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Abstract— An increasing number of applications require 3D
content. However, its creation from real-world data either ne-
cessitates expensive equipment, artistic skills, or is constrained,
for example, by the range of the utilized sensors. Image-based
modeling is rapidly increasing in popularity since cameras
are very affordable, widely available, and have a wide image
acquisition range suitable for objects of vastly different size. The
technique is especially suitable for mobile robotics involving low
cost equipment and robots with a light payload, for example,
small UAVs. In this paper we describe a novel image-based
modeling system, which produces high-quality 3D content au-
tomatically from a collection of unconstrained and uncalibrated
2D images. The system estimates camera parameters and a 3D
scene geometry using Structure-from-Motion (SfM) and Bundle
Adjustment techniques. The point cloud density of 3D scene
components is enhanced by exploiting silhouette information
of the scene. This hybrid approach dramatically improves the
reconstruction of objects with few visual features, for example,
unicolored objects, and improves surface smoothness. A high
quality texture is created by parameterizing the reconstructed
objects using a segmentation and charting approach which also
works for objects which are not homeomorphic to a sphere. The
resulting parameter space contains one chart for each surface
segment. A texture map is created by back projecting the best
fitting input images onto each surface segment, and smoothly
fusing them together over the corresponding chart by using
graph-cut techniques.

I. INTRODUCTION

A key task in mobile robotics is the exploration and
mapping of an unknown environment using the robot’s
sensors. SLAM algorithms can create a map in real time
using different sensors. While the resulting map is suitable
for navigation, it usually does not contain a high quality
reconstruction of the surrounding 3D scene, e.g., for use in
virtual environments, simulations, and urban design.

High quality reconstructions can be achieved using image
input and conventional modeling systems such as Maya,
Lightwave, 3D Max or Blender. However, the process is
time-consuming, requires artistic skills, and involves con-
siderable training and experience in order to master the
modeling software.

The introduction of specialized hardware has simplified
the creation of models from real physical objects. Laser
scanners can create highly accurate 3D models, but are
expensive and have a limited range and resolution. RGB-
D sensors, such as the Kinect, have been successfully used
for creating large scale reconstructions. In 2011 the Kinect-

Fusion algorithm was presented, which uses the Kinect depth
data to reconstruct a 3D scene using the Kinect sensor like
a handheld laser scanner [28]. Since then a wide variety
of new applications have been proposed such as complete
3D mappings of environments [16]. The Kinect is very
affordable, but has a very limited operating range (0.8 - 3.5
m), a limited resolution and field-of-view, and it is sensitive
to environmental conditions [30].

Reconstruction 3D scenes from optical sensor data has
considerable advantages such as the low price of sensors,
the ability to capture objects of vastly different size, and the
ability to capture highly detailed color and texture informa-
tion. Furthermore optical sensors are very light weight and
have a low energy consumption, which makes them ideal
for mobile robots, such as small Unmanned Aerial Vehicles
(UAVs).

This paper proposes a novel system that employs a hybrid
multi-view image-based modeling approach coupled with
a surface parameterization technique as well as surface
and texture reconstruction for automatically creating a high
quality reconstruction of 3D objects using uncalibrated and
unconstrained images acquired using consumer-level cam-
eras. This makes the technique particularly suitable for
recognizance and surveillance, e.g., producing 3D recon-
structions with high resolution texture maps from video data
of miniature UAVs.

One key challenge is that reconstructing 3D scenes from
a sequence of images requires knowing where each photo
was taken and into what direction the camera was pointing
(extrinsic parameters), as well as the internal camera set-
tings, such as zoom and focus (intrinsic parameters), which
influence how incoming light is projected onto the retinal
plane. Our algorithm automatically estimates the intrinsic
and extrinsic parameters of the camera being used and
computes the 3D coordinates of a sparse set of points in
the scene. This is accomplished using Structure-from-Motion
and Bundle Adjustment techniques.

In order to deal with feature-poor objects, additional 3D
points are extracted and added by exploiting the silhouette
information of the object. The benefit of integrating shape-
from-silhouette and shape-from-correspondence approaches
is that the new hybrid system is capable of handling both
featureless objects and objects with concave regions. These
classes of objects often pose great difficulty for algorithms



using only a single approach. As the result, our solution is
able to produce satisfactory results for a much larger class
of objects.
The system performs 3D reconstruction using the follow-
ing steps:
1) Camera parameter estimation and scene geometry gen-
eration
2) Increase the density of the obtained point cloud by
exploiting objects’ silhouette information
3) 3D surface reconstruction
4) Surface parameterization and texture reconstruction

The remainder of this paper is structured as follows. In
section II, we review related work in the field of image-based
modeling. Section III presents the design of our solution.
Results are discussed in section IV. In section V we conclude
the paper and discuss directions for future research.

II. RELATED WORK

3D image-based reconstruction algorithms can be clas-
sified and categorized based on the visual cues used to
perform reconstruction, e.g., silhouettes, texture, shading or
correspondence. Amongst them, shape-from-silhouette and
shape-from-correspondence have proven to be the most well-
known and successful visual cues. Classes of reconstruction
methods exploiting these visual cues can offer a high de-
gree of robustness due to their invariance to illumination
changes [17].

Shape-from-silhouette algorithms obtain the 3D structure
of an object by establishing an approximate maximal surface,
known as the visual hull, that progressively encloses the
actual object. Shape from silhouette-based methods can
produce surprisingly good results with a relatively small
number of views and have been proven to be stable with
regard to object surface properties (color, texture and ma-
terial). Silhouette-based methods, however, are very limited
in the object geometries they can handle, such as concave
regions [13], [26], [29].

The first attempt of obtaining a 3D representation of a
scene by exploiting the silhouette information was made by
Baumgart in 1974. In his pioneering work Baumgart [2]
employed the silhouette contours extracted from four input
images to derive the 3D structure of a baby doll and a
toy horse. Following Baumgart’s footstep, many different
variations of silhouette-based paradigm have been studied
and proposed.

Aggarwal et al. [25] presented a method that used an
intensity threshold-based segmentation method to separate
the object foreground and background in each input image.
A connected component analysis of the segmented image
produces the silhouette. In order to compute the intersection
of different silhouette cones, the authors use a run-length
encoded uniformly discretized volume.

Chien et al. [8] improve the efficiency of Aggarwal’s
method by exploiting alternative data structures such as an
octree representation for storing the in/out status of voxels.
The method uses three images acquired from orthogonal
viewing directions, and converts them to three quadtree

representations, which are fused into an octree representation
of the visual hull. The main drawback of this method is
the requirement of strict orthogonality of camera viewing
directions, which limits practical applications.

Grauman et al. [15] use a Bayesian approach to compen-
sate for errors introduced as the result of false segmentation.
This method has been shown to produce excellent error-
compensated models from erroneous silhouette information.
Its main disadvantage is that it requires prior knowledge
about the objects to be reconstructed and large ground-truth
training data. This makes the method impractical for real-
world applications. Cheung et al. [8], [6], [7] improve the
reconstruction quality of the visual hull by aligning multiple
silhouette images of a moving object over time.

In recent years, various multi-view reconstruction tech-
niques have been explored. However, most of these methods
were designed to tackle a particular class of objects. As a
result, their applicability in real-world applications is often
limited.

Friih et al. [14] use a combination of aerial imagery,
ground color, and LIDAR scans to create textured 3D models
of an entire city. While the proposed method produces
visually acceptable results, it suffers from a number of
drawbacks that render it impractical for general use. In
particular, the method requires a vehicle equipped with fast
2D laser scanners and a digital camera to acquire texture data
for an entire city at the ground level and a LIDAR optical
remote sensor. Additionally, the required manual selection
of features and the correspondence in different views is very
tedious, error-prone, and cannot be scaled up well.

Xiao et al. [38] presented a semi-automatic image-based
approach to reconstruct 3D facade models from a sequence
of photographs. The method uses a recursive subdivision
scheme to partition facades into small segments, while still
preserving their architectural structure. Users are required to
provide feedback on the facade partition.

Another semi-automatic image-based technique was pre-
sented by Quan et al. for modeling plants [32]. The algorithm
performs segmentation both in image space (by manually
selecting areas in input images) and in 3D space. Using the
segmented images and 3D data, the geometry of leaves is
recovered by fitting a deformable model. Users are required
to provide hints on segmentation. Branches are modeled
through a simple user interface. The main disadvantage of
this method is that it requires full coverage of the observed
model (360° capture), which may not always be possible in
practice.

III. DESIGN

A. Algorihm Overview

In order to recover the scene geometry, the system au-
tomatically detects and extracts points of interest such as
corners (edges with gradients in multiple directions) in the
input images. The points are matched across views and
changes of their relative position across multiple images are
used to estimate camera parameters and 3D coordinates of



the matched points using a Structure from Motion technique.
The method requires that input images partially overlap.

Feature matching is achieved using an incremental ap-
proach starting with a pair or images having a large number
of matches, but also a large baseline. This is to ensure that
the 3D coordinates of observed points are well-conditioned.
The remaining images are added one at a time ordered by
the number of matches [5], [36]. The Bundle Adjustment
technique is subsequently applied to refine and improve the
solution.

The density of the obtained scene geometry is enhanced
by exploiting the silhouette information in the input images.
The end result of this stage is a dense point cloud of the
scene to be reconstructed. A 3D surface mesh is obtained by
interpolating the 3D point cloud. The surface is then param-
eterized and a texture map is obtained by back projecting
the input images and fusing them together using graph-cut
techniques.

Figure 1 summarizes the stages of our image-based mod-
eling system.

Camera Parameter Estimation

v

Scene Geomeetry Refinement

Fig. 1. Stages of the reconstruction process.

B. Camera Parameter Estimation

The objective of this stage is to recover the intrinsic and
extrinsic parameters of each view. This is accomplished in
two steps: First, salient features are extracted and matched
across views. Second, the camera parameters are estimated

using Structure-from-Motion and Bundle Adjustment tech-
niques.

In our system we use the SIFT feature detector [23],
which transforms an image into a large set of local fea-
ture vectors, called SIFT features or SIFT keys. These
features are high-dimensional vectors that represent local
image measurements. Features extracted by SIFT are also
invariant to image transformations, and partially invariant
to illumination changes, noise, and camera positions. The
features are information rich, which makes it possible to
correctly match any single feature against a large database
of features with high probability [23], [22].

Once features have been detected and extracted from the
input images, they are matched in order to find pairwise
correspondences between them. This is achieved by using
a distance metric to compute the similarity of each feature
of a candidate image with features of another image. A small
distance signifies that the two key points are close and thus
similar. However, a small distance does not necessarily mean
that the points represent the same feature. For instance, the
corners of windows of a building look similar regardless of
whether two photos show the same or different parts of the
building. In order to accurately match a key point in the
candidate image, we identify the closest and second closest
key point in the reference image using a nearest neighbor
search strategy. If their ratio is below a given threshold, the
key point and the closest matched key point are accepted as
correspondences, otherwise the match is rejected [23], [22].

At this stage, we have a set of potentially matching
image pairs, and for each pair, a set of individual feature
correspondences. For each pair of matching images, we
compute Fundamental matrices using RANSAC. Erroneous
matches are eliminated by enforcing a geometric consistency,
which is known as the epipolar constraint. The epipolar
constraint requires that a pair of corresponding features in
two images, (z1,y1) and (z2,y2), satisfies the equation
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where F' denotes the Fundamental matrix, which defines a
bilinear constraint between the coordinates of corresponding
image points. Matched features that do not agree with the
epipolar constraint are discarded.

Given a set of matching images, the system estimates the
scene geometry and the motion information of the camera
simultaneously using the Structure from Motion technique
[35], [37], [5]. Once the structure of the scene and the motion
information have been estimated, they are further refined
using Bundle Adjustment.

The process begins with a pair of images being selected.
To improve the robustness of the process, this initial pair
must have a large number of matches, yet also possess
a relatively large baseline (the distance between camera
optical centers). Once the initial pair is selected, its Essential
matrix is approximated using the five-point algorithm. The
projection matrix can be then recovered by decomposing the



obtained Essential matrix. Feature tracks visible in the two
images are then triangulated, producing an initial set of 3D
points.

We then use an iterative process where we add in each
step the n images with the largest number of shared feature
tracks, whose 3D locations have already been estimated. In
our system the default is n = 3. Each new added image is
initialized with the same orientation, and focal length as the
image that it matches best. This has proved to work very
well even though images have different rotation and scale.
Bundle Adjustment is then used to refine the solution. This
procedure is repeated until no more images can be added.

Figure 2 demonstrates several stages of the SfM algorithm.
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Fig. 2. Several stages of the Structure from Motion process for the Rooster
dataset. Left: the initial two-frame reconstruction. Middle: an intermediate
stage after 20 images have been added. Right: the final result using 42
images.

C. Scene Geometry Enhancement

At this stage, we have successfully acquired both the
camera parameters and the scene geometry. Due to the
sparseness of the scene geometry, the surface and texture
reconstruction frequently produce artifacts. Most previous
works approached this problem by constraining the permissi-
ble object types or requiring manual hints for the reconstruc-
tion process. However, these requirements breach our goal
of creating an easy-to-use system capable of reconstructing
any type of object where shape and texture properties are
correctly captured by the input photos.

We improve the reconstruction results by exploiting the
silhouette information to further enrich the density of the
point cloud: First, the silhouette information in each image is
extracted using the Marching Squares algorithm [21]. which
produces a sequence of all contour pixels. To construct a
visual hull representation of the scene using an immense
silhouette contour point set will inevitably increase computa-
tional costs. In order to avoid this, the silhouette contour data
is converted into a 2D mesh using a Delaunay triangulation,
and the mesh is simplified using a mesh decimation algo-
rithm [27]. This effectively reduces the number of silhouette
contour points.

Each set of silhouette contour points together with the
camera parameters of that view form a viewing cone. The
visual hull of the scene can be created by a series of 3D
constructive solid geometry intersections of these viewing
cones. However, these 3D geometry intersections are non-
trivial and often computational expensive. Matusik et al. have
shown that equivalent results can be obtained using a ray-
casting technique [26]. The intersection of two viewing cones

A and B can be then calculated as follows: each viewing
ray of A (a ray that passes through the camera center and a
silhouette point of A) is projected onto silhouette B forming
a 2D line. This 2D line will intersect the silhouette contours
of B at certain points. These intersected points are then lifted
to 3D using a ray-tracing process yielding a set of 3D points,
which defines a face of the polyhedral visual hull.

Fig. 3. Lifting 2D silhouette points to 3D points.

This lifting process is achieved by shooting a ray from
the camera center of B through each of the intersection
point and computing the intersection point of this newly
created ray and the original ray. Figure 3 illustrates the
process. In practice two rays rarely meet at a single 3D
point due to noise and numerical errors. We hence use a
least-squares approximation instead. The 3D points generated
during this stage are merged together with the point cloud
from the previous stage forming a more comprehensive
geometric representation of the observed scene. Figure 4
shows the point cloud of our General dataset before and
after enhancement.

Fig. 4.

Left: The point cloud obtained using only the shape-from-
correspondence approach. Right: the results obtained by integrating the
shape-from-silhouette approach.



D. Surface Reconstruction

At this stage we have successfully obtained a quasi-dense
3D point cloud. The next step is to construct surfaces for the
point cloud. Our objective is to find a smooth closed surface
(without holes) that accurately approximates the underlying
3D models from which the point clouds were sampled. We
tested several surface reconstruction techniques including
the power crust algorithm [1], a-shapes [11], and the ball-
pivoting algorithm [3]. We decided to employ the Poisson
Surface Reconstruction algorithm [19], since it produces a
closed surface and works well for noisy data. In contrast to
many other implicit surface fitting methods, which often seg-
ment the data into regions for local fitting and then combine
these local approximations using blending functions, Poisson
surface reconstruction processes all the sample points at
once, without resorting to spatial segmentation or blending
[19]. Figure 5 demonstrates an example.

Fig. 5. The input dense 3D point cloud (left) and the resulting smooth
surface reconstructed with the Poisson surface reconstruction (right).

E. Texture Reconstruction

A high-resolution texture for the reconstructed 3D object
is obtained by parameterizing the 2D mesh and computing
a texture map.

a) Surface Parameterization: We tested surface pa-
rameterization algorithms provided by existing libraries and
tools, such as Blender. We found that they either required
manual hints, only worked for objects homeomorphic to a
sphere, or created a surface parameterization using many
disconnected patches. The latter result is undesirable since it
creates visible seams in the reconstructed texture, and since
it makes postprocessing steps, such as mesh reduction, more
difficult.

In order to use the resulting 3D models in a large variety of
applications and professional production pipelines, we need
a texture map which consists of a small number of patches,
which ideally correspond to geometric features (which can be
maintained in a postprocessing step such as mesh reduction).
The Feature-based Surface Parameterization technique by
Zhang et al. fulfills these criteria [39]. The algorithm consists
of three stages:

1. Genus reduction: In order to identify non-zero genus
surfaces, a surface-based Reeb graph [33] induced by the
average geodesic distance [18] is constructed. Cycles in the
graph signify the existence of handles/holes in the surface,
i.e., the surface is not homomorphic to a sphere. Examples
are donut and teacup shaped objects. The genus of the surface
is reduced by cutting the surface along the cycles of the
graph. The process is repeated until there are no more cycles.

2. Feature identification: Tips of surface protrusions
are identified as leaves of the Reeb graph. The features are
separated from the rest of the surface by constructing a closed
curve.

3. Patch creation: The previous two steps segment
the surface into patches which are homomorphic to a disk.
Patches are “unwrapped” using discrete conformal mappings
[10]. The algorithm first positions the texture coordinates of
the boundary vertices, and then finds the texture coordinates
of the interior vertices by solving a closed form system. Dis-
tortions are reduced by using a post-processing step, which
optimizes the position of interior vertices’ texture coordinates
by first computing an initial harmonic parameterization [12]
and then applying a patch optimization technique [34].

Figure 6 illustrates the resulting parameterization of our
Rooster model. Each disk in the 2D texture map corresponds
to a surface segment of the 3d model.

Fig. 6. The Rooster model segmented into patches (left) and the corre-
sponding regions in the texture map (right).

b) Texture Generation: The texture map for the param-
eterized surface is computed in three steps:

1. Identify regions of input images: The objective of
this step is to compute for each patch of the texture map
(the disks in the right-hand side image of figure 6) pixel
colors, which accurately represent the surface colors of the
3D object at the corresponding points. This is achieved by
projecting the corresponding surface patch, one triangle at a
time, onto all input images where it is visible. We call the
resulting section of the input image the backprojection map
and we call the resulting mapping between surface triangles
and input image regions the backprojection mapping. The
projection is only performed if the angle between a triangle’s
normal and the ray shooting from the triangle’s centroid to
the estimated camera position of the input image is larger



than 90°.

2. Texture map computation: The image regions
defined by the backprojection map define the color informa-
tion for the corresponding patch of the texture map. Using
backprojection mapping and the surface parameterization we
can compute for each triangle of the surface mesh a mapping
from the input image to the texture’s parameter space. The
algorithm is repeated for all patches of the reconstructed
surface texture region and yields a set of overlapping textures
covering the object.

3. Minimize seams between overlapping textures:
Seams between overlapping textures are minimized by us-
ing a graphcut algorithm [20]. We investigated different
parameters settings for image fusion applications and found
that Kwatra et al.’s cost function (gradient weighted color
distance) in combination with the RGB color space and the
L5 norm works well for most applications [9].

Figure 7 shows the texture map obtained by backprojection
surface patches onto the input images (right) and the resulting
textured 3D model (left). In many instances the input images
do not cover the entire surface of the object. For example,
in many of our experiments users forgot to make photos of
the underside of objects. In this case the 3D point cloud
contains large gaps. The Poisson surface reconstruction will
still create a smooth surface interpolating the gaps, but the
corresponding regions of the texture map have no color
information. In figure 7 these regions are indicated in red.

Figure 8 illustrates the level of detail obtainable with our
texture reconstruction process.

Fig. 7. The texture map obtained by backprojection surface patches onto
the input images (right) and the resulting textured 3D model (left). Regions
that were not visible in any of the input images are colored red.

IV. RESULTS

We tested our image-based modeling system using more
than 40 data sets of both indoor and outdoor scenes, and of
objects of different scale. Our system produces qualitatively
good results for both uniformly colored and feature-poor
objects, and for objects with concave regions and moderately
complex geometries. The size of our test datasets varied
from as few as 6 images to hundreds of images. All input
images were acquired with a simple consumer-level hand-
held camera, including a Smartphone camera. Our systems

Fig. 8. Texture reconstruction by computing vertex colors and interpolating
them (left) and the texture obtained using our approach (right). Note that
both images show the neck section of the rooster in figure 7. The cracks
in the image on the right reflect accurately the appearance of the object’s
material.

fails for objects which have viewpoint dependent surface
appearance, e.g., refractive and reflective materials within
complex environments. The following paragraphs present
three examples of our results.

Fig. 9. Three out of 37 input images of the horse model data set.

Fig. 10. 3D reconstruction obtained with the horse model data set illustrated
in figure 9.



A. Horse Model

The dataset consists of 37 images of a wooden horse
model. The images were acquired outdoors on a sunny day
and have a resolution of 2592 x 1944 pixels. Three of the
images are shown in figure 9. The original object has a
very smooth, reflective and shiny surface with few distinctive
visual features.

The resulting reconstructed model, shown in figure 10,
is of excellent quality and bears a high resemblance to
the original object. The resulting model consist of 329,275
polygons.
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Fig. 11.
set.

Two out of 27 input images of the miniature house model data

Fig. 12. 3D reconstruction obtained with the miniature house model data
set illustrated in figure 11.

B. Miniature House Model

This dataset, depicted in Figure 11, consists of 27 images
of a replica of the famous house in Alfred Hitchcock’s movie
“Psycho”. The images have a resolution of 2592 x 1944

pixels and were acquired with a consumer-level SONY DSC-
W180 camera under complex lighting condition (multiple
spotlights and diffuse lights). The model’s surface has a
complex shape with many small features and holes.

The resulting reconstructed object, shown in figure 12,
consists of 208,186 polygons and has an acceptable visual
quality. The detailed fence-like structure on top of the roof
and the tree leaves could not be accurately reconstructed
since they were too blurry in the input images. Hence
neither the shape-from-correspondence approach, nor the
shape-from-silhouette approach could create a sufficiently
high number of points for capturing the 3D geometry.

C. Elephant Model

The elephant model dataset in figure 13 (top) consists of
21 images. The images have a resolution of 2592 x 1944
pixels and were acquired with a consumer-level SONY DSC-
W180 camera in an indoor environment with relatively low
light. The object has a complex surface geometry with many
bumps and wrinkles, but few distinctive textural features. The
resulting 3D reconstruction, shown in figure 13 (bottom), has
198,857 faces and is of very good quality. The texture and
surface geometry of the object contain surprisingly accurate
surface details. This example illustrates that our system
performs well for objects with dark, rough surfaces and under
illumination conditions causing self-shadowing.

Fig. 13. Two out of 21 input images of the elephant model data set (top)
and the resulting 3D reconstruction (bottom).

V. CONCLUSION AND FUTURE WORK

We have described a novel image-based modelling system
creating high quality 3D models fully automatically from a
moderate number (20-40) of camera images. Input images
are unconstrained and uncalibrated, which makes the system
especially useful for low-cost and miniature mobile robots.



In contrast to laser scanners our system also works for shiny
and dark objects.

The system still has some drawbacks which need to be
addressed in future research. Missing regions in the texture
map occur if the input images do not cover the entire object.
We are currently working on texture inpainting techniques
to fill these regions [4], [31]. The techniques are likely to
fail for large missing patches, such as an inaccessible side
of a building. In such instances we propose to use exemplar-
based texture synthesis techniques we developed in previous
research [24].
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