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Abstract  We address the problem of reconstructing 3D scenes from a set of unconstrained images. These image 
 sequences can be acquired by a video camera or handheld digital camera without requiring calibration. 
 Our approach does not require any a priori information about the cameras being used. The camera's 
 motion and intrinsic parameters are all unknown. We use a novel combination of advanced computer vision 
 algorithms for feature detection, feature matching, and projection matrix estimation in order to reconstruct 
 a 3D point cloud representing the location of geometric features estimated from input images. In a second 
 step a full 3D model is reconstructed using the projection matrix and a triangulation process. We 
 demonstrate with data sets of different structures obtained under different weather conditions that our 
 algorithm is stable and enables inexperienced users to easily create complex 3D content using a simple  
 consumer level camera.  

1  INTRODUCTION 

The design of digital 3D scenes is an essential 
task for many applications in diverse fields such 
as architechture, engineering, education and arts. 
Traditional modelling systems such as Maya, 
3D Max or Blender enable graphic designers to 
construct complicated 3D models via 3D 
meshes. However, the capability for 
inexperience users to create 3D models has not 
kept pace. Even for trained graphic designers 
with in-depth knowledge of computer graphics, 
constructing a 3D model using traditional 
modelling systems can still be a challenging 
task (Yang et al., 2010). Hence, there is a 
critical need for a better and more intuitive 
approach for reconstructing 3D scenes and 
models.   

The past few years have seen significant 
progress toward this goal with the emergence of 
structure from motion (SFM)  methods  in the 

research community. There are two common 
approaches: laser scanners and image-based 
modelling approach. Laser scanners are very 
robust and highly accurate. However, they are 
very costly and have restrictions on the size and 
the surface properties of objects in the scene 
(Hu et al., 2008). In contrast, an image-based 
modelling approach reconstructs the geometry 
of a complex 3D scene from a sequence of 
images. The technique is usually less accurate, 
but offers a very intuitive and low-cost method 
for reconstructing 3D scenes and models. 
 

We aim to create a low-cost system that allows 
users to obtain 3D reconstruction of a scene 
using an off-the-shelf handheld camera. The 
users accquire images by freely moving the 
camera around the scene. The system will then 
perform 3D reconstruction using the following 
steps:  
 

1. Image Accquisition and Feature 
Extraction 



 
 

2. Feature Matching 
3. Fundamental Matrix and Projection 

Matrix Estimation 
4. Bundle Adjustment and Refinement 
5. Point Cloud Generation 
6. Surface Reconstruction 

 

The remainder of this paper is structured as 
follows. Section 2 disucsses relevant literature 
in the field. Section 3 presents our approach for 
reconstructing 3D scenes. Section 4 discusses 
our results. Section 5 concludes and 
summarises the paper and gives a brief outlook 
on directions for future research. 

2  RELATED WORK 

2.1  Image-Based Modelling 

Various image-based modelling techniques 
have been explored in recent years. In this 
section, we discuss the most closely related 
work in image-based 3D reconstruction. 
 

Brown and Lowe [2005] presented an image-
based modelling system which aims to recover 
camera parameters, pose estimates and sparse 
3D scene geometry from a sequence of images.  
 

Snavely et al. [2006] presented the Photo 
Tourism (Photosynth) system which is based on 
the work of Brown and Lowe, with some 
significant modifications to improve scalability 
and robustness. Schaffalitzky and Zisserman 
[2002] proposed another related technique for 
calibrating unordered image sets, concentrating 
on efficiently matching points of interest 
between images. Although these approaches 
address the same SFM concepts as we do, their 
aim is not to reconstruct and visualise 3D 
scenes and models from images, but only to 
allow easy navigation between images in three 
dimension. 
 

Debevec et al. [1996] introduced the Facade 
system for modelling and rendering simple 
architectural scenes by combining geometry-
based and image-based techniques. The system 
requires only a few images and some known 
geometric parameters. It was used to 

reconstruct compelling fly-throughs of the 
Berkeley campus and it was employed for the 
MIT City Scanning Project, which captured 
thousands of calibrated images from an 
instrumented rig to compute a 3D model of the 
MIT campus. While the resulting 3D models 
are often impressive, the system requires input 
images taken from calibrated cameras. 
 

Hua et al.  [2007] tried to reconstruct a 3D 
surface model from a single uncalibrated image. 
The 3D information is acquired through 
geometric attributes such as coplanarity, 
orthogonality and parallelism. This method 
only needs one image, but this approach often 
poses severe restrictions on the image content.  
 

Criminisi et al. [1999] proposed an approach 
that computes a 3D affine scene from a single 
perspective view of a scene. Information about 
geometry, such as the vanishing lines of 
reference planes, and vanishing points for 
directions not parallel to the plane, are 
determined. Without any prior knowledge of 
the intrinsic and extrinsic parameters of the 
cameras, the affine scene structure is estimated. 
This method requires only one image, but 
manual input is necessary.  

2.2  Surface Reconstruction 

Surface reconstruction from point clouds has 
been studied extensively in computer graphics 
in the past decade.  A Delaunay-based 
algorithm proposed by Cazals and Giesen [2006] 
typically generates meshes which interpolate 
the input points. However, the resulting models 
often contain rough geometry when the input 
points are noisy.  These methods often provide 
good results under prescribed sampling criteria 
[Amenta and Bern 1998]. 
 
Edelsbrunner et al. [1994] presented the well-
known α-shape approach. It performs a 
parameterised construction that associates a 
polyhedral shape with an unorganized set of 
points. A drawback of α-shapes is that it 
becomes difficult and sometimes impossible to 
choose α for non-uniform sampling so as to 
balance hole-filling against loss of detail 
(Amenta et al., 2001). 



 
 

 

Amenta et al.  [2001] proposed the power crust 
algorithm, which constructs a surface mesh by 
first approximating the medial axis transform 
(MAT) of the object. The surface mesh is then 
produced by using an inverse transform from 
the MAT. 
 

Approximate surface reconstruction works 
mostly with implicit surface representations 
followed by iso-surfacing. Hoppe et al. [1992] 
presented a clean abstraction of the 
reconstruction problem. Their approach 
approximated the signed distance function 
induced by the surface F and constructed the 
output surface as a polygonal approximation of 
the zero-set of this function. Kazhdan et al. 
presented a method which is based on an 
implicit function framework. Their solution 
computes a 3D indicator function which is 
defined as 1 at point inside model and 0 as 
point outside model. The surface is then 
reconstructed by extracting an appropriate 
isosurface (Kazhdan et al. 2006). 

3   METHODOLOGY 

3.1  Feature Matching 

The input for our reconstruction algorithm is a 
sequence of images of the same object taken 
from different views. The first step is to find 
feature points in each image. The accuracy of 
matched feature points affects the accuracy of 
the fundamental matrix and the computation of 
3D points significantly. Many sophisticated 
algorithms have been proposed such as the 
Harris feature extractor (Derpanis. K, 2004) and 
the SUSAN feature extractor (Muyun et al., 
2004). We use the SIFT (Scale Invariant 
Feature Transform) operator to detect, extract 
and describe local feature descriptors.  Feature 
points extracted by SIFT are distinctive and 
invariant to different transformations, changes 
in illumination and have high information 
content (Hua et al., 2007) , (Brown et al., 2005).   
 

The SIFT operator works by first locating 
potential keypoints of interest at maxima and 
minima of the result of the Difference of 

Gaussian (DoG) function in scale-space.  The 
location and scale of each keypoint is then 
determined and keypoints are selected based on 
measures of stability. Unstable extremum 
points with low contrast and edge response 
features along an edge are discarded in order to 
accurately localise the keypoints. Each found 
keypoint is then assigned one or more 
orientations based on local image gradients. 
Finally, using  local image gradients 
information, a descriptor is produced for each 
keypoint  (Lowe et al., 1999). 
 

Once features have been detected and extracted 
from all the images, they are matched. Since 
multiple images may view the same point in the 
world, each feature is matched to the nearest 
neighbours. During this process, image pairs 
whose number of corresponding features is 
below a certain threshold are removed. In our 
experiment, the threshold value of 20 seems to 
produce the best results. 
 

The feature points matching between two 
images could be achieved by comparing each 
keypoint of the one image with keypoints of the 
other image. The Euclidean distance  
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is used to measure the similarity between two 
keypoints A and B. A small distance indicates 
that the two keypoints are close and thus of 
high similarity (Hu et al., 2008). However, a 
small Euclidean distance does not necessarily 
mean that the points represent the same feature. 
In order to accurately match a keypoint in the 
candidate image, we identify the closest and 
second closet keypoints in the reference image 
using a nearest neighbour search strategy. If the 
ratio of them is below a given threshold, the 
keypoint and the closest matched keypoint are 
accepted as correspondences, otherwise that 
match is rejected (Hu et al., 2008). 
 



 
 

 
 

Figure 1. Feature Extraction - The red arrow symbol indicates the 
detected features. Detected features are displayed as vectors 

indicating scale, orientation and location. 
 
 

 
 

Figure 2. Matched Features. 

3.2  Image Matching 

The next stage of our algorithm attempts to find 
all matching images. Matching images are those 
which contain  a common subset of 3D points. 
From the feature matching stage, we have 
identified images with a large number of 
corresponding features. As each image could 
potentially match every other image, the 
problem may seem at first to be quadratic in the 
number of images. However, it has been shown 
by (Brown et al., 2005) that it is only 
neccessary to match each image to k 
neighbouring images in order to obtain a good 
solution for the image geometry. In our system, 
we use k = 6. 

3.3  Feature Space Outlier Rejection 

We employ a feature space outlier rejection 
strategy that uses imformation from all of the 
images in the n-image matching context to 
remove incorrect matches. It has been shown 
that comparing the distance of a potential match 
to the distance of the best incorrect match is an 
effective strategy for outlier rejection (Brown et 
al., 2005).  
 

The outlier rejection method works as follows: 
Assuming that there are n images which contain 
the same point in the world. Matches from these 
images are placed in an ordered list of nearest-
neighbour matches. We assume that the first n - 
1 elements in the list are potentially correct, but 
the element n is incorrect. The distance of the 
nth element is denoted as outlier distance. We 
then verify the match by comparing the match 
distance of the potential correct match to the 
outlier distance. A match is only accepted if the 
match distance is less than 80% of the outlier 
distance, otherwise it is rejected. In general,  the 
feature space outlier rejection test is very 
effective and reliable. For instance, a substantial 
number  of the false matches (up to 80%) can 
be simply eliminated  for a loss of less than    
10% of correct matches. This allows for a 
significant reduction in the number of 
RANSAC iterations required in subsequent 
steps (Brown et al., 2005). 

3.4  Fundamental Matrix Estimation 
 

At this stage, we have a set of putative 
matching image pairs, each of which shares a 
set of individual correspondences. Since our 
matching procedure is only based on the 
similarity of keypoints, it inevitably produces 
mismatches. Many of matches will therefore be 
spurious. Fortunately, it is possible to use a 
geometric consistency test to eliminate many of 
these spurious matches. The epipolar geometry 
of a given image pair can be expressed using 
the fundamental matrix F.   
 

For each remaining pair of matching images, 
we use their corresponding features to estimate 
the fundamental matrix. This geometric 



 
 

relationship of a given image pair can be 
expressed as 

                 0=Fvu T                 (2) 
for any pair of matching features vu ↔ in the 
two images. The coefficients of the equation (2) 
can be written in terms of the known 
coordinates u and v. 
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From a set of n correspondent points, we can 
obtain a set of linear equations of the form 
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Thus a unique solution of F (up to scale) can be 
determined if we are given 8 correspondences 
(Hartley et al., 2003). Usually considerable 
more than 8 correspondences are used because 
of inaccuracies in the feature estimates. The 
resulting overdetermined system can be solved 
resulting in a solution optimal in a least squares 
sense, which is then used to compute the 
fundamental matrix. 
 

Many solutions have been proposed to estimate 
the fundamental matrix. In our system, we use 
RANSAC (Hartley et al., 2003) to robustly 
estimate F. Inside each iteration of RANSAC, 
the 8-point algorithm, followed by non-linear 
estimation step, is used to compute a 
fundamental matrix (Hartley et al., 2003). The 
computed epipolar geometry is then used to 
refine the matching process. 

3.5 Bundle Adjustment  
 

Next, given a set of geometrically consistent 
matches between images, we need to compute a 
3D camera pose and scene geometry. This step 
is critical for the accuracy of the reconstruction, 
as concentration of pairwise homographies 
would accumulate errors and disregard 

constrains between images. The recovered 
geometry parameters should be consistent. That 
is,  the reprojection error, which is defined by 
the distance between the projections of each 
keypoint and its observations, is minimised 
(Brown et al., 2005).  
 

This error minimization problem can be solved 
using Bundle Adjustment. Bundle Adjustment is 
a well-known method of refining a visual 
reconstruction to produce joinly optimal 3D 
structure and viewing parameter estimates. It 
attemps to minimise the reprojection error 
between observed and predicted image points, 
which is expressed as the sum of squares of a 
number of non-linear real-valued functions 
(Brown et al., 2005).  
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where ),( ijij yxp = denotes the coordinate of 
an image point, and )~,~(~

ijij yxp = denotes the 
observed image point. 
 

The minimization can be formulated as a non-
linear least squares problem and solved with 
algorithms such as Levenberg-Marquardt (LM). 
Such algorithms are particularly prone to bad 
local minima, so it is important to provide a 
good initial estimate of the parameters (Snavely 
et al., 2006). 
 

The bundle adjustment algorithm starts by 
selecting an initial image pair, which has a large 
number of matches and a large baseline. This is 
to ensure that the location of the 3D observed 
point is well-conditioned. The bundle 
adjustment algorithm will then estimate 
geometry parameters for the given pair. 
Subsequent images are added to the bundle 
adjuster one at a time, with the best matching 
(maximum number of matched) image being 
added at each step.  Each image is initialised 
with the same rotation and focal length as the 
image to which it best matches. This has proved 
to work very well even though images have 
different rotation and scale  (Snavely et al., 
2006), (Brown et al., 2005). 

 
 



 
 

Figure 3 shows the original model of the 
Daliborka tower and its generated point clouds. 

 
 

 
 

          
Figure 3. Model of the Daliborka  tower (3D Reconstruction 

Dataset. Centre for Machine Perception) and its generated point 
clouds. 

3.6 Surface Reconstruction 

The final step is to reconstruct surfaces from the 
obtained point clouds. Our objective is to find a  
piecewise linear surface that closely 
approximates the underlying 3D models from 
which the point clouds was sampled (Kazhdan 
et al., 2006). Many sophisticated surface 
reconstructions have been proposed and 
extensively studied. In our system, we employ 
the Power Crust algorithm (Amenta et al., 2001) 
for remeshing the surfaces. 

The Power Crust algorithm reconstructs 
surfaces by first attempting to approximate the 
medial axis transform of the object. The surface 
representation of the point clouds is then 
produced by the inverse transform. The 
algorithm is composed of 4 simple steps: 1) A 
3D Voronoi diagram is computed from the 
sample points. 2) For each point s, select the 
furthest vertex v1 of its Voronoi cell, and the 
furthest vertex v2 such that the angle v1sv2 is 
greater than 90 degree. 3) Compute the Voronoi 
diagram of the sample point and the Voronoi 
vertices selected from the second stage. 4) 
Create Delaunay triangulation from the Voronoi 
diagram in the previous stage. An example of 
the resulting 3D model is illustrated in figure 4. 
The complete algorithm is summarised in figure 
5. 
 

 
 

 
       

   Figure 4. The reconstruction of the model of the Daliborka  
tower in Figure 3. 

 
 
 



 
 

Algorithm for 3D Object Reconstruction  

Input: n unordered and unconstrained images 
 

1. Extract features from all input images using 
SIFT operator 

2. Find t nearest neightbors for each feature 
3. For each image: 

a. Select k candidate matching 
images (those which have highest 
number of features matched to this 
image) 

b. Find geometrically consistent 
feature matches using RANSAC to 
solve for fundamental matrix 
between pairs of images. 

4. Compute 3D camera pose and scene 
geometry using Bundle Adjustment. 

5. Reconstruct surface for the obtained point 
clouds. 

6. (Future work) Apply hole-filling 
alogorithm for the resulting model. 

Output: 3D model of the object 
 

 
Figure 5. Algorithm for 3D Object Reconstruction. 

4  RESULTS 

 

We have tested our system with a number of 
different datasets, both indoor and outdoor 
scenes. In all our test cases, the system 
produces good results for rough, non-uniform 
and full-of-feature datasets. Datasets with 
smooth and uniform surfaces often result in 
inadequate number of 3D points generated, 
since the feature detector (SIFT) has trouble 
detecting and extracting features from these 
images. The size of our test datasets varies from 
as few as 6 images to hundreds of images, 
which are all taken with a simple handheld 
camera. 
 

Dataset 1 
 
 

The first data set consists of 37 images taken 
from arbitrary view directions on ground level 
using a normal consumer-level SONY DSC-
W180 camera. The reconstructed 3D model has 
19568 faces and is of good quality. The original 
object can be easily identified. Some holes exist 
near concave regions and near sharp corners. 

This is caused by large variations in the point 
cloud density, which the surface reconstruction 
algorithm was unable to deal with. 
 
 

 
 

Figure 6.1. The statue of Queen Victoria, Mt Albert Park, 
Auckland - Original view. 

 

 
 

 
 

Figure 6.2b. Two views of the reconstructed model of the statue 
of Queen Victoria. Number of images: 37 [2592x1944]. Running 

time: approximately 4 hours. 



 
 

Dataset 2 
 
The second data set comprises 55 images taken 
at ground level from two sides of the Saint 
Benedict Church in Auckland, New Zealand. 
The other two sides were not accessible. The 
images were taken with the same camera as in 
the previous case and under slightly rainy 
conditions. The reconstruction results are 
satisfactory. The resulting model which is 
composed of 37854 faces has a high 
resemblance with the original object and even 
the inaccessible sides look plausible. A few 
details, such as some windows, are missing 
causing holes in the model. 
 

 
 

 
   Figure 6.3a. Saint Benedict Church, Auckland. 

 

 
Figure 6.3b. Reconstructed model of Saint Benedict Church. The 
yellow circle indicates a reconstructed region which was invisible 
in all input images. Number of images: 55 [3648x2056]. Running 

time: approximately 6h40 hours. 
 

Dataset 3 
 
The third data sets consisted of 63 images of 
Saint George church. All images were taken 
from ground level. Since the roof of that 
building is quite flat, this resulted in missing 
information about the roof structure and the 
reconstructed model contains large gaps in that 
area. We intend to overcome this type of 
problems with a sketch-based interface, which 
allows the users to add missing geometric 
details. The model contains of 28846 faces. 
 

 
           

Figure 6.4a. Saint George (3D Reconstruction Dataset. Centre for 
Machine Perception). Input images: 63 [2048x3072].  

 
 

 
 

        Figure 6.4b. Reconstructed model of Saint George Church.                      
Number of images: 63  [2048x3072].  Running time: 

approximately 9 hours. 
 
 
 



 
 

Dataset 4 
 

The fourth data set comprises 65 images taken 
from many different views of the model of the 
Daliborka tower shown in figure 3. The 
reconstruction result is of very good quality and 
the final model has a high resemblance with the 
original object. Small details such as windows 
are also properly reconstructed. The improved 
reconstruction is probably due to less geometric 
features in the original model and a more even 
illumination compared to outdoor scenes. The 
resulting model is composed of 29768 polygons. 
The computation time of this data set is over 9 
hours. 
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Figure 7. Comparison of the running time for reconstructing 3D 
models from different input data sets (photos). All examples were 
executed on a machine with an Intel Quad-Core i7 and 6GB 
RAM. 

 
 

Figure 7 summarizes the computation time and 
parameters of the input data sets and resulting 
3D models for the presented examples. It can be 
seen that the computation is quite slow, 
however, since it can be performed in an offline 
process, this is acceptable for our purpose. 

5  CONCLUSION AND FUTURE 
WORK 
 

In this paper, we have discussed a novel 
approach for reconstructing realistic 3D models 
from a sequence of unconstrained and 
uncalibrated images. Geometry parameters such 
as cameras’ pose are estimated automatically 

using a bundle adjustment method. 3D point 
clouds are then obtained by triangulation using 
the estimated projection matrix. We reconstruct 
surfaces for the point clouds to recover the 
original model. In contrast to previous 
approaches, we acquired the input images in 
just a few minutes with a simple hand-held 
consumer level camera. Our results demonstrate 
that our algorithm enables inexperienced users 
to easily create complex 3D content using a 
simple consumer level camera. This 
significantly simplifies the content creation 
process when constructing virtual environments. 
Problems, such as holes, still exist with the 
resulting model. This is caused by large 
variation in the point cloud’s density. Another 
disadvantage is that the computation is quite 
expensive (the system takes over 4 hours to 
process 37 images, and about 9 hours for 63 
images on a Intel Quad Core i7 with 6GB 
RAM), but this is only an issue in applications 
where the user needs the content immediately. 
A common problem with this application is that 
not all views of a model are obtainable. 
Especially the roof is often not fully or not at all 
visible. Similarly in some cases the backside of 
a building or object might not be accessible. We 
propose to use sketch input and symmetry 
information to "complete" models in such 
circumstances. Additional future work will 
concentrate on improved hole filling algorithms 
and on speeding up the algorithm by using an 
GPU implementation. 
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