by an iLon100 gateway server. Ethernet/Wi-Fi
forms the backbone communication for all the embedded
and mobile computing devices. Zigbee is employed as the
communication protocol for some embedded sensors, such
as pressure sensor, and commercial office appliances.

Hybrid device networks improve system flexibility in
terms of incorporating different ranges of hardware
devices. However, it adds a burden to the high level multi-
agent control system to communicate with different
devices. Furthermore, it is even more difficult to replace
an existing network or to introduce new network
technologies from a system architecture point of view. In
order to integrate hybrid device networks and provide
common portal to the high level controls, a middleware
level is introduced. More detail on the middleware is
given in the next section.



2.2 Middleware and MAS

To integrate hybrid device networks, Universal Plug and
Play (UPnP) is used as the middleware [11]. In general,
UPnP is an IP-based device discovery protocol which
enables automatic device discovery, configuration and
management [12, 13]. Hence, each individual device
network is mapped onto the IP network and controlled as
one integrated network. To enable UPnP communication,
two UPnP components, UPnP software devices and UPnP
control points, need to be implemented. The UPnP
software device is responsible for communicating with the
physical devices. It is the software replica of the
underlying hardware. UPnP control point communicates
with the software device and passes necessary information
to the high level modelling and/or user interface
components. The UPnP components implemented in the
control system are developed by using CyberGarage UPnP
Java API.

In DEIR, a well known agent platform, JADE (Java Agent
DEvelopment Framework), has been employed as the
underlying framework of the high level multi-agent
control system [14]. Since both JADE and UPnP are
provided in Java, middleware components can be easily
integrated as low level agents in the control system. As
shown in Fig. 2, UPnP software devices and control point
are implemented as part of the MAS. In general, MAS of
DEIR mainly consists of three types of agents: Utility
agents, Modelling agents and Interface agents. Utility
agents handle things such as access control, user personal
profile management and user activities data deposition.
Modelling agents involve two types of intelligent agent
namely fuzzy inference agents and decision tree agents.
The modelling agents are data-driven and will perform a
series of learning steps to reach the final model of user
behaviours. These agents provide the system the ability to
model user activities and to provide automatic controls to
the environment. The modelling techniques are explained
in detail in [12, 13]. Interface agents communicate with
user control interfaces such as the 3D virtual interface and
GUI interface.

The proposed 3D virtual interface has two operation
modes, namely the virtual simulator mode and the remote
interface mode. Different communication paths are
provided for different operations. The communication
stack for our proposed 3D virtual interface is shown in Fig.
3. When used as a remote interface, the server application
of the virtual interface receives control commands from
the client and passes the commands through to the virtual
interface agent and UPnP control point agent. The control
point agent recognises that these are remote control
commands and passes them down to the corresponding
device agents for the commands to be executed physically.
Acknowledgements on accomplishing the commands will
be sent back to the control point agent and virtual
interface agent to update the 3D virtual interface. While
configured as a virtual simulator, the control point agent
will forward the commands to the database agent and
direct acknowledgements will be sent to the virtual
interface agent to update the virtual simulator. Virtual

simulator is used to test different types of user interface
such as speech dialogue system in absence of a physical
environment. Learning simulation is also possible by
including intelligent control agents in the communication
path.

Fig. 3 Communication stacks for 3D virtual interface.

2.3 Intelligent control components

In the current multi-agent control system, two types of
machine learning algorithms, Fuzzy Inference System
(FIS) [12, 13] and decision tree, are incorporated as agents
to model different types of user control behaviours. This is
due to the fact that a single modelling technique may only
be suitable for some control behaviours but not for all of
them. The multi-agent architecture provides our control
system the ability to apply different machine learning
techniques to model different device control behaviours.
The fuzzy inference and decision tree agents acquire
necessary user activities data through database agent and
perform required data processing and learning steps. Once
the learning steps are completed, both techniques will
present the modelling results in terms of IF-THEN rules,
which constitute a more coherent automatic control rule
base. Further, traditional Rule-Based System (RBS) is
employed in the UPnP software device agents to provide
low level, hard-coded automation. Rules embedded in
devices agents are low in priority compare to the rules
from fuzzy inference agents and decision tree agents. This
low level rule base provides a default set of automation
before the high level learning is accomplished. It also
ensures system response time in case high level agents
crashed during runtime.



3 Virtual environment
A realistic, highly extensible virtual environment of DEIR
is developed using game technologies and supports
interactions from multiple remote clients. There are two
main applications of this system: 1) The virtual simulator
is designed to simulate the behaviour of DEIR in absence
of the actual physical environment. 2) The virtual
interface provides a 3D remote control interface which
allows for teleoperating the devices installed in DEIR and
presents a real time visualisation of the objects in DEIR.
In addition, a controllable human character is introduced
in the environment that offers end-users the option to view
the simulation from different perspectives. It is also
planned that the human character would support the
simulation required in the study of occupant behaviour in
the future.

3.1 System architecture

In order to support interactions from multiple remote users,
a client/server architecture was implemented, as shown in
Fig. 4. Network communication between the clients and
the server is based on an ordinary Local Area Network
(LAN) while the interactions between the server and
DEIR MAS are performed through socket communication.
In general, the server and clients will reside on different
machines. The 3D virtual interface agent is more likely to
be appeared in the same machine as the server to reduce
the communication cost.

Fig. 4 The Virtual Environment System Architecture.

3.1.1 Server

The server manages connections to the remote clients in a
Local Area Network (LAN) through Wi-Fi or Ethernet
and handles all updates to the objects in the virtual
environment. The server handles the communication
between the virtual environment and DEIR by sending
commands to the 3D virtual interface agent in DEIR MAS.
DEIR MAS receives the commands and will in turn

translate the commands into different network protocols,
such as RS-485. It has been decided that the server is
assigned a fixed IP address and port rather than utilising
the Dynamic Host Configuration Protocol (DHCP), thus
clients do not have to repeatedly search for the address of
the server from time to time. The server is also a client
itself, being able to visualise the virtual environment and
allowing interactions for administration purposes. The
system will stay running and accepts connections from
multiple clients as long as the server is not terminated.

3.1.2 Client

The system architecture utilises a thick client model,
reducing network traffic and relieving the computation
load of physics calculation and scene rendering from the
server. There are certain issues concerning this approach.
The scene rendering performance becomes dependent on
the hardware capability of the clients machines, therefore
having an influence on the portability of the system.
Unlike desktop computers, other mobile devices such as
PDAs do not have powerful Central Processing Units
(CPU) nor are they installed with Graphics Processing
Units (GPU). Although the game technologies we used are
cross-platform on different operating systems, the problem
lies on the amount of processing resources required to
generate realistic graphics and physics on the client
machines. However, achieving a high quality, real time
simulation is a higher priority. Degrading the quality of
the simulation using simplified graphical models or
approximated physics calculations would inevitably
produce inaccurate results, and increase inconsistencies
between the simulation and the real world. By deploying
the virtual simulation on the client machine, it allows
scene renderings to be computed locally and realistic
results are achieved without placing load on the network
bandwidth.

The client can be started at any time. When started, it will
continue to ping the specified IP address and port of the
server until a response is received then joins the
simulation. The statuses of the objects in the virtual
environment on the client side will synchronise with the
statuses of the objects on the server once the connection is
established. A controllable player character will then
spawn in the virtual environment and provides the end-
user different views of the simulated room which will be
discussed later. A client is able to leave the simulation at
any time without disrupting the system.

3.1.3 3D virtual interface agent

The 3D virtual interface agent essentially provides an
interface for the communication between the virtual
environment and the DEIR MAS, encapsulating the
underlying system structure and device control logics of
DEIR. The agent is responsible for delegating the
commands received from the virtual environment to the
UPnP control point agent which in turn issues the
commands to the correct hardware devices through the
corresponding device agents. At the moment, the
communication between the server and the 3D virtual



interface agent is implemented using socket programming.
A common control interface is considered as part of the
future plan. More details are given in section 4.

3.2 System technology and design

High fidelity graphics and realistic physics simulation
have become the main challenges in developing realistic
virtual simulations, requiring a significant amount of time,
effort and expertise. We have developed the virtual
environment of DEIR by adapting technologies used in
the development of computer games. This has facilitated
the creation of a high quality, multi-client, and interactive
virtual simulation.

The open source Ogre3D Graphics Engine is chosen to be
used as our 3D rendering engine. It has a large community
support and various add-on projects that allow easy
integration of physics and networking libraries necessary
for this project. Ogre3D provides advanced features
including material shader, scripted animations and other
special effects [7]. Many existing libraries are available
which support exporting 3D models from different 3D
modelling tools such as Maya [1], 3dsMax [1], or Blender
[2] to mesh files compatible with Ogre3D. The 3D objects
in our virtual environment are created in real world scale
using 3dsMax and mapped with photo textures taken from
the objects inside DEIR. An additional scene file and
material file will be generated along with the exported
mesh files that describe the geometric locations and
material properties of the 3D meshes. These are
dynamically loaded at run time, providing an efficient way
for extending the system to accommodate more graphical
objects which saves time and effort. This implies that any
arbitrary 3D model designers with no prior knowledge in
the implementation of our system could also create and
introduce new virtual objects without the need to write or

to compile new code.

The open source openTNL [8] is used as our network
library and sets up a Client and Server architecture for the
system. It provides advanced ghost connections for
establishing client-to-server connections, object
replication, and also a simple, reliable and efficient
Remote Procedure Call (RPC) framework for the
communication between the client and the server. The
main form of client/server communication is through
openTNL s NetEvent messages. An event message is sent
to the server from the client by using the RPC framework
whenever the end-user performs an action that changes the
state of an object in the virtual environment, for instance,
opening a window. The server is responsible for
broadcasting this event message to all the registered
clients to ensure that all the statuses of the objects are
consistent in every instance of the client simulation. The
other form of communication is through openTNL s
Server Object Replication. Objects on the server can be
cloned to the clients. This is used to instantiate the human
character object and to update its position and the
orientation in the virtual environment when the end-users
move it around using the keyboard.

Physics simulation is created using the Newton Game
Dynamics Engine [6]. It provides real time simulation of
physics environment. Newton Game Dynamics Engine
enables users to create rigid bodies of objects in a world
with gravitational force and modelling the objects with the
appropriate mass, size, material and shape. When velocity,
force, and torque are applied to an object, the dynamic
behaviour of the object will be automatically simulated.
Physics have mainly been used in our virtual environment
to monitor collision detections and to simulate the
behaviour of the furniture when exerted with force.

a) Third Person Chasing Camera. b) Third Person Fixed Camera.

c) First Person Camera. d) Free Look Camera.
Fig. 5 The four different camera modes of the system.



a) Sequence of Direct Interactions with Curtain Object.

b) Sequence of Interactions with Windows from a Switch.
Fig. 6 Dialogue Window for controlling objects in the simulated room.

3.3 DEIR simulation

In addition to providing a realistic graphical representation
and physics simulation of DEIR, we took advantage of the
interaction techniques supported from the use of game
technologies. We present different camera modes for
viewing the simulation, movement of the human character
through standard keyboard inputs, and control of objects
through graphical widgets.

3.3.1 Observing the simulation

The virtual environment enables the end-users to observe
the behaviour of the simulated room from four different
perspectives. This is established using the following four
cameras modes: 1) Third Person Chasing Camera, 2)
Third Person Fixed Camera, 3) First Person Camera and 4)
Free Look Camera, as shown in Fig. 5. Upon joining the
simulation, a human character is added to the simulated
room. The human character is bound by the laws of
physics and can be controlled using keyboard to move
around the virtual environment. The view port will
continuously be updated in the first three camera modes as
the human character changes its position and orientation.
These three modes permit interactions between the end-
users and the simulated room, such as moving the human
character or opening a window. Unlike the first three
camera modes, the fourth camera mode of the system is an
observer mode that allows the end-user to freely move the
camera around the simulated room without any physics
constraints. In addition, the end-user is not permitted to
interact with the simulated room and therefore the statuses
of the objects can not be altered by clients in this mode.

The end-user will be able to switch from any camera
mode to another at any time during the simulation by
pressing the allocated keys on the keyboard.

3.3.2 Virtual remote control interface

Interactions between the end-users and the virtual
environment are performed through a standard mouse. At
present, controls have been implemented for lights,
windows and curtains in the simulated room. These are
flagged as Controllable Objects in which their statuses
can be manually altered by the end-users. Other types of
objects include Selectable Objects and Non-Selectable
objects. Selectable objects can be selected by users to
provide a brief description of what they are and their
current statuses while non-selectable objects are mainly
background objects such as the walls and the ceiling.
There are two ways to interact with the controllable
objects in the virtual environment. The status of the
controllable objects can be configured either by clicking
on the object itself in the virtual environment as shown in
Fig. 6(a), or by clicking on the corresponding switches on
the walls as shown in Fig. 6(b). In both cases, a dialogue
window will appear on the screen that allows the end-
users to configure the status of a specific object or a group
of objects connected to the switch, through graphical
widgets such as push buttons and horizontal slide bars.
After the end-user performs an action that alters the state
of a controllable object, the object will be animated
towards the specified new state using the same amount of
time as it would when controlled in the real world. For
instance, an action such as opening a window would
slowly change the virtual window s orientation over time.
Once the server is connected to DEIR through the 3D



virtual interface agent, it can act as a virtual control
interface of DEIR. All the actions performed by the clients
will be reflected to the actual physical room and the
virtual environment effectively presents a visualisation of
DEIR for the remote end-users. Once the status of a
controllable object in the simulated room is changed on
the client, a command string is created and sent to the
server.

Apart from the normal communication stack, the system
currently also implements its own direct connection for
communicating with the hardware which bypasses the
DEIR MAS and the middleware layer. It is an additional
communication path which can be used for hardware
device testing purposes, for example, to identify whether
an unexpected behaviour of a hardware device is the result
of a bug from the software application or the hardware
itself.

To resolve concurrency issues, at the moment only one
command can be executed at any one time. The end-user
is restricted to only change the status of a controllable
object after the previous command has completely been
executed. The dialogue windows are forced to become
disabled in all instances of the simulation on the client
sides to prohibit any actions during this time. It is
important to note that this is only a simple concurrency
management method designed at an application level to
support current research needs. A more advanced control
management system should be implemented in the future
for managing commands issued by all applications to
DEIR. This will be discussed further in section 4.

4 System evaluation
The objective of this project is to develop a 3D virtual
interface that can be used for both virtual simulation and
remote control interface. The system has been evaluated
under remote interface mode for performance and real-
time operation feasibility. The first evaluation investigates
the performance of the 3D interface. Refer to Fig. 7, the
3D virtual interface performance is measured using Frame
Per Second (FPS) with varying number of lights in a
resolution size of 800x600 on three different machines
with different hardware capabilities. A higher FPS value
indicates smoother real-time 3D visualisation. Ordinary
desktop computers, such as machine A and B in Fig. 7,
have demonstrated a satisfactory performance of at least 6
FPS. In comparison, a laptop computer (refer to machine
C) shows very poor performance of 1.5 FPS. To
compromise this performance issue, fewer light sources
can be used to achieve a higher frame rate at a cost of less
realistic 3D model. The second evaluation shows the
feasibility of real-time operation through Wi-Fi links.
Remote client is located in a room that is 10 meters away
from where the server resides, through one concrete wall.
Device response time shows no difference as if the device
is controlled through traditional switch interface and the
virtual interface maintained synchronisation with the
physical environment.

Hardware Specs\ No.
of Active Lights

15 lights
(FPS)

9 lights
(FPS)

4 lights
(FPS)

2 lights
(FPS)

A 7.37 12.49 25.32 35.21
B 5.94 10.43 21.33 30.62
C 1.51 2.85 6.7 7.11

Key
A CPU: Intel Xeon CPU 3.73GHz, 1G RAM.

Graphics Card: Quadro FX3450/4000 SDI 256MB
B CPU: Pentium 4 CPU 3.00GHz, 1G RAM.

Graphics Card: NVIDIA GeForce 6600 128MB
C CPU: Intel Pentium M 750 (Dothan), 1G RAM.

Graphics Card: ATI Mobility Radeon X600SE 128MB

Fig. 7 Performance comparison among different machines.

In order to use the 3D virtual interface as virtual simulator
effectively, it is considered that another middleware layer
(or a common control interface) should be introduced
between the user interface application and DEIR MAS.
This is due to the fact that high level applications can be
implemented using many different programming
languages, and having to write code with the same
functionality in different languages is highly inefficient.
Also, in the current virtual interface, the ability for
concurrently controlling the room at the same time has
been disabled. A more sophisticated control management
mechanism involving command buffering and multi-
threading should be employed and hence different devices
can be controlled by different users at the same time. In
addition to the support of Wi-Fi/LAN connection, remote
control through internet connection is also considered as
part of the future functionality. Further, more realistic
human behaviour such as sitting down and running
should be introduced to support more advanced
simulations that model occupant behaviour. Finally,
different interaction scenarios should be provided such as
using the 3D virtual interface with touch screen devices.

5 Conclusions
In this paper, a novel ubiquitous intelligent environment,
DEIR and its 3D virtual interface have been presented.
DEIR consists of a number of embedded sensors,
actuators and computing devices interconnected through
four different physical networks, namely RS-485,
LonWorks network, IP network and Zigbee network. High
level multi-agent control system is employed to control
the hybrid physical devices through a common
middleware layer, implemented in Universal Plug and
Play. The 3D model of DEIR is built using 3dsMax and
realised through Ogre3D graphics engine. The design
paradigm enables interface designer to design different
virtual interfaces without knowing the underlying control
architecture. The 3D virtual interface has demonstrated
the ability to perform real-time operation from a remote
location. It also facilitates the research process by
allowing virtual simulations and experiments to be carried
out in absence of a physical environment, with the support
of multi-agent control system. To improve the flexibility
and applicability of the 3D virtual interface, common
control interface for high level applications and internet
accessibility should be implemented.



References
[1] AutoDesk. Retrieved 18th February, 2007 from

http://www.autodesk.com
[2] Blender.org Retrieved 18th February, 2007 from

http://www.blender.org/
[3] B. Cervin, C. Mills, and B. C. W nsche. A 3D

Interface for an Unmanned Aerial Vehicle,
Proceedings of IVCNZ '04, pp. 249-253, Akaroa,
New Zealand, 21-23 November 2004.

[4] Echelon Corporation, LonWorks Overview,
Retrieved 18th February, 2007 from
http://www.echelon.com/solutions/overview/default.
htm

[5] J., Faust, C., Simon, W. D., Smart, A Video Game-
Based Mobile Robot Simulation Environment,
Proceedings of the 2006 IEEE, Beijing.

[6] Newton Game Dynamics. Retrieved 18th February,
2007 from
http://www.newtondynamics.com/index.html

[7] Ogre3D open source graphics engine. Retrieved 18th

February, 2007 from http://www.ogre3d.org
[8] openTNL Torque Network Library. Retrieved 18th

February, 2007 from http://www.opentnl.org
[9] C. T. Santos and F. S. Osorio, AdapTIVE: An

Intelligent Virtual Environment and its Application
in E-Commerce, in Proceedings of the 28th Annual
International Computer Software and Applications
Conference, pp. 468-473, 2004

[10] A. A. N., Shirehjini, A novel interaction metaphor for
personal environment control: direct manipulation of
physical environment based on 3D visualization,
Computers & Graphics: Special Issue on Pervasive
Computing and Ambient Intelligence, Vol. 28, pp.
667-675, 2004.

[11] A. A. N., Shirehjini, A Generic UPnP Architecture
for Ambient Intelligence Meeting Rooms and a
Control Point allowing for integrated 2D and 3D
Interaction, in Proceedings of the 2005 joint
conference on Smart objects and ambient intelligence:
innovative context-aware services: usages and
technologies, pp. 207-212, Grenoble, France, 2005.

[12] K. I., Wang, W. H., Abdulla, Z., Salcic, Distributed
Embedded Intelligence Room with Multi-agent
Cooperative Learning. Ubiquitous Intelligence and
Computing. Lecture Notes in Computer Science, Vol.
4159, pp. 147-156, Springer-Verlag, Berlin
Heidelberg, 2006.

[13] K. I., Wang, W. H., Abdulla, Z., Salcic, Multi-agent
fuzzy inference control system for intelligent
environments using JADE. in Proceedings of 2nd IET
International Conference on Intelligent Environments,
pp.285-294, 2006.

[14] K. I., Wang, W. H., Abdulla, Z., Salcic, A Multi-
Agent System for Intelligent Environments using
JADE. In Proceedings of the 1st IEE International
Workshop on Intelligent Environment, pp86-91,
2005.

[15] J. Wang, M. Lewis, S. Hughes, M. Koes, and S.
Carpin, Validating USARsim for use in HRI research,
in Proceedings of the Human Factors and

Ergonomics Society 49th Annual Meeting, pp. 457
461, 2005.


