
Efficient Modeling and Rendering of Turbulent Water over Natural Terrain

Nathan Holmberg∗and Burkhard C. Wünsche†

Graphics Group, Department of Computer Science
University of Auckland, Auckland, New Zealand

Abstract

Water phenomena are some of the most visually spectacular effects
found in nature. This paper presents an efficient hybrid method to
model turbulent water such as fast flowing rivers and waterfalls with
the intent that the model can be used as part of a larger environment
or scene. The model presented uses hydrostatic theory to incorpo-
rate a 2D height field and a particle system to model respectively
the main volume and spray of turbulent water. The user is able to
submit any environment formed from spheres and panels making
the solution very flexible and adaptable.

A smooth representation of the water surface is obtained by fit-
ting a uniform B-Spline surface to the height field. Foam, spray
and other turbulent effects are represented by particles which are
rendered as spheres or billboards. Our results show that the model
provides a nearly realistic simulation of turbulent water and for sim-
ple scenes nearly interactive speeds are possible which compares
favorably with alternative techniques. For non-interactive applica-
tions ray tracing can be used to obtain higher quality results.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: physically-based modeling, turbulent water, water
simulation

1 Introduction

The complexity and power of water flow in nature is both impres-
sive and beautiful. It is also a part of our everyday lives and so
well known to the human perception that unrealistic motion is eas-
ily discernible. It is no surprise therefore that much effort has been
applied in computer graphics to try to capture water in a convincing
way. This is far from trivial as most phenomena can be attributed to
complex rapidly changing molecular interactions, and as such are
beyond the modeling power of today’s computers. Instead com-
puter graphics researchers try to produce models with underlying
physical principles that create, as accurately as possible, large scale
approximations of these local interactions.

∗e-mail: nhol021@ec.auckland.ac.nz
†e-mail: burkhard@cs.auckland.ac.nz

Research on the simulation of the behavior of water has pro-
gressed from models which were only able to represent certain ef-
fects, such as the motion of deep water waves to the exclusion of
all else, to more general models with a firmer basis in hydrodynam-
ics capable of realistic motion that follows expected behavior in a
range of situations. These more recent models allow animators to
specify environments and start conditions and the model will do the
rest.

The purpose of this work is to build a general model with a focus
on the natural movement of rivers, rapids and waterfalls. As such
turbulence, spray, and the like should be accounted for while not
being treated as special cases. While not yet being complete and
fully realistic, our model has been able to produce results that show
its potential.

2 Previous Work

The earliest work on modeling water in computer graphics used
mathematical models and explicit functions to simulate surface be-
havior. Some, while obeying physical equations, were very inflex-
ible outside their intended scope such as the modeling of deep sea
waves by Schachter [Schachter 1980] while others tried to model
surface phenomena in 2D velocity fields [Neyret and Praizelin
2001].

Later work introduced rudimentary particle systems. Initially
particle interaction was ignored and particles simply bounced
around the environment [Reeves 1983; Sims 1990]. This produced
reasonable effects for waterfalls and other instances where particle
movement had enough energy to break the molecular level bonds
as needed. In particle systems the equations for interaction can be
complex and computationally expensive as each particle may be af-
fected by every other resulting in a computational complexity of
O(n2) which is unacceptably slow when dealing with hundreds of
thousands of particles. However, without inter-particle forces vol-
umes of water can not be modeled well and the usually identifiable
effects of adhesion and cohesion are missing. Some of the work
at modeling these effects includes Miller and Pearce’s [Miller and
Pearce 1989] connected particle system which used forces to im-
itate soft collisions based on the difference in particle’s positions.
This works well for viscous fluids, as intended by the authors, but is
unsuitable for the number of particles or scale necessary to model
large bodies of water.

Kass and Miller [Kass and Miller 1990] introduced column sys-
tems which use simplified flow equations, based on hydrostatics,
between columns and treat the water volume as a 2D height field.
This implicitly allows for the modeling of surface phenomena such
as waves and can efficiently model large bodies of water. O’Brien
and Hodgins [O’Brien and Hodgins 1995] extended this model by
incorporating the interaction with external objects and splashes.
However, a column’s height is still represented by one height vari-
able meaning that vertical isotropy is assumed and only very simple
(flat) environments can be used. Mould and Yang [Mould and Yang
1997] furthered this work by dividing each column into a user de-
fined number of cells, relaxing the assumption of vertical isotropy.
Another improvement was made by allowing for more complex en-

vironments.
Even with the use of cells, however, column systems are still

only two and a half dimensional models at best and many effects
such as the curling of waves cannot be reproduced. There has also
been some work at applying the 2D version of the Navier-Stokes
equations to column systems [Chen and Lobo 1995].

The most recently developed simulation methods use the full
Navier-Stokes equations to compute motion in a 3D grid of vox-
els, examples of which can be found in Enright et al. [Enright et al.
2002] and Foster and Fedwik [Foster and Fedkiw 2001]. The so-
lution is very expensive but also creates the most realistic effects.
It is obtained by calculating the velocity of the fluid flow out of
the 6 faces of each voxel using the pressure, temperature etc. of
each voxel. By calculating which voxels contain water, objects,
or air, extremely realistic simulations are obtained for complex en-
vironments. This method has been used in movies such as Shrek
and its difficulty is perhaps illustrated in Jeffrey Katzenberg’s state-
ment that the pouring of milk into a glass was the hardest shot in
the movie [Foster and Fedkiw 2001; Enright et al. 2002]. This ap-
proach does have its limitations of course with perhaps the largest
being the loss of information within cells, meaning that the grid size
plays an overly important role in the accuracy of the model.

3 A Hybrid Model for Turbulent Water

Initial tests with a particle only model showed that the computa-
tion time for such a system is prohibitive for large bodies of water.
Instead we chose to use different systems for spray and volume to
create a faster and more believable model.

3.1 Volume Model

Continuing the work of O’Brien & Hodges and Mould & Yang
[O’Brien and Hodgins 1995; Mould and Yang 1997] the volume
model, representing the main body of water in our model, is a col-
umn based system. Using columns holds the advantages of easy
surface creation as the top of all columns are known and less flow
calculations are needed so the system is less computationally inten-
sive.

Our model divides the environment into equally sized squares
which form the base of columns as in figure 1. All columns start
with a user defined height which then varies over time dependent
on the calculated flows. Source and sink columns are the only ones
to retain their heights allowing for in and out flows to the system.
Pipes are then created between each of the eight adjacent columns
and each cell that could overlap during the course of the simulation.
Pipes are also created between the cells of one column and the air
above the adjacent columns. At this point the system is ready to
begin simulation.

Figure 1: Columns generated for a sloped environment (a) with
pipes between columns (b).

The underlying basis for the flow equations that are used in this
simulation is the science of hydrostatics, which describes the pres-
sure of fluids at rest. The equations related with this approach are
simple, both to understand and to compute, and as a result are easy
to implement.

For any column in the grid the hydrostatic pressure can be calcu-
lated from the equation

Q = hρg+
1
2

ρv2 +(p0 +E)

which is based on the work of Bernoulli and where Q is the to-
tal pressure, h the height of the column, g the acceleration due to
gravity, ρ the density of the fluid, v the velocity of flow, p0 the
air pressure and E the pressure arising from external forces which
together form the pressure energy term. In this case the height of
the column is the height above some arbitrary point in the world so
long as the same point is used for all columns.

Using the pressure differences between cells it is possible to cal-
culate the acceleration and from that the flow that should occur be-
tween cells. The final equation for the flow velocity (η) through a
pipe is

η = f η0 +∆t

(
Qhead −Qtail

ρl

)

where l is the pipe length, f is a friction coefficient (as suggested
in [Mould and Yang 1997]), and η0 is the flow in the previous time
step. An interesting point to note is the lack of any viscosity param-
eter in this equation. This is because one of Bernoulli’s assumptions
is that the distances between points of measurement are so small
that viscous losses are negligible. Instead the friction coefficient
used allows energy to slowly escape from the system. While not
physically justified this parameter serves as an ad-hoc method of
including viscosity and we found that setting it to 0.995 gave good
results in our examples.

Using the flow calculated for the pipe the volume V of water that
should be moved through it is calculated by:

V = ∆tηC

where C is the cross-sectional area of the pipe, or the amount of
overlap between the cells. Because mass is to be conserved the
volume removed from one column is the same as that added to the
other. Care must also be taken not to allow a volume of less than
zero to occur.

This system is very fast considering the mass of water that is
being represented but there are several problems. Columns pose a
problem as a representation because one of the classical characteris-
tics of turbulence is that it is a three dimensional feature [Schachter
1980]. While using the “cells” given by Mould and Yang relaxes
the assumption of vertical isotropy the model is not capable of sim-
ulating certain situations such as vortices. A second problem arises
from the fact that turbulence is a feature of flow and not of the fluid
“at rest”. This means that while hydrostatics may be easy to use the
equations generated for flow are incomplete and ignore many of the
visible characteristics of water such as viscous shear stresses. This
is perhaps the largest flaw in the model and something that lends
itself to further research.

3.2 Spray Model

The spray model is used to model water as it breaks free of the
main volume of water. There is no easy physical solution to when
spray should be created and as such assumptions must be made in-
stead. Earlier work with column systems were concerned mainly
with generating splashes from hitting objects and as such used ver-
tical velocity thresholds for generating spray. Because we also want
to model waterfalls our assumptions use research about the heights

of wave crests before they become unstable. Thornton and Guza
determined that this occurs when the wave height is 0.78 of the wa-
ter depth [Thornton and Guza 1982]. This obviously allows water-
falls to form easily but also works for rapids as large flow velocities
form “spikes” of water that while erroneous are then turned into
spray due to their large heights.

The spray system begins its evolution when particles are gener-
ated. First the number of particles (or volume) needs to be deter-
mined. Using the formula to calculate flow through a weir [Badger
and Banchero 1955] it is possible to determine the required flow
rate ζ and hence the volume:

ζ =
2
3

BH
3
2
√

2g

where B is the base length, H the height and g the acceleration due
to gravity. The volume V to pass through in this time step is then
given by

V = ζ ∆t

This determines the number of particles to be created as all those
generated are of a user defined volume except the last which needs
to be the remainder of volume to be moved as mass must be con-
served and not created. Depending on the scale and resolution of
the model being used this can be set to achieve the best looking re-
sults. The position of the particles is also easily determined and is
set at a random position in the face that the particle is being gener-
ated from.

The final initial variable that is needed for each particle is veloc-
ity which is generated from the flow rate equation above. In this
case the velocity of flow through a column’s face is found to be
ζ/A where A is the face area of the water surface within a column.
Flows within the column structure may mean the velocity should
not be perpendicular to the front of the face; to account for this the
average flow from surrounding columns is used to give a direction
to the scalar velocity calculated above. In many cases the velocity
imparted to the particle should not only be horizontal but also in-
clude an initial vertical velocity. To do this the difference in total
height between the column for which particles are being generated
and the column behind is used in the classic formula

v2 = u2 +2as

Where v is the current velocity, u is the initial velocity, a the accel-
eration, in this case gravity, and s the distance covered. While only
an approximation this approach does manage to provide a more be-
lievable representation.

One of the methods that were initially considered to help cre-
ate the illusion of water pooling and incompressibility was the use
of cohesion. Intermolecular bonds are simulated by creating small
forces between water particles which attract and repel neighbors
in the effort of keeping an optimal distance apart. However, we
found that using cohesion within the particle system is inefficient
and inaccurate. Furthermore other authors suggest that cohesion is
unnecessary due to the water’s low viscosity so long as the move-
ment is turbulent, such as is the case with spray [Sims 1990; Stein
and Max 1998]. Consequently this extension was excluded when
the particle and column systems were combined and the only active
force during a time step is gravity.

It remains to deal with the collision detection for particles. The
collision detection with the water volume boundary is explained in
the next section. Collisions of particles with columns are detected
by computing the column the particle is above (or within) and by
comparing the particle’s y-coordinate value to the column height in
order to determine whether it should be absorbed into the column.
However, simply increasing the column’s volume and destroying
the particle was found not to be accurate enough as this can force

the column’s height up, often absorbing more particles in the pro-
cess. While this is not a problem for small scale splash effects con-
siderable problems occur when modeling, for example, waterfalls
where there are many particles hitting at any one time. After trying
to spread the volume of a colliding particle over several columns
it was found that by instead modeling the force of impact and sub-
sequent pressure increase in the column not only was the problem
reduced but more realistic effects were generated. The equations
used are the same as for external objects colliding with the water
presented in Mould and Yang [Mould and Yang 1997]. The force
on the object consists of two terms:

F = −vµ −V ρg

where v is the velocity of the object, µ is the viscosity, V the volume
of water displaced, ρ the density of the fluid and g the acceleration
due to gravity. The first term describes the force of the fluid on the
particle and the second is the force due to buoyancy. Because the
forces on the fluid must be equal but oppositely orientated to that
on the water droplet, this formula can then be used to determine the
force on the column. Using the formulas:

P = m/A and m =
F
a

we can calculate the resultant pressure of this force on the column,
stopping it from rising unrealistically.

4 Implementation

The previous section presented the underlying physics of our mod-
eling approach. This section explains several implementation de-
tails.

4.1 Particle System

Particles have a position, velocity, and mass but no volume. They
can be affected by forces, either from outside the system or from
other particles and can represent anything from rigid structures to
fluids (as described earlier).

Our particle system is based on the work by Witkin [Witkin
1994] and was written as general as possible to allow for later
extensions. All forces and environmental constraints are repre-
sented by interfaces that can be implemented as required. The sys-
tem itself implements the interface required by the solver and as
such represents itself as a point moving through 6n dimensional
space where n is the number of particles and the position and ve-
locity of each particles is represented by a 6-dimensional vector.
The derivative of each particle’s state vector [x1,x2,x3,v1,v2,v3]
is [v1,v2,v3, f1/m, f2/m, f3/m] where f is the force acting on the
particle. By representing the system as a point in 6n-dimensional
space, all forces between particles can be applied simultaneously so
that the system stays consistent for each time step.

Solving for a particular time step begins with the system calculat-
ing the initial forces acting on the particles. The particle system can
then pass itself to the solver method of choice. Because the solver
views f(x,t) as a black box (i.e., it doesn’t know how the function
is evaluated) it calls back for solutions at intermediately positions.
At these points the system recalculates the forces and responds ap-
propriately. After the new positions and velocities are determined
collision detection with the environment is performed. Panels de-
fined in the environment file are used as boundary conditions to stop
particles escaping. While any parallelogram is allowed as a panel
it is important to note that the collision detection used here is only
valid for rectangles. To find if a particle has passed a panel our al-
gorithm checks first using the following formula which side of the

panel the particle is on:

(p−v1) ·n ≤ 0

where P is the particles position, v1 is one of the vertices of the
panel and n is the unit normal of the plane on which the panel rests.
A further check is necessary to see if the particle also lies within
the rectangle described by the panel. If the four conditions below
hold true then the point is within the parallelogram:

(p−v2) · (v2 −v1) < 0

(p−v2) · (v2 −v3) < 0

(p−v4) · (v4 −v1) < 0

(p−v4) · (v4 −v3) < 0

where p is the particle’s position and v1, . . . ,v4 are the four vertices
of the rectangle in anticlockwise order. This is a simplification of
the equation to check which side of a line a point is. As the sign is
the only thing we are interested in it is more efficient to disregard
excess calculation. A final check is made to ensure the particle is
not “legally” on the other side of the panel. By tracing the particles
path back one time step and checking that the old position was “
correct” it can be assumed that the particle has indeed hit the panel.

As described in the previous section particles also have to be
tested as to whether they have hit the main volume of water. Be-
cause columns are stored in a 2D array in their physical order the
index (i, j) of the column where the particle k is above is computed
by

(i, j) =
(
(xk − xmin)N, (zk − zmin)N

)
where (xk,yk,zk) is the particle’s position, xmin and zmin are the sys-
tem’s minimum x and z coordinates, respectively, and N is the num-
ber of columns per unit length.

If the particle is outside the bounds of the column array or its ver-
tical position (y-coordinate value) is below all columns in the sys-
tem the particle is destroyed. Otherwise it is absorbed into the vol-
ume model as described previously. Finally each particle is checked
to ensure it hasn’t exceeded its lifetime after which the particle sys-
tem clock is increased by the time step given and the system is again
deemed stable. Initially, when the particle system was being used
exclusively, it was considered appropriate to try to model cohesion
between the particles to mimic molecular interaction. The first at-
tempt was to apply a simple spring with a limited area of effect.
This spring forced particles towards an equilibrium situation. This
then evolved through the application of the work done by Miller and
Pearce [Miller and Pearce 1989] to that shown in figure 2. These
forces were not found to be appropriate however as they made the
fluid appear too viscous to be believable for water. They were also
very slow.

4.2 Column System

As discussed above the volume model follows that used by Mould
and Yang [Mould and Yang 1997] closely. Before the system can
be used columns must be generated from the environment specified
and pipes must be created between all adjacent.

Using the same environment file format as that originally used
for the particle system, each shape is cycled through checking if
columns should be created. Spheres, used to represent rocks and
obstacles are considered first. For each sphere in the environment
a cross-section along the xz-plane is used. Taking the lower left
corner of a bounding rectangle each possible column position is
checked to determine if it is within the cross-section. For this an
approximation is used where each corner is checked to see if it is
inside, if two or more corners are inside then a column is created in
that position. The base height of each column created is found by

Figure 2: Particles (spray) with cohesion (left to right and top to
bottom).

determining the height of the center as it would be projected onto
the sphere.

Each panel is also cycled through to create columns although,
unlike spheres, each panel can serve one of three different purposes.
If the area, on the xz-plane, is zero and the panel is not a source
panel it is treated as a boundary panel for particle collision detec-
tion and is stored for use as such. Source panels also have no area
but columns are still created along the line described by the first
and second vertices. These columns have an initial height equal to
the difference between the first and third vertices’ y values which
is kept regardless of outflows. However, most panels act in much
the same way as all spheres by providing the ground environment
for the column system. In order to create columns the algorithm
checks all possible column positions within the bounding box of
the projection of the panel onto the xz-plane fits. To do this oppo-
site corners of the column position are tested as to whether they are
left of the lines v1v2, v2v3, v3v4, and v4v1. Each time a score is
incremented for each corner to the left of each line; if both corners
are outside a line then no column is created otherwise if the “score”
is above six (the opposite corners are outside of at most two lines)
then a column is created as appropriate. This method is only an
approximation but serves well in practice.

After each shape has been cycled through we have an unordered
array of columns. By sorting them into a 2D array so they are placed
according to their physical position a much better representation of
the environment can be made, and more efficient algorithms can be
used later. If there are two columns for any position then either the
higher or source column is taken.

Because the columns are stored in order the creation of pipes is
rudimentary. Each column is cycled through creating pipes in the
directions shown in figure 1 (b). As described in the model section
all possible pipes are created and then checked for validity later in-
stead of dynamically creating pipes in each time step. To increment
the system each pipe is cycled through with the intention of cal-
culating flow. If a pipe’s cross-section is less than 0 (i.e., the two
cells don’t overlap) nothing occurs, for those that do the flow and
volume to be moved are calculated and the cells are updated accord-
ingly. The user can choose the computational time step whereas the
display time step is set to 0.005.

5 Rendering

5.1 Rendering the Water Surface

Since the column heights in our model are represented by a 2D
array of points a smooth representation of the water surface is ob-

tained by using these points as the control points of a uniform B-
Spline surface. Figure 3 shows an example. Note that when using a
B-Spline interpolation the surface does not go through each control
point but is instead “pulled” toward them. However, for low order
B-Splines this approximation error is small. Since B-Splines have
numerous advantages over alternative interpolation methods, such
as fast rendering, local control and a high degree of continuity [Co-
hen et al. 2001] the representation seems to be the most appropriate
for our task.

Figure 3: Uniform B-Spline surface fitted to the water columns.

The B-Spline surface is rendered by tessellating it into polygons.
A fast display is achieved by using vertex arrays and display lists.
The tessellation of the B-Spline surface requires the computation of
surface points. For a regular sample grid the height h(u,v) of each
surface point can be computed by using a B-Spline reconstruction
filter

h(u,v) =
�u+m/2�

∑
i=�u−m/2�

�v+m/2�
∑

j=�v−m/2�
Bm(u− i)Bm(v− j)hi j

where m is the order of the B-Spline reconstruction filter and hi j is
the column height at the grid point (i, j). In our application we use
a quadratic B-Spline filter which is defined by

B3(x) =

(2x+3)2

8 −1.5 ≤ x<−0.5
3
4 − x2 −0.5 ≤ x<0.5

(2x−3)2

8 0.5 ≤ x<1.5
0 otherwise

Figure 4 illustrates a linear, quadratic and a cubic B-Spline filter.
Experimenting with the different order of the B-Spline filter sug-

gested that 3rd-order (quadratic) B-Splines are the most suitable
ones for our applications since they are sufficiently smooth while
still closely approximating the column positions. Figure 5 shows
a comparison of different order B-Spline surfaces. It can be seen
that linear B-Splines produce an in unrealistically rough surface
whereas 3rd and 4th-order B-Splines result in surface details being
lost. Higher order B-Splines also require more computation time
since the corresponding reconstruction filter has a larger support.

5.2 Improvements

In order to simulate water flowing down a dry river zero column
height values must be possible. We avoid erroneous zero height
water surfaces by moving control points slightly below the base
surface (and therefore out of view) if a column’s height falls below
a threshold.

-2 -1.5 -1 -0.5 0.5 1 1.5 2
x

0.2

0.4

0.6

0.8

1

y

Figure 4: Graphs of the linear B-Spline filter (solid line), the
quadratic B-Spline filter (dashed line) and the cubic B-Spline fil-
ter (dotted line).

Figure 5: The water surface approximated with B-Spline surfaces
of degrees one (a), two (b), three (c) and four (d).

One interesting benefit of using B-Spline surfaces is that nice ef-
fects can be achieved by offsetting control points slightly depend-
ing on the position of each column. This enables the simulation of
adhesion along boundaries and possibly viscous shear, two things
currently missing from the underlying model. Figure 6 shows an
example.

Figure 6: Original water surface (a) and the same surface with con-
trol points along the edges moved against the flow (b).

5.3 Ray Tracing for Increased Realism

The methods presented so far allow fast modeling and rendering
of turbulent water. However, some application require more realis-
tic images and we therefore also implemented a ray tracer for our
model. Rather than ray tracing the tessellated B-Spline surface the
B-Spline surface is ray traced directly using a technique suggested
by Martin et al. [Martin et al. 2000].

The method decomposes a ray into two planes P1 = (N1,d1)
and P2 = (N2,d2), the intersection of which is the original ray. The
intersection points with the B-Spline surface S(u,v) are the roots of
the function

F(u,v) =
(

N1 ·S(u,v)+d1
N2 ·S(u,v)+d2

)

A Newton solver [Press et al. 1992] is then used to iterate an initial
estimate for the intersection point with the B-Spline surface until
the solution is within an acceptable error. If the surface tangent at
an estimate is parallel to the ray no intersection between the tan-
gent and the ray planes is found and the solver fails. This occurs
if the Jacobian matrix J = (∂F

∂u , ∂F
∂v) is singular and in this case the

estimate is moved randomly a short distance away.
Our implementation, while heavily reliant on [Martin et al.

2000], differs from it due to the unique characteristics of our model.
First note that we can simplify the expressions for F and its partial
derivatives because in our case the B-Spline surface is a height field.
Also before employing the Newton solver we use an axis aligned
bounding box to check if the ray comes anywhere near the water
surface. Since the columns are axis aligned this check also returns
the first column to be tested for intersection with the ray. The scene
is the traversed in ray direction column by column until the first ray
intersection with the water surface is found (see figure 7).

Since the B-Spline surface must be within the convex hull of its
control points (i.e., the column heights) the ray surface intersec-
tion can be avoided in many cases. Otherwise the solver performs
up to five iterations and if no solution is found the next column is
checked.

5.3.1 Schlick’s Approximation

Water is a dielectric (not to be confused with conductive properties)
which means that the intensity of the refracted versus the reflected
ray varies according to the angle of incidence. In general as the an-
gle of incidence (θ) approaches zero the intensity of the refracted
ray equals the intensity of the original ray and the intensity of the
reflected ray goes to zero. The Fresnel equations are commonly

Figure 7: Traversal of water columns for ray tracing.

used to describe this relationship but are difficult to compute. As
such, the standard equations used in ray tracing are those proposed
by Schlick in [Schlick 1994] and are referred to as Schlick’s ap-
proximation. The approximation does not provide exact answers
and is only valid for unpolarized light but is suitable for our ap-
plication [Shirley and Morley 2003]. The equations describing the
relationship for reflectance (R(θ)) and transmittance (T(θ))are

R(Θ) = R0 +(1−R0)(1− cosθ)5

and from the conversation of energy

T (θ) = 1−R(θ)

where R0 is the base reflectance set by the user and cosθ is com-
puted from the dot product of surface normal and ray direction mak-
ing the formula computationally inexpensive. It should be noted
that this relationship is only used for transparent surfaces where re-
fraction is expected to occur in the model and its effect is discounted
for the ground panels and spheres etc. An example is shown in fig-
ure 8.

Figure 8: Refraction and reflection illustrated by using a ground
plane with a checkerboard pattern.

5.4 Rendering of Particles

The particle system in our model represents water which breaks
away from the water surface. Examples are small whitecaps on the

tops of waves, spray from water impacting on rocks, and laminar-
like flows over waterfalls. So far we have implemented two basic
methods shown in figure 9.

The representation in (a) uses small spheres with the radius (and
therefore the size) determined by the volume of water that the parti-
cle represents. Some effort was made to differentiate between types
of spray by using the velocity and “timeAlive” attributes of each
particle to alter the color and opacity of the representing sphere.
However the achieved effects were disappointing.

When using large numbers of particles ray tracing of the scene
becomes especially slow and we use a space subdivision scene
(BSP tree) to increase rendering speed.

Part (b) of figure 9 shows billboarded particles created by map-
ping a texture on a plane parallel to the view plane. Currently we
draw a particle as a circle with the radius again dependent on the
volume of water represented by it. In future we hope to achieve
more realistic effects by evolving the texture maps during the ani-
mation (e.g., the texture stretches in the flow direction).

Figure 9: Particles rendered with spheres (a) and billboards (b).

6 Results

Using hydrostatics and drawing on information from fluid dynam-
ics the model described in this paper is capable of creating realistic
effects for the simulation of rivers and waterfalls. The speed of the
model depends largely on the number of columns needed to cover
the area and the number of particles in the scene. For example the
simple river scene shown in figure 9 runs on a 1.4GHz PC with-
out optimizations at 1 frame every 15 seconds with 13000 columns,
each with 4 cells and just over 3700 particles. Most of this time
is required for computing the next time step whereas the rendering
alone takes only about 1.2 seconds.

The main drawback of the current model is the lack of viscous
shear forces which is needed for creating eddies and visual effects
such as shock waves around rocks and near the edges of the river.
Also we haven’t yet incorporated spray from water particles hitting
columns too hard. In reality this often causes a semi permanent area
of white water and mist around the base of a waterfall.

7 Conclusion

Using hydrostatics and fluid dynamics our model is capable of cre-
ating recognizable effects for the simulation of rivers and water-
falls. The speed of the model depends largely on the number of
columns needed to cover the area and the number of particles in
the scene. We are currently implementing more advanced implicit
ODE solvers and current research indicates that this might lead to
an order of magnitude improvement in speed which gets close to
achieving interactive speeds.

For real time applications a polygon renderer can be used to dis-
play the tessellated B-Spline surface. Texture splats seem to be the
most promising approach for representing spray and foam. We are

currently investigating the use of illuminated streamlines for ren-
dering other particle effects such locally laminar flows which occur,
for example, in some types of water falls.

A photo realistic representation can be achieved by ray tracing
the scene. Current results indicate that this takes at least two order
of magnitudes more time than the polygon rendering approach and
it should only be used for the final production step of non-real time
applications.

References

BADGER, W. L., AND BANCHERO, J. T. 1955. Introduction to
Chemical Engineering. McGraw-Hill Book Co.

CHEN, J. X., AND LOBO, N. D. V. 1995. Toward interactive-rate
simulation of fluids with moving obstacles using Navier-Stokes
equations. Journal of Graphical Models and Image Processing
57, 2 (Mar.), 107–116.

COHEN, E., RIESENFELD, R. F., AND ELBE, G., Eds. 2001. Ge-
ometric Modelling with Splines: An Introduction. A K Peters,
Ltd., June.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. An-
imation and rendering of complex water surfaces. In Proceed-
ings of ACM SIGGRAPH 2002, Computer Graphics Proceed-
ings, Annual Conference Series, 736–744. http://graphics.
stanford.edu/papers/water-sg02/.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of
liquids. In Proceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, 23–30.

KASS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics
for computer graphics. 49–57.

MARTIN, W., COHEN, E., FISH, R., AND SHIRLEY, P. 2000.
Practical ray tracing of trimmed nurbs surfaces. Journal of
Graphics Tools 5, 1, 27–52.

MILLER, G., AND PEARCE, A. 1989. Globular dynamics: A con-
nected particle system for animating viscous fluids. Computers
and Graphics 13, 3, 305–309.

MOULD, D., AND YANG, Y.-H. 1997. Modeling water for com-
puter graphics. Computers and Graphics 21, 6, 801 – 814.

NEYRET, F., AND PRAIZELIN, N. 2001. Phenomenological sim-
ulation of brooks. In Computer Animation and Simulation ’01,
Springer Computer Science, 53–64. Proceedings of the Euro-
graphics Workshop in Manchester, UK, September 2–3, 2001.

O’BRIEN, J. F., AND HODGINS, J. K. 1995. Dynamic simulation
of splashing fluids. In Proceedings of Computer Animation ’95,
IEEE Computer Society, 198–204. http://www.cc.gatech.
edu/gvu/animation/papers/water.pdf.

PRESS, W. H., VETTERLING, W. T., TEUKOLSKY, S. A., AND
FLANNERY, B. P. 1992. Numerical Recipes in C - The Art of
Scientific Computing, 2nd ed. Cambridge University Press. URL:
http://www.library.cornell.edu/nr/bookcpdf.html.

REEVES, W. T. 1983. Particle systems – a technique for modeling
a class of fuzzy objects. ACM Transactions on Graphics 2, 2
(Apr.), 91–108.

SCHACHTER, B. J. 1980. Long crested wave models. Journal
of Computer Graphics and Image Processing 12, 2 (Feb.), 187–
201.

SCHLICK, C. 1994. An inexpensive BRDF model for physically-
based rendering. Computer Graphics Forum - Proceedings of
Eurographics 1994 1, 3, 233–246.

SHIRLEY, P., AND MORLEY, R. K. 2003. Realistic Ray Tracing,
2nd ed. A K Peters, Ltd.

SIMS, K. 1990. Particle animation and rendering using data parallel
computation. Computer Graphics 24, 4 (Aug.), 405 – 413.

STEIN, C. M., AND MAX, N. L. 1998. A particle-based model for
water simulation. Technical report UCRL-JC-129378, Lawrence
Livermore National Laboratory, Jan. URL: http://www.llnl.
gov/tid/lof/documents/pdf/233792.pdf.

THORNTON, E. B., AND GUZA, R. T. 1982. Energy saturation
and phase speeds measured on a natural beach. Journal of Geo-
physical Research 87, C12, 9499 – 9508.

WITKIN, A. 1994. Particle system dynamics. In SIGGRAPH ’94,
course notes #32 - An Introduction to Physically Based Model-
ing. July.

