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Medical data sets now comprise a diverse range of measurements
such as tissue densities, sensitivity to magnetization, blood flow
velocity, and material strain. The size and complexity of medi-
cal data sets makes it increasingly difficult to understand, compare,
analyze and communicate the data. Visualization is an attempt to
simplify these tasks according to the motto “An image says more
than a thousand words”. Representing complex material properties,
such as strain, as a single image improves the perception of features
and pattern in the data, enables the recognition of relationship be-
tween different measures and facilitates the navigation through and
interaction with complex and disparate sets of data.

This paper introduces a toolkit developed for exploring complex
biomedical data sets. The contributions of this paper are threefold:
we suggest a modular design which facilitates the comparison and
exploration of multiple data sets and visualization. We introduce a
novel field data structure which allows interactive creation of new
fields and we present boolean filters as a universal visualization
tool.

CR Categories: I.3.8 [Computer Graphics]: Applications; I.3.6
[Computer Graphics]: Methodology and Techniques—Graphics
Data Structures and data types; J.3 [Computer Applications]: Life
and Medical Sciences

Keywords: visualization, user interfaces, biomedicine, tensor
fields
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The past decades have seen the introduction of a variety of medical
imaging modalities such as as magnetic resonance imaging (MRI),
computed tomography (CT), positron emission tomography (PET)
and ultrasonography. In recent years this development has acceler-
ated and a variety of new techniques for measuring tissue proper-
ties, fiber orientation and functional processes have been proposed
[Tempany and McNeil 2001]. Consequently the available medical
data sets now comprise measurements ranging from scalar fields
such as tissue density (x-ray) and water content (MRI) to vector
fields, such as blood flow velocity [Nayler et al. 1986], and tensor
fields such as myocardial strain [Young et al. 1994b] and cellular
water diffusion [Basser et al. 1994; Basser 1995].
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The size and complexity of medical data available today makes
it difficult to analyze and to understand them. This is particularly
true for multi-dimensional data such as vector and tensor fields, and
for the simultaneous analysis of multiple data sets such as MRI,
PET and CT. The understanding of the data can be improved by
visualizing it.

A wide variety of visualization applications exists. The most
popular applications are programming frameworks which cover di-
verse visualization tasks but can also be customized for specialized
assignments. Popular visualization environments, such as AVS,
IRIS Explorer, OpenDX (formerly IBM Data Explorer) and VTK
exhibit modular and extensible components comprising the entire
visualization process from data input and transformation to ren-
dering. The underlying visualization model (data flow paradigm)
consist of three processes:Filtering maps data into data,mapping
converts the resulting data into geometric primitives andrendering
creates images from these primitives.

We are particularly interested in the visualization of biomedical
finite element models which are becoming increasingly important
for understanding and simulating organ function and diseases [Bro-
Nielsen and Cotin 1996; H¨ohne et al. 1996; Sagar 1996; Hunter
et al. 1993]. Using the finite element data structure allows the def-
inition of tissue properties in material coordinates, enables the se-
lection of important structural components of the modeled organ
(such as the inside or outside surface of the heart) and facilitates
the computation of performance measures.

Most closely related to our research isAmira, originating from
the Department for Scientific Visualization of the Konrad-Zuse-
Zentrum für Informationstechnik Berlin (ZIB), Germany [ZIB -
Konrad-Zuse-Zentrum f¨ur Informationstechnik Berlin, Germany n.
d.]. Amira is an integrated 3D visualization and volume modelling
program for medicine, biology, and engineering. The program sup-
ports multiple coordinate systems, curvilinear grids, and creation of
grids for FE simulation. Processing of 3D image data is supported
by automatic and interactive segmentation tools. Advanced vector
field and volume visualization tools are available and an expandable
development version has been released.

In this paper we introduce a new toolkit for visualizing biomed-
ical data. Our research concentrates on novel features which ac-
cording to our knowledge are not or only partially supported in the
previously mentioned tools. The paper commences with an intro-
duction of finite element models and presents as example a model of
the left ventricle of a human heart. This is followed by an overview
of our toolkit and a presentation of some novel features. In detail
we introduce a novel field data structure, tools for element, plane,
and point selection, and a universal filter tool. We conclude with a
short discussion of important issues considered when designing the
colour map control and the rendering control of this toolkit.
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Much of the functionality of our toolkit makes use of the geometry
and associated data structures of a finite element model which are
explained in the following. The geometry of afinite element (FE)
model is described by a set of nodes and a set of elements, which
have these nodes as vertices. The nodal coordinates are interpolated



over an element usinginterpolation functions. Curvilinear elements
can be defined by specifying additionally nodal derivatives.

As an example of a finite element consider the cubic Hermite-
linear Lagrange element in two dimensions shown in figure 1 (b).
We first specify a parent element, shown in part (a) of the fig-
ure, which is a square inξ -parameter space. The coordinatesξi
(0� ξ1�ξ2� 1) are called the element ormaterial coordinates. The
value of some variableu (e.g., temperature) at the material coordi-
natesξ is then specified by interpolating the variablesui linearly in
the given parameter direction. In our example we assume that addi-

tionally derivatives inξ1-direction
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�i � 1� � � � �4� are speci-

fied at the element nodes. In this case a cubic Hermite interpolation
is performed in that coordinate direction.
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Figure 1: A cubic Hermite-linear Lagrange finite element.

The cubic Hermite-linear Lagrange interpolation ofu over the en-
tire 2D parameter space is then defined by the tensor products of
the interpolation functions in each parameter direction:
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where
L1�ξ � � 1�ξ , and L2�ξ � � ξ (2)

are the one-dimensional linear Lagrange basis functions, and

H0
1�ξ � � 1�3ξ 2�2ξ 3

� H1
1�ξ � � ξ �ξ �1�2 (3)

H0
2�ξ � � ξ 2�3�2ξ �� H1

2�ξ � � ξ 2�ξ �1�

are the one-dimensional cubic Hermite basis functions.
The geometry of an element in world coordinates (figure 1 (b)) is

obtained by specifying the world-coordinatesvi and theξ1-tangents�
∂v
∂ξ1

�
i
�i� 1� � � � �4� of the element vertices and interpolating them

as above.
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The Department of Physiology of the University of Auckland has
created a model of the human left ventricle and the associated strain
tensor field usingtagged Magnetic Resonance Imaging (tagged
MRI). The geometry of the left-ventricle, shown in figure 2, is de-
scribed by 16 finite elements and uses bicubic Hermite interpolation
in circumferential and longitudinal directions with linear interpola-
tion in radial direction [Young et al. 1994b; Young et al. 1995].

Figure 2: Finite Element Model of a healthy (left) and a diseased
(right) left ventricle.

The authors obtain the ventricular geometry by tracing ventricu-
lar contours on MRI slices and by fitting the FE mesh to it. Strain
information is obtained from tagged MRI images. When the heart
deforms the tag lines deform with it making it possible to compute
the displacement field of the myocardium from which the strain
tensor is derived [Young et al. 1994a]. The strain field is defined
as a regular grid of 10�10�6 sample points over the material co-
ordinates of the tensor. The strain tensors themselves are defined
with respect to the material coordinate system of the corresponding
elements.

The left ventricular model is used to demonstrate several of the
features of our toolkit which is introduced in the next section.
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The top-level control of the visualization toolkit manages lists of
models, visualization controls, visualization windows, rendering
controls, and colour maps which are used for the creation of vi-
sualization icons. Figure 3 shows a screen shot of the toolkit at
work.

Figure 3: An example of the visualization toolkit at work. The
image shows the toolkit control at the top-left, 2 visualization win-
dows partially covered in the middle, 2 visualization controls at the
left, and one rendering control in the top-right and the colour map
control partially covered in the bottom-right.



Themodel used in our toolkit is always a finite element model.
If the visualized data is not associated with a FE model a single
trilinear element representing the bounding box of the data volume
is used as a default model.

The visualization control contains a display list ofvisualiza-
tion icons and a set of transformation parameters. Visualization
icons are high-level graphic primitives representing a visualiza-
tion. Our toolkit implements most common icons such as particle
systems, vector glyphs, streamlines and streamtubes, hyperstream-
lines, colour mapped surfaces, height fields, tensor glyphs and var-
ious types of line integral convolution textures. Annotations used
to identify features and to explain relationships can also be created.
Examples are legends, labels, and markers.

Transformations are necessary to align two data sets, e.g., MRI
and PET data, or to represent two models, such as a healthy and a
sick heart, at the same scale. The model visualization also contains
data fields associated with the model (including any interactively
defined new measures) and a list of element, plane and point sets
used to define the location of visualization icons. The advantage
of this design is that the user can simultaneously run two visualiza-
tions (e.g., from two different research groups) with different icons
and fields for the same model.

A visualization window displays a model visualization with ren-
dering parameters provided by a rendering control object. A ren-
dering control contains a view, a trackball, lighting information,
mirrors, and global clipping planes. The same rendering control
can be used for different windows which is useful, for example,
when comparing two different models. Vice versa the same model
visualization can be displayed in different windows with different
rendering parameters, for example, in order to display two different
sides of the model simultaneously or in order to give a global and a
detail view. Each model visualization is associated with exactly one
model. A model can have several model visualizations which en-
ables the user to display different visualizations of the same model
at the same time.

The toolkit contains a list of colour maps which are used by the
visualization icons in a model visualization. The decision to make
the colour maps “global” was motivated by users who found it eas-
ier to interpret visualizations when identical colour maps were used
for different visualizations of the same or different models. A typ-
ical example is the comparison of the strain fields in a sick and a
healthy left ventricle.

The top-level control of the toolkit, shown in the top-left of fig-
ure 3, displays the relationship between its components graphically
and allows the user to hide, show, add and delete additional com-
ponents. The entire visualization toolkit was written in C++ using
OpenGL and FLTK, a LGPL’d C++ graphical user interface toolkit
for X (UNIX), OpenGL, and WIN32 (Microsoft Windows NT 4.0,
95, or 98) [Spitzak n. d.].

In the following we explain several of the novel features of this
toolkit in more detail and show examples how they can be employed
to create effective visualizations.
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If the model geometry is defined by finite elements it is possible
to efficiently compute various volume, surface and length mea-
sures. The volume of a single element is obtained by integrating
the identity function over the finite element in world coordinates.
The calculation is simplified by using the substitution rule of multi-
dimensional integration [Heuser 1981, p.478]

�
g�T �

f �x� dx �
�

T
f �g�x���detJg�t�� dt (4)

where f is the identity function,T is the unit cube representing the
domain of the parent element,g is the transformation function from
ξ -coordinates to world coordinates andJg is its Jacobian. The re-
sulting integral can be evaluated efficiently using Gaussian Quadra-
ture [Burnett 1987]. Depending on the degree of the polynomial
interpolation functions it is possible to determine the degree of the
ξ -coordinates in the polynomial integrand. For example, if a cubic
Hermite interpolation is used 5 gauss points in the corresponding
coordinate direction are sufficient to achieve exact integration.

As an example consider the heart model at end-diastole (maxi-
mum expansion) and end-systole (maximum contraction) shown in
figure 4. An important measure is the volume and the fraction of
ejected blood. Using our toolkit it is possible to model the left-
ventricular cavity by finite elements. This is done be creating cen-
troids for any four vertices on the surface of the ventricular cav-
ity with common longitudinalξ -coordinate. Connecting these cen-
troids to the corresponding points on the cavity surface results in 16
finite elements for the left ventricular cavity. Applying the above
computation to the elements forming the cavity yields the desired
results.

Figure 4: Left ventricular cavity of the healthy heart at end-diastole
(left) and end-systole (right).

Similar methods to compute surface and length measures are also
implemented [W¨unsche 2002b].
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While the domain of a visualization is always a finite element model
fields can be specified independent of that. For example, in some
application it is desirable to mix a numerical model of an organ
with MRI and CT raw data, which are usually specified in Cartesian
device coordinates.

When combining fields specified in different coordinate systems
a mapping between coordinate systems must be accomplished. The
mapping from material to world coordinates is achieved by using
the finite element interpolation. The reverse mapping requires a
multi-dimensional Newton method [Press et al. 1992]. We found
that 3 iterations are usually enough to find a material point inside
an element for a given point in world coordinates.

Using this mapping makes it possible to use fields with different
domains and to combine them using various operators. The data
structure for a field variable consists of an abstract field class that
is first subclassed into a (symmetric) tensor field, a vector field, a
scalar field, and a generaln-d field class as shown in figure 5. These
classes contain attributes and methods common to their subclasses.
For example, for every symmetric tensor field the algorithm to com-
pute eigenvectors and eigenvalues is identical, and for every vec-
tor field it must be distinguished whether it is signed or unsigned.
All of these classes are then subclassed intodefined fields, derived
fields, analytic fields, or expression fields.



A defined field is associate with a sampling grid and a set of
interpolation functions. The interpolation functions chosen for a
derived field depend on the spatial variation and continuity require-
ments of the field. In particular the interpolation functions for de-
rived fields are not necessarily the same as the ones used to inter-
polate the geometry of the underlying model.

A derived field is associated with a parent field and contains
a function specifying how a field value is derived from the cor-
responding parent field value. As an example consider an eigen-
value field which has a tensor field as a parent. The eigenvalue field
contains a link to the associated tensor field, a variable specifying
whether the major, medium, or minor eigenvalue is selected and a
method to compute the eigenvalue at a point. Other examples of de-
rived fields are eigenvector fields (major, medium, or minor), vector
length fields, vector angle fields (specifying the angle with any of
the world or material axes), gradient fields, and vector and tensor
component fields. For most FE models the user is interested in the
components of a tensor with respect to the material coordinate sys-
tem of the model so that a basis transformation is performed if the
tensor is defined with respect to a different coordinate system.

Figure 5: Top-Level class diagram of the field data structure.

Figure 6: Class diagram of (a subset of) the scalar field data struc-
ture.

An analytic field is specified by an algebraic function defined
over a domain in world coordinates or element coordinates. This
type of field proves useful when creating test cases for our visual-
ization algorithms and can be used in applications where the ana-
lytic solution to a problem is known.

Finally an expression field contains an arithmetic expression tree
where the leaves are numeric constants or are fields themselves.

Figure 6 demonstrates the subclassing of the field data struc-
ture in figure 5 by showing a subset of the scalar field class hier-
archy. Note that the computation of the gradient function is imple-
mented in subclasses since the most suitable computational method
depends on the type of a field. For a regular trilinearly interpolated
sample grid finite differences can be employed, for analytic func-
tions a numerical differentiation can be used and for higher-order

finite element meshes the derivatives of the interpolation functions
can be used to obtain the gradient of the field.

The advantages of our field data structure are threefold:

� We eliminate problems with the interpolation of derived val-
ues. For example, directly interpolating the eigenvalues of
a tensor over a finite element gives usually the wrong re-
sults. Instead we rather interpolate the tensor and compute
the eigenvalues from the resulting tensor.

� We can combine arbitrary fields through arithmetic functions
(e.g., the difference between two scalar fields) even if they
are defined over different grids. Similarly, we can interac-
tively derive new fields by choosing a parent field for a derived
fields.

� No additional sample errors are introduced as would happen,
for example, when sampling an analytic field in order to create
a new field over a given fixed grid structure.

� Entities defined over a finite element grid can be represented
with respect of either the world coordinates or the material
coordinates. This choice of representation increases the power
of the visualization (see [W¨unsche 2002b]).

The disadvantage of the described field structure is that the compu-
tation of a derived field value is slower than if the field values were
precomputed at sample points.
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The graphical user interface for field creation, pictured on the right
of figure 7, contains three output text components listing the cur-
rently defined scalar, vector and tensor fields. The user can create a
new field by typing a simple mathematical expression into the input
text field below.

Figure 7: The control window for a model visualization (left) and
the user interface for creating new fields (right).

Currently an expression can contain the following components:

Scalar field: Expressions for selecting eigenvalues and compo-
nents of tensors, components of vectors, numerical constants,
binary operators (+,-,*,/,ˆ), unary operators (sin, cos,...), vec-
tor length, trace, angle of a vector with thex,y,z,ξ1,ξ2, or ξ3-
coordinate axis.



Vector field: Expressions for selecting eigenvectors of a tensor,
gradient of a scalar field, binary operations (+,-,*), vector con-
stants.

Tensor field: binary operations (+,-,*), tensor constants.

We have also implemented a conditional expression
�����������	
����
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Currently the conditions are restricted to boolean expressions
containing scalar fields and comparison operators only. Section 7
demonstrates how such an expression can be used for the visual
segmentation of an image.

Figure 8: The visualization of the field defined in figure 7 (left) and
the user interface used to edit an expression field (right).

The left part of figure 8 shows a visualization obtained by using
the field in figure 7. If the user is not satisfied with the result the
expression field can be edited in the modification window shown
on the right of figure 8. Using the update button of the model con-
trol (figure 7 left) the user can recompute any visualization icons
dependent on that field.

Expression fields also offer a convenient way to create visualiza-
tions for multiple versions of a fieldF. In order to do this define
a new fieldE equal to one version of the fieldF and useE to de-
rive other fields which are then visualized. If we want to visualize
a different version ofF, sayF’, it’s sufficient to setE equal toF’
and to update all visualization icons. This property is useful, e.g.,
when comparing visualizations for raw and smoothed versions of
the same data set.

Figure 9: Defining a macro and using it to create a new field.

Frequently used expressions can be saved as a macro and the

macro name can then be used during field creation. An example is
given in figure 9.
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When visualizing a data set visualization icons must be created for
selected elements, surfaces or points of interest. Rather than requir-
ing the user to specify the domain of an icon each time a new one
is created the toolkit keeps a list of previously selected sets of ele-
ments, surfaces and points. For example, when examining the left
ventricle (figure 2) medical specialists are particularly interested in
its outside surface (endocardial surface), the inside surface (epicar-
dial surface) and the surface in the middle of the heart wall. Using
the selection data structure the user can define these surfaces and
reuse them for different visualization icons such as colour mapped
surfaces and line integral convolution textures.
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A collection of elements can be specified as a range of element in-
dices, a list of element indices, as elements enclosed by a bounding
box, and as elements intersected by a plane. Examples of the vari-
ous selection mechanisms are given in figure 10.

A range of elements proves useful for applications where most or
all of the elements of the model are selected. The element list and
bounding box are usually employed for selecting a small region of
interest. The set of elements intersected by a plane proves useful
for the definition of colour mapped surfaces and height fields.

Figure 10: Examples of various element sets. From left to right: a
range of elements, elements enclosed by a bounding box, elements
intersected by a plane, and elements specified as a user defined list
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Planes can be specified in material and world coordinates. A plane
in material coordinates is characterized by a constantξi-parameter
�i � 1� � � � �3� and in case of curvilinear elements becomes a curved
surface in world coordinates. The user can specify the range of
elements for the plane using an previously defined element set.

A plane in world coordinates is either interactively positioned by
the user or is specified as a plane parallel to the coordinate planes.
In the latter case the rendered section of the plane is obtained by the
intersection with an enlarged bounding box of the model. Examples
of the various selection mechanisms are demonstrated in figure 11.
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Many visualization icons work best by distributing them randomly
or regularly over a region of interest. Typical examples are vector
arrows or the seed points of streamlines. A set of points can be
defined as a regular grid, a random selection of points, or an explicit
listing of points. Any of these definitions can be performed either
in material space or in world coordinates.

A regular grid in material space is specified by a set of elements
and the number of points in each material coordinate direction. In



Figure 11: Examples of various plane sets (all colour mapped with
the principal strain). From left to right: material coordinate planes
(ξ3 � 0) selected for all elements, a plane orthogonal to the world
coordinate z-axis, an interactively defined plane in world coordi-
nates.

world coordinates a regular grid is defined by a bounding box and
the number of points in each coordinate direction. A selection of
random points is specified by the total number of points. If points
are randomly distributed over the material space a set of elements
must be specified, whereas for random points in world space a
bounding box is required. Finally a list of sample points can be
specified directly either by their world coordinates or by element
IDs and the correspondingξ -coordinates.

Points can also be regularly or randomly distributed over a plane
specified in either material or world coordinates. Regular 2D grids
are well suited as start points for a bundle of streamlines or hy-
perstreamlines. The divergence or convergence of initially parallel
sreamlines gives information which would be hard to observe when,
for example, starting streamlines at random points.

When enumerating points defined over a world coordinate do-
main samples outside the model domain are skipped. Examples are
given in figure 12.

Figure 12: Examples of methods for point sampling. From left to
right and top to bottom: regular grid in material coordinates, ran-
dom points in material coordinates, random points in material co-
ordinates volume weighted, regular grid in world coordinates, and
random points in world coordinates. The first three methods employ
an element selection mechanism, the last two methods a bounding
box in world coordinates.

Points specified in material coordinates are usually more effi-
cient since they can be used immediately as parameters of the field
interpolation functions (if the field uses a FE interpolation). In con-
trast, a world coordinate point must be transformed into material
coordinate first. Samples in material coordinates may also result in
a more informative visualization since the material space often cor-
responds to the underlying structure of a model (e.g., the anatomic
structure of the ventricle). A disadvantage of sample point speci-
fied in material space is that sample density in world coordinates

varies according to the volume of an element (top-left of figure 12).
Note, however, that this effect is sometimes desirable since small el-
ements are frequently used in finite element modelling to represent
regions with large field variations which are of particular interest to
the user.
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In many instances visualization icons are only required in regions
with interesting field properties. Such regions can be specified by
usingfilters which are boolean expressions defined over the model
domain containing three types of terms: a comparison between
scalar fields or constants, e.g., “density�x� � 0�5”, a range expres-
sion, e.g., “0� density�x�� 1”, or a probabilistic expression where
the probability that the expression is true is determined by the value
of a scalar field. The maximum value of the scalar field gives a
probability of one and the minimum value a probability of zero.

The toolkit uses filters for three tasks: The first task is the def-
inition of point selections. Any of the previously introduced point
selection mechanisms can be supplemented with a filter. A sam-
ple point is selected only if the boolean expression at that point is
true. This tool is useful for the creation of visualization icons at re-
gions of interest, e.g., points where the blood flow velocity exceeds
a certain limit.

The second task is the definition of conditional expressions in
the field data structure introduced in section 5. All conditions of
such an expression are represented by filter objects.

We have used conditional expressions for the visual segmenta-
tion of data sets. For example, using the mean diffusivityλmean
and the diffusion anisotropyλanisotropy of diffusion tensor data
[Wünsche and Lobb 2001b] it is possible to characterize three types
of brain tissue by

λsegmented �

����
���

1 if λanisotropy � 0�25
2 if λmean � 10�3

3 if λmean � 10�3 andλanisotropy � 0�25
0 otherwise

The expression represents a conditional field and can be visualized
using a colour map with different hues for the values 0,1,2, and 3.
The conditions for the values 1,2, and 3 are chosen so that they
indicate white matter, cerebral spinal fluid and gray matter, respec-
tively. Figure 13 (b) shows the resulting segmentation using the
colours red, green and blue, respectively. The user can interactively
adjust values to improve the segmentation result.

Figure 13: (a) Horizontal slice of the brain segmented into regions
of white matter, gray matter, and fluid filled compartments. (b)
Visualization of the nerve fiber structure of the brain using stream-
tubes.



Finally filters are also useful for specifying the shape of a visu-
alization icon. For example, when defining streamlines and stream-
tubes filters can be used as an integration condition. The integration
along a vector field is continued as long as the filter at the current
point is true. Figure 13 (b) shows the result of using this tool for
the extraction of the nerve fiber structure from a diffusion tensor
data set [W¨unsche and Lobb 2001b]. Streamtubes are integrated in
the maximum diffusion direction of cellular fluid until the average
diffusivity or diffusion anisotropy falls below a given thresholds.
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A popular method to visualize a scalar field over a one-dimensional
or two-dimensional domain is colour mapping (e.g., [Cox 1988]).
The technique associates a range of scalar field values with a colour
spectrum and displays it by rendering the domain of the scalar field
in the appropriate colours. Colour maps can also be used to map
scalar information onto other visualization icons such as stream-
lines and streamtubes.

The visualization toolkit contains a global list of colour maps
which can be used for multiple icons of the same or different mod-
els. A colour map consist of a colour spectrum, a range of field
values associated with the spectrum, and a default min and max
colour indicating values above or below the specified range.

A selection of colour spectra implemented is shown in the left
part of figure 14: spectra with hue variations only, such as the rain-
bow colour scale, are best suited for illuminated surfaces since the
surface shading variations do interfere with the brightness varia-
tions of a colour spectrum. Spectra with brightness variation only,
such as the linear gray scale, are best suited for visualizations em-
ploying a large number of different visualization icons since that
way interference between icon colours is minimized. Finally colour
spectra with hue and brightness variations maximize the number of
perceivable different field values.

In order to further minimize interference between different visu-
alization icons we have created a graphical user interface for creat-
ing new colour maps. If a colour map is changed all visualization
icons using this map are marked as changed and can be updated
with a single button press. The automatic update proves useful
when adding a new model to an existing visualization. For exam-
ple, if a visualization has been created for the model of the healthy
left ventricle and the user wants to compare the results with the sick
left ventricle it is sufficient to change the range of all colour maps
to reflect the range of field values for both models.

In order to minimize artifacts due to colour interpolation the
colour maps are implemented using a one-dimensional texture map.
This enabled us to introducecolour map markers as a new feature.
Markers are inserted into the colour spectrum within the specified
range and appear as isocontours on a colour mapped surface as il-
lustrated in the middle part of figure 14. As an additional new tool
we suggest cyclical colour maps, which map several cycles of a
colour spectrum over the specified mapping range. We have found
cyclical colour maps are especially useful when trying to under-
stand the fine structure of a scalar field and to uncover symmetries
and discontinuities [W¨unsche 2002b]. The example in the right
part of figure 14 shows clearly some discontinuities of the visual-
ized scalar field along the element boundaries. Also note that the
contour density and contour normal direction of a surface mapped
with a cyclical colour map indicates the magnitude and direction,
respectively, of the visualized scalar field.
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The rendering control contains the view parameters, a trackball,
lighting information, mirrors, and global clipping planes. The same

Figure 14: Subset of the colour spectra available in the toolkit
(left). Isocontour separating contracting and expanding regions of
the heart muscle created by using a spectrum marker (middle). A
cyclical colour map (right).

rendering control can be used for different windows which is prac-
tical, for example, when comparing two different models.

A useful feature is the animation of models. Animations are
valuable when using large numbers of icons distributed over a 3D
domain. Rotating the model around its axis enables the brain to dif-
ferentiate icons in the foreground and background. Consequently
our toolkit incorporates a function to animate the trackball used to
rotate the model. A fly-through is also available.

It is important to mention that all visualization icons have a de-
fault setting specifying whether they are illuminated or not. The
user can change this setting if required. For most visualization
icons lighting is enabled since shading is an important shape cue
in 3D vision [Wünsche and Lobb 2001a]. However, illuminating a
surface makes it difficult to perceive the object colour so that light-
ing is disabled for colour mapped objects as long as they are flat or
sufficiently smooth.
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This paper described a visualization toolkit for biomedical data sets
with three novel features: The first feature is a modular design with
separate objects describing the underlying model, the visualization
including data fields, rendering parameters, and visualization win-
dows. A visualization is achieved by defining relationships, sub-
ject to some constraints, between these objects. The design facili-
tates the definition of simultaneous visualizations of multiple mod-
els such as the simultaneous display of a sick and a healthy heart or
the simultaneous display of a global and detailed view of an object.
Using the same rendering parameters ensures that both models are
displayed using the same view, scaling, orientation and lighting.

As a second feature we introduce a generalized field structure.
The user can define scalar fields, vector fields, and tensor fields
either by sets of sample points and interpolation functions or as
analytic functions. The fields can be used to derive new fields us-
ing a set of predefined operators and general algebraic expressions.
Examples are gradient fields and eigenvalue and eigenvector fields.
The advantage of this construction is that fields are only evaluated if



they are used and that the user can interactively construct new non-
standard fields when required for a given application. We found the
feature especially useful when exploring tensor fields since the for-
mation of new measures such as diffusion anisotropy can be used
to extract anatomical structures. Fields can be represented with re-
spect to both material and world coordinates.

The third novel feature of our toolkit are boolean filters which
are used to control the positioning and shape of visualization icons.
Boolean filters are also used for the creation of conditional fields
which can be used for the segmentation of data.

Lastly the toolkit features a global colour map control and a
model dependent point, surface and element selection mechanisms.
The global colour map was motivated by the observation that users
found it easier to derive qualitative and quantitative information
when using the same colour scale for different fields in different
models. Defining new colour maps is often necessary to avoid
colour clashes when displaying multiple visualization icons simul-
taneously and gives the user additional freedom when exploring
the data set. As novel modification we suggested spectrum mark-
ers, a technique to add isocontours to a colour map, and cyclical
colour maps which are useful to extract structure and symmetries
from fields. Model dependent point, surface, and element selec-
tion mechanism facilitate the placement and mixing of visualization
icons.

We used our visualization toolkit in the past successfully to ex-
plore tensor fields in the heart and the brain [W¨unsche 2002a;
Wünsche 2002b] and we hope that future research will further in-
crease our understanding of the working and the diseases of these
organs.
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