
Copyright © 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
GRAPHITE 2007, Perth, Western Australia, December 1–4, 2007.
© 2007 ACM 978-1-59593-912-8/07/0012 $5.00

Evaluation of Game Engines for Simulated Surgical Training

Stefan Marks
Division for Biomedical Imaging and Visualization

Department of Computer Science
University of Auckland, New Zealand

Email: dev.stefan.marks@gmx.net

John Windsor
Advanced Clinical Skills Center

Department of Surgery
Faculty of Medical and Health Sciences
University of Auckland, New Zealand

Email: j.windsor@auckland.ac.nz

Burkhard Wünsche
Division for Biomedical Imaging and Visualization

Department of Computer Science
University of Auckland, New Zealand

Email: burkhard@cs.auckland.ac.nz

Figure 1: Screenshots of an interactive simulation scenario implemented with the Half-Life 2 engine. One user (left figure) is moving the
skeleton’s leg with a stick.

Abstract

The increasing complexity and costs of surgical training and the
constant development of new surgical procedures has made virtual
surgical training an essential tool in medical education. Unfortu-
nately, commercial tools are very expensive and have a small sup-
port base. Game engines offer unique advantages for the creation
of highly interactive and collaborative environments.

This paper examines the suitability of currently available game
engines for developing applications for medical education and sim-
ulated surgical training. We formally evaluate a list of available
game engines for stability, availability, the possibility of custom
content creation and the interaction of multiple users via a network.
Based on these criteria, three of the highest ranked engines are used
for further case studies.

We found that in general it is possible to easily create scenar-
ios with custom medical models that can be cooperatively viewed
and interacted with. Limitations in physical simulation capabilities
make some engines unsuitable for fully interactive applications, but
they can be used in combination with predefined animations. We
show that overall game engines represent a good foundation for low
cost virtual surgery applications and we discuss technologies which
can be used to further extend their physical simulation capabilities.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modelling;
I.6.8 [Simulation and Modeling]: Types of Simulation—Gaming;
J.3 [Life and Medical Sciences]: Medical information systems;
K.3.1 [Computers and Education]: Computer Uses in Education—
Collaborative learning

Keywords: game engines, physically-based animation, collabora-
tive environments, simulation systems

1 Introduction

The rising complexity and costs of surgical training and the devel-
opment of new surgical procedures make virtual surgery simula-
tions increasingly important. Bradley [2006] lists the three major
steps in the development of surgical simulators: In 1960, Åsmund
Lærdal developed the prototype mannequin. The first computer
controlled anaesthetics simulator and the animated mannequin Sim-
One were introduced 1969. Now, in 2007, high fidelity simulators
are capable of satisfying the optical and physical aspect of a surgical
simulation as well as educational concepts of the medical curricu-
lum.

Most commercially available simulators cover the area of endo-
scopic respectively laparoscopic procedures (e.g. Procedius MIST
[Mentice 2007], LapSim [Surgical Science 2007], LAP Mentor
[Simbionix 2007], VEST System One [select IT VEST Systems AG
2007], LapVR [Immersion Corporation 2007], SEP [SimSurgery
2007], EndoTower [Verefi Technologies 2007], HystSim [West-
wood et al. 2005]). This kind of procedure requires well developed
skills of the surgeon with respect to coordination of the camera and
the surgical instruments that are not in direct view and are repre-
sented only on a 2D screen, sometimes with changed orientation
due to camera rotation. The above mentioned systems are all able
to train basic procedures in camera and instrument handling, before
training the medical and surgical aspects.

Nevertheless, those technical skills are not the only necessity for
a surgeon. The AGCME Outcome project [ACGME 1999] lists six
general competencies which include other skills like patient care,
medical knowledge, the ability to continuously learn and improve
by practise, interpersonal and communication skills, professional-
ism, and the awareness of the health care system with its resources
and demands as a whole.

Most of the mentioned simulator systems only train the techni-
cal and procedural skills of a surgical procedure, but lack the other

273

aspects of the above list. Few physical simulators with mannequins
(e.g. MedSim-Eagle [CISL 2007]) enable small groups of residents
to practise the cooperative aspects (i.e. interpersonal and communi-
cation skills) of medical or surgical procedures, but are very cost-
intensive and thus likely to be unaffordable for most institutions.

One factor that is responsible for high costs of surgical simula-
tors is the fact that certain parts of them are repeatedly reinvented.
All simulators need at least graphical output capable of displaying
3-dimensional models with a high level of realism and user inter-
faces for operating and configuration of the simulator, an underly-
ing physical simulation model, and event handling for input devices
(see figure 2). Some simulators are capable of adding the audible
aspect of a surgical procedure and thus need a module for sound
generation.

Events
● Input events
● Output events

User

Graphics
● 3D models
● GUIs

Physics
● Rigid bodies
● Collision response
● Soft bodies
● Fluids/Smoke

Sound
● Play/Record sound

Surgical Simulator

Content
● Organ models

● Physiology model

● Sounds

● Tasks

● Movies

● User Interface

Figure 2: Functional blocks of a surgical simulator.

There have been attempts to create extensible frameworks for
building surgical simulators upon (e.g. SPRING [Montgomery et al.
2002], GiPSi [Çavuşoğlu et al. 2006], SOFA [Allard et al. 2007],
ESQUi [Rodriguez-Florido et al. 2006]). They all incorporate the
above mentioned modules and a variety of mathematical models
for the physical simulation and interaction. But except for SPRING
(ironically the oldest project in the list) they all lack the capability of
networking with other simulators to build collaborative scenarios.
Even worse, sound support is not built into one of them.

This paper examines the possibility to build surgical simulators
upon a software system that incorporates all of the above mentioned
features and is in addition highly developed, well tested and sup-
ported and available at low costs: Game Engines.

2 Game Engines

The use of games or game engines for medical education is a little
explored research subject with many aspects still to be investigated.
One reason for this might be the incoherency of the seriousness of
medicine and the playful, sometimes violent character of computer
games. Nevertheless, game engines offer a vast pool of useful con-
cepts and resources in technical as well as in educational aspects.

Projects like the “Serious Game Initiative” [Serious Games Ini-
tiative 2007b] focus on offering help to “organize and accelerate
the adoption of computer games for a variety of challenges facing
the world today.” A subproject founded by this initiative is “Games
for Health” [Serious Games Initiative 2007a], focusing mainly on
games used in various health care sectors.

Previous authors have so far concentrated on applications where
the game content was about learning facts, rather than tasks and
procedures. For example, Wünsche et al. [2005] have examined
how game engines can be used for visualising medical datasets,
and Mackenzie et al. [2003] utilise a game engine for anatomical
education. However, so far nobody has focused on the cooperative
aspect in the simulation of complex medical procedures.

2.1 Game Engine Design

A game engine is a complex software system necessary for devel-
oping and playing games. Two different games with the same un-
derlying engine differ by the game content, i.e. graphics, sounds,
storyline. Game engines build a bridge between this content and the
underlying hardware. With the help of an operating system abstrac-
tion layer, the same game content can be run on many platforms
(e.g. Windows, Linux, XBox) without change.

Modern game engines consist of all or a subset of functional
blocks depicted in figure 3.

The Graphics Engine loads, displays, manipulates and manages
all the data related to graphical content and visual effects. 3D mod-
els of objects, landscapes, buildings, objects, animals, and players
can be loaded, textured, lit, and animated. Additional effects (e.g.
blurring, lens distortion, depth of field) can be added to enhance the
visual realism. Particle systems are utilised to simulate fire, smoke,
bubbles, blood, etc.

All audible content like sound effects, ambient noise, and mu-
sic is handled by the Audio Engine. In connection with modern
soundcards it is possible to simulate acoustic obstruction by ob-
jects, environments other than air, reverb, Doppler effect and the
spatial position of sound sources.

The total memory usage of game content is often higher than
the memory provided by the gaming platform. Because not all of
this data is needed simultaneously, the Memory Management is re-
sponsible for purging unused content from memory and in turn pro-
viding and managing requested memory for new content. Modern
engines parallelise tasks like graphics, sound, physics, and AI. To
balance the workload of all these tasks efficiently, especially on
multiprocessor platforms, the Process Management is utilised.

Another essential part is the Event handling. Input devices,
like joysticks, mice, keyboards, and gamepads generate events as
well as network, timers, other components of the gaming hardware,
game scripts and many other sources. These events are handled,
filtered and distributed by one central event loop.

Some media like music or video does not need to be loaded into
memory before being played back, but can instead be streamed to
save precious memory resources. The Streaming mechanism is also
capable of loading resources via the network from other servers.

Realistic behaviour of game objects has become more and more
important in the recent years. The Physics Engine implements
advanced mathematical models for calculating rigid body simula-
tions of arbitrarily shaped and articulated objects (e.g. vehicles, ma-
chines). With the development of highly sophisticated physics en-
gines like Havok PhysicsTM[Havok 2007] or PhysXTM[Ageia Tech-
nologies 2007], the simulation of soft bodies, cloth, fluids, and
smoke has become possible, accelerated either by specialised hard-
ware or the computational power of the graphics hardware [Geer
2006].

Artificial intelligence, provided by the AI Engine, is needed for
controlling Non-Player Characters (NPC), the computer controlled
antagonists in games. NPCs have to make decisions about how to

274

O
p

er
at

in
g

 S
ys

te
m

Graphics

Events

Operating
System

Abstraction

Scripting

User

Storage

Graphics Engine
● Scene management
● Shaders
● Models
● Bones
● Animation
● Particles

Memory / Process
Management

Streaming
● Video
● Audio
● Map data

AI Engine
● Behavior
● Strategy
● Path planning
● Learning

Physics Engine
● Collision detection
● Collision response
● Rigid Body
● Joints
● Mass/Spring
● Particles/Fluids/Smoke
● Cloth

Audio Engine
● Play/Record sound
● Play music
● Acoustics
● Surround

Internet

Game Engine Game
Computer /

Game Console
Content

● Models

● Animations

● Maps

● Sounds

● Storyline

● Movies

● Dialogs

● User Interface

● Scripts

Sound

CPU

Memory

Input Devices

Network

Networking
● Client/Server
● Multiplayer

Figure 3: Functional Blocks of a Game Engine.

follow, avoid or ambush the player, and how to react to aggressive
or defensive actions in a realistic and effective manner. AI Engines
incorporate computer science topics like neural networks, state ma-
chines, A* search, and much more.

The flexibility of game engines is their greatest strength in creat-
ing manifold content. This is achieved by Scripting languages that
allow an immediate access to the functions of the game engine. By
scripts, the game content gets its typical “fingerprint”, how a game
is to be played and controlled, how the story develops, and how
interactive and immersive the game environment appears.

The final important functional block of a game engine is Net-
working. By sending the state, movement and other information
of each player and NPC over the network, other connected human
players can collaborate in a game, because they all see the identi-
cal state of the game world at the same moment. The networking
functions cope with network problems like packet loss or different
runtimes of data packets from clients to servers and vice versa.

2.2 Technical Advantages

Since the game market is incredible competitive and incorporates
both large established and innovative new vendors, game engines
are constantly updated and utilise the latest graphics hardware and
graphics algorithms. In addition, since most users are unable to
constantly update their machines, game engines are designed for
handling the same game content on hardware with different speed,
memory size and features.

Playing computer games is no longer an action for individuals
but has evolved into multiplayer gaming, bringing together several
thousand players at the same time [Chen et al. 2006]. Consequently,
many game engines incorporate properly constructed and tested
network support that serves well in connecting multiple users for
cooperatively accomplishing tasks, even worldwide, unrestricted by
location and physical boundaries. Built-in support for recording
and playing sound over the network enables the players to commu-
nicate in a natural way to coordinate their actions. Textual input of
messages serves as an alternative way.

Due to the fact that games are marketed internationally, game
engines are able to deal with different languages. User interfaces,
sound support and input devices can be customised accordingly.

After games have been introduced to the market, they are con-
stantly and intensively used by customers which results in massive
feedback about errors and flaws. After some months and some-
times only weeks, patches are available to fix these issues. During
this time, a large number of developers will have built up, who have
gathered experience in modifying the game content. They form an
international support community, often willing to help others when
problems arise in building custom content for a game engine.

2.3 Important Features

One major important aspect for medical simulation is visual re-
alism. With game engines supporting the most modern graphics
hardware, this issue can easily be addressed. To enhance the re-
alism in their hystheroscopy simulator, Bachofen et al. introduces
bump mapping, spotlights, shadows, lens distortion, depth of field,
bubbles, and floating tissue [Bachofen et al. 2005]. This list is only
a subset of effects used in modern games, as the screenshots in fig-
ure 4 illustrate.

The acoustic environment of a medical procedure is also an im-
portant part of a simulation [Westwood et al. 2005] and can also be
easily and accurately simulated with the features available in game
engines. It may provide audible feedback of instruments used dur-
ing medical procedures as well as reactions of the simulated patient,
like pain or relief.

The physical simulation of objects in games is a relatively young
area and thus does not yet cover the mathematically demanding as-
pects of soft tissue simulation (e.g. [Delingette 1998; Cotin et al.
1999; Lim and De 2007]) or cutting (e.g. [Dworzak and Gu 2007]).
This drawback can be compensated for either by playback of anima-
tions, simple mass-spring systems or, if possible, extension of the
physics engine. The manufacturers of physics engines are currently
working on introducing new features like fluids and soft body sim-
ulation, so the features missing right now may be available in the
near future (see chapter 6).

275

(a) Human skin (b) Human tissue

(c) Reflection (d) Distortion

(e) Spotlights (f) User interfaces

Figure 4: Graphical capabilities of modern game engines. The
screenshots are taken from the games Doom 3, Half-Life 2 and
Quake 4.

As surgery is always a cooperative task, the networking (multi-
player) capabilities of games offer a great chance of building col-
laborative training scenarios. Players can see the position and state
of their team members, and can communicate with each other by
microphones and headphones or textual messages.

All of these features are useful for virtual surgery simulations.
Advanced graphics makes the simulation more realistic and limited
hardware requirements allow users in development countries and
smaller clinics to employ the software. The network support and
GUI customisation can bring together multiple users of surgical
simulators for training of cooperative tasks, unrestricted by class-
room walls and country boundaries and, when designed carefully,
even independent of language barriers.

3 Methodology

3.1 Engine Selection

We started our selection of suitable game engines with an evalua-
tion of an internet game engine database [DevMaster.net 2007]. At

the time of this evaluation (July 2007), this database contained 278
engines. We disregarded engines still in an early development state
or those that were not developed or maintained any more. Engines
without sound or other essential components were also removed
from the list. Of the remaining engines, we selected those with in-
built means of creating new game environments (maps). This last
criterion is an important aspect for reducing the complexity of the
editing process as there is no need for purchasing, installing and
setting up external editors and necessary conversion tools, assumed
the latter exist at all.

After the reduction of the original list by this selection process,
we chose three inexpensive and in our opinion popular game en-
gines for further evaluation.

• Unreal Engine 2 [Epic Games 2004]
• id Tech 4 [Wikipedia 2007]
• Source Engine [Valve Corporation 2004]

3.2 Evaluation

All engines were tested for their suitability for collaborative simu-
lated surgical training applications by examining the following as-
pects:

Editing: Is everything that is necessary for creating and manipu-
lating custom content included in the software? How is the
editing process for a map started? Are the construction prin-
ciples that are used during the process of building a map intu-
itive?

Content: How easy is the process of including game content as
well as external models into the map? Which restrictions have
to be considered when importing custom models?

Gameplay: How well can two or more users interact within the
map and with the custom model? Are there any restrictions in
the physical interaction?

Editing of models was performed with the 3D editor Blender
[Blender Foundation 2007]. This software is free, in contrast to
commercial and expensive 3D editors such as 3D Studio Max [Au-
todesk 2007a] or Maya [Autodesk 2007b], and has import and ex-
port filters for all important 3D formats that were necessary for in-
cluding custom models into the maps created for each game engine.

4 Results

4.1 Unreal Engine 2

The following results are based on the game “Unreal Tournament
2004.”

Editing The Unreal Engine 2 map editor “UnrealEd 3” is started
as a standalone program. It incorporates model viewer, texture
browser, script editor and other components necessary for editing
a map (see figure 7(a)). In contrast to the editors of the other two
engines, the editing process is of subtractive nature, i.e. volumes
where players are allowed to move in have to be subtracted from
the originally solid game world.

An editing concept common to all editors of the three evaluated
game engines is the “brush.” It is used for selecting e.g. the areas
that will be subtracted from the game world. But it can also be used
for adding walls, spheres, stairs or other simple geometries.

Geometrically complex objects like weapons are selected from
a list, added into the map, and can then be placed, rotated, and

276

(a) Unreal Engine 2 (b) id Tech 4 (c) Source Engine

Figure 5: Screenshots of our simulation scenarios implemented with different game engines.

changed in their behaviour or attributes. The same principle applies
for physical objects like rigid bodies or joints.

Content We constructed a room with a metal shelf (game con-
tent) and a custom skeleton model on a table (custom content). The
skeleton1 was split into parts (torso, skull, legs, and arms), which
were then inserted as physical objects and connected by ball joints
(see figure 6). The file format for inserting custom models can be
one of .LWO (Lightwave Object File), or .ASE (ASCII Scene Ex-
porter). We used the latter due to having an .ASE export filter in
Blender,

Gameplay We started the map in multiplayer mode and inter-
acted with the static and dynamic objects.

Figure 6: Asynchronous state of the skeleton on the server (left)
and the client (right).

Non-physical actions and states are well synchronised between
the server and the client. Player positions, orientations and states
and also optical effects like decals (e.g. for bullet holes or scorch-
marks) appear equally on both sides.

The articulated skeleton can be moved around by applying
forces, e.g. with a weapon. This works well in single player mode
and on the server side in multiplayer mode. However, the multi-
player client shows unexpected behaviour. When force is applied,
the graphical representation of the skeleton stays in place, whereas
its physical representation moves (see figure 6).

This asynchronism of the physics engine is not considered an
error, as at 2003, the time of the release of the game, the physi-
cal simulation of game objects was not yet an important aspect of
gameplay. Nevertheless, users wanted to create multiplayer maps
with synchronised physical objects and thus developed a modifica-
tion of the physics engine [Zepp 2005]. Due to the age of the Unreal

1Skeleton model source: http://artist-3d.com/free_3d_
models/dnm/model_disp.php?uid=637

Engine 2, this project has undergone no further improvement since
2005 and is now no longer available on servers.

4.2 id Tech 4

The following results are based on the game “Quake 4.” This game
uses a more recent version of the id Tech 4 engine than the game
“Doom 3”.

Editing The id Tech 4 engine incorporates a set of editors nec-
essary for building maps and inserting custom content (see fig-
ure 7(b)). All of them can be started separately to edit, e.g., maps,
articulated figures, effects, materials, and scripts.

The map editor “Radiant” has a simple user interface, including a
world view and a texture and model browser. Like the other editors,
it also uses the brush concept for adding simple geometries and a
selection list for more complex objects. In contrast to the other two
editors which use four windows for the top, front, side, and 3D view
of the scene, this editor is restricted to a single window with the top
view in conjunction with a simplified tall window for adjusting the
height of placed objects.

Content With the map editor we created a simple room with two
tables, on which we placed a game content model of a dissected
body and a static custom content skeleton model, imported from
an .ASE file (see figure 5(b)). We placed additional objects (fire
extinguisher, book, gas bottle) in the scene to evaluate collaborative
interactions with physical objects.

When we tried to articulate the skeleton by connecting the limbs
and skull to the torso, we discovered that the physical support is
limited to simple rigid bodies. This limitation was unexpected, due
to the fact that we also worked with the id Tech 4 engine based game
“Doom 3.” In this game, a moveable crane with heavy, swinging
load appears at least in one map. Its movements can be controlled
by the user and the animation of the load is handled by the physics
engine. Further investigation revealed that the physics of the game
“Doom 3” is part of the game content, but not of the basic id Tech
4 engine [id Software 2007].

Gameplay The map was loaded in multiplayer mode and entered
by two users. Player positions, orientations and states as well as
optical effects are synchronised well between server and client.

Physical objects can be manipulated by both, although the re-
fresh rate of the position and orientation of physical objects on

277

http://artist-3d.com/free_3d_models/dnm/model_disp.php?uid=637
http://artist-3d.com/free_3d_models/dnm/model_disp.php?uid=637

(a) “UnrealEd 3” (Unreal Engine 2)

(b) “Radiant” (id Tech 4)

(c) “Hammer” (Source Engine)

Figure 7: Screenshots of the map editors of the three evaluated
game engines.

the client is slow and results in a jerking movement. This prob-
lem could not be solved by manipulations of the server settings.
Additionally, some physical items also showed the asynchronous
behaviour of their optical and physical representations as for the
Unreal Engine 2. It is yet unknown for which kind of objects this
applies and if there are possible countermeasures.

4.3 Source Engine

The SDK of the Source Engine includes editors and helper pro-
grams and thus enables the construction of new maps and even
modification of the source code of the engine. Permission to down-
load it is obtained by purchasing a game of the “Half-Life 2” series.

Editing Maps are created and modified with the map editor
“Hammer” (see figure 7(c)). The producer of the engine, Valve,
also refers to the free XSI ModTool from Softimage [Avid Tech-
nology 2007], which, in conjunction with a special plugin that is
available on the website of Valve, can be used for creating static
and animated models.

The editor can be switched into different modes, like construct-
ing solid objects, placing complex objects, moving objects, and tex-
turing them. Complex objects (entities) are not only geometrically
complex models, but also physical objects, physical constraints,
light sources, pickable items (e.g. weapons, ammunition), etc.

An interesting and unique concept of the Source Engine is that
of entity outputs and inputs. When, e.g., the output “OnTrigger”
of a light switch entity is connected to the input “Toggle” of light
source entity, the user can switch the light on and off by “using” the
light switch with his character.

Content We created a test room with some game content objects
(e.g. locker, lamps) and a table with the custom content skeleton. In
contrast to the Unreal Engine 2 and the id Tech 4 engine, a model
imported into the Source Engine may only consist of a maximum of
32768 vertices. This also limits the number of triangles to a max-
imum of about 11000. These limits are coded into the engine and
may not be changed. For performance reasons, Valve suggests to
reduce the complexity of models to below 10000 triangles [Valve
Developer Community 2007a]. We discovered that this limitation
can be overcome by splitting the model into parts that are assem-
bled into one object when converting the model data into the game
engine’s internal format, as described in the next paragraphs.

The whole process of creating custom models and textures is
rather complex at first sight (see figure 8). For every model and
texture, a “compiling instruction” file is necessary for converting
it into the engine format (.qc and .txt). Especially the 3D
model (.smd) is converted into a multitude of single files which
hold information about geometry (.vvd), animations (.mdl),
physics (.phy) as well as special information for rendering the
model in software, DirectX 8 and 9 (.sw.vtx, .dx80.vtx,
.dx90.vtx). The .vmt file gives additional information about
the texture (e.g. specular lighting, normal mapping, physical sur-
face properties) needed by the editor and the game engine.

The conversion programs and other tools are purely command
line based. To convert a single model into the engine format, one
has to drag the compilation file onto the converter in the explorer
view, or start the process by entering a command line instruction.
These command line based programs could be utilised easily to au-
tomatise a complex process of creating maps and models from med-
ical datasets.

Gameplay Compared to the other two engines, the Source En-
gine performed best. The position, orientation and state of the
users character as well as the physical simulation synchronised
well and fluently on server and client (see figures 1 and 5(c)).
The editor allows the selection of two kinds of physical objects:
prop_physics and prop_physics_multiplayer. The
latter reduces the amount of network traffic necessary for the syn-
chronisation of physical objects on all connected machines, but also
limits the interactivity of objects. They can only be moved by ap-
plication of forces from weapons or tools, but not directly by users.
This fact has to be considered when designing maps with objects
that the user has to interact with as well as passive objects.

5 Conclusion

Modern game engines fulfill a great set of the features necessary for
building a simulated surgical training application.

Graphics, audio and network capabilities are highly developed
and allow the creator of applications to focus on content rather than
details of the implementation. The underlying hardware is opti-
mally used. Multiuser interaction is possible by multiplayer sce-
narios and allows the training of teamwork and cooperation.

Modern and highly mathematical physics models for simulation
of soft tissue are (not yet) possible with game engines. Neverthe-
less, one can simulate basic soft tissue interaction by the use of
simple mass-spring models.

278

model_anim.smd

model_ref.smd

model_physics.smd

StudioMdl.exe

3D Modeller

texture.tga

texture.txt

model.qc

VTex.exe

Source
Engine

Hammer
Editor

model.mdl

model.phy

model.sw.vtx

model.dx80.vtx

model.dx90.vtx

texture.vtx

texture.vmt

model.vvd

Paint
Program

Figure 8: The flow of files and conversion for creating custom models and textures for the Source Engine.

Engines with publicly available source code like the Source En-
gine allow the extension of their physics engine features to mathe-
matically more sophisticated models.

Predefined file formats can pose difficulties when converting
medical images and models. These formats may be limited in their
number of vertices or faces and thus would need preprocessing to
reduce the amount of information without loss of optical detail. An-
other possibility for overcoming these limits is to split complex ob-
jects into parts that are kept together (e.g. by constraints [Wünsche
et al. 2005]). On the positive side, the necessary file formats for the
examined three engines are well documented (.ASE: [UnrealWiki
2007], .SMD: [Valve Developer Community 2007b]).

An interesting aspect of the Source Engine is the fact that not
only the material and model compilation files are text based, but
also the file format for maps. In conjunction with the command
line based tools, this could lead to the development of a fully au-
tomatised tool that reads patient related medical data and constructs
a map including the custom patient models for interaction and train-
ing.

6 Future Work

Automatisation The process of preparing and converting models
for the use with game engines is up to date too complicated to be
performed by untrained people. We plan to automatise this process
by creating tools that can read and convert medical data directly
into models and maps for use with game engines.

Feature Matrix We are currently preparing a matrix of features
of surgical training devices for different kinds of medical proce-
dures and features of game engines. With this matrix, the user can
determine, which game engine would be best for implementing an
application for a certain kind of procedure.

New Engines Two engines of the newest generation are expected
to be released in the fourth quarter of 2007:

• CryEngine 2 [Crytek 2002]
• Unreal Engine 3 [Epic Games 2006]

Among their features are enhanced graphics and physical mod-
elling techniques. Animations can be blended while maintaining a
set of constraints. Geometrical models can be deformed arbitrarily
by displacement textures. Physically correct simulation of smoke
and liquids is introduced. These features allow even more realistic
surgical simulations and will be subject to further analysis.

References

ACGME. ACGME Outcome Project – General Competencies [on-
line]. Sept. 1999 [cited 17.08.2007]. Available from: http:
//www.acgme.org/outcome/comp/compMin.asp.

AGEIA TECHNOLOGIES. Ageia [online]. 2007 [cited 21.06.2007].
Available from: http://www.ageia.com/.

ALLARD, J., COTIN, S., FAURE, F., BENSOUSSAN, P.-J.,
POYER, F., DURIEZ, C., DELINGETTE, H., AND GRISONI, L.
2007. SOFA – an Open Source Framework for Medical Simula-
tion. In Medicine Meets Virtual Reality (MMVR 15).

AUTODESK. Autodesk 3ds Max [online]. 2007 [cited 16.08.2007].
Available from: http://www.autodesk.com/3dsmax.

AUTODESK. Autodesk Maya [online]. 2007 [cited 16.08.2007].
Available from: http://www.autodesk.com/maya.

AVID TECHNOLOGY. Welcome to Softimage – 3D Software
Solutions for Games, Films, and Television Artists [online].
2007 [cited 17.08.2007]. Available from: http://www.
softimage.com/.

BACHOFEN, D., ZÁTONYI, J., HARDERS, M., SZÉKELY, G.,
FRÜH, P., AND THALER, M. 2005. Enhancing the Visual Real-
ism of Hysteroscopy Simulation. Studies in Health Technology
and Informatics 119 (Jan.), 31–36.

BLENDER FOUNDATION. Blender [online]. 2007 [cited
17.08.2007]. Available from: http://www.blender.
org/.

BRADLEY, P. 2006. The history of simulation in medical education
and possible future directions. Medical Education 3, 3 (Mar.),
254–262.

ÇAVUŞOĞLU, M. C., GÖKTEKIN, T. G., AND TENDICK, F. 2006.
GiPSi: A Framework for Open Source/Open Architecture Soft-
ware Development for Organ Level Surgical Simulation. IEEE
Transactions on Information Technology in Biomedicine 10, 2
(Apr.), 312–322.

CHEN, K.-T., HUANG, P., AND LEI, C.-L. 2006. Game traffic
analysis: An MMORPG perspective. Computer Networks 50, 16
(Nov.), 3002–3023.

CISL. The MedSim-Eagle Patient Simulator [online]. 2007 [cited
17.08.2007]. Available from: http://med.stanford.
edu/VAsimulator/medsim.html.

279

http://www.acgme.org/outcome/comp/compMin.asp
http://www.acgme.org/outcome/comp/compMin.asp
http://www.ageia.com/
http://www.autodesk.com/3dsmax
http://www.autodesk.com/maya
http://www.softimage.com/
http://www.softimage.com/
http://www.blender.org/
http://www.blender.org/
http://med.stanford.edu/VAsimulator/medsim.html
http://med.stanford.edu/VAsimulator/medsim.html

COTIN, S., DELINGETTE, H., AND AYACHE, N. 1999. Real-
Time Elastic Deformations of Soft Tissues for Surgery Simula-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 5, 1 (Mar.), 62–73.

CRYTEK. CryEngine 2 Specifications [online]. 2002 [cited
17.08.2007]. Available from: http://www.crytek.com/
technology/index.php?sx=eng2.

DELINGETTE, H. 1998. Toward Realistic Soft-Tissue Modeling
in Medical Simulation. Proceedings of the IEEE 86, 3 (Mar.),
512–523.

DEVMASTER.NET. 3D Game Engines Database [online].
2007 [cited 17.08.2007]. Available from: http://www.
devmaster.net/engines/.

DWORZAK, J., AND GU, L. 2007. Combining progressive and
non-progressive cutting for soft tissue surgery simulations. In-
ternational Journal of Computer Assisted Radiology and Surgery
2, Suppl 1 (June), S163–S165.

EPIC GAMES. Unreal Engine 2 [online]. 2004 [cited 17.08.2007].
Available from: http://www.unrealtechnology.
com/html/technology/ue2.shtml.

EPIC GAMES. Unreal Engine 3 [online]. 2006 [cited 17.08.2007].
Available from: http://www.unrealtechnology.
com/html/technology/ue30.shtml.

GEER, D. 2006. Vendors Upgrade Their Physics Processing to
Improve Gaming. Computer 39, 8 (Aug.), 22–24.

HAVOK. Havok [online]. 2007 [cited 17.08.2007]. Available from:
http://www.havok.com/.

ID SOFTWARE. id.sdk [The Code] [online]. 2007 [cited
17.08.2007]. Available from: http://www.iddevnet.
com/doom3/code.php.

IMMERSION CORPORATION. Immersion Medical [online].
2007 [cited 17.08.2007]. Available from: http://www.
immersion.com/medical/.

LIM, Y.-J., AND DE, S. 2007. Real time simulation of nonlin-
ear tissue response in virtual surgery using the point collocation-
based method of finite spheres. Computer Methods in Applied
Mechanics and Engineering 196, 31-32 (June), 3011–3024.

MACKENZIE, J., BAILY, G., NITSCHE, M., AND RASHBASS,
J., 2003. Gaming Technologies for Anatomy Education. On-
line, May. Available from: http://www.virtools.com/
news/pdf/2004/CARET.pdf [cited 17.08.2007].

MENTICE. Mentice [online]. 2007 [cited 17.08.2007]. Available
from: http://www.mentice.com/.

MONTGOMERY, K., BRUYNS, C., BROWN, J., SORKIN, S.,
MAZZELLA, F., THONIER, G., TELLIER, A., LERMAN, B.,
AND MENON, A. 2002. Spring: A General Framework for
Collaborative, Real-time Surgical Simulation. Studies in Health
Technology and Informatics 85, 296–303.

RODRIGUEZ-FLORIDO, M. A., SÁNCHEZ ESCOBAR, N., SAN-
TANA, R., AND RUIZ-ALZOLA, J. 2006. An Open Source
Framework for Surgical Simulation. Insight Journal (July).
Available from: http://hdl.handle.net/1926/219
[cited 17.08.2007].

SELECT IT VEST SYSTEMS AG. Select-IT VEST Systems
AG – medical science at your fingertips [online]. 2007 [cited
17.08.2007]. Available from: http://www.select-it.
de/.

SERIOUS GAMES INITIATIVE. Games For Health [online].
2007 [cited 17.08.2007]. Available from: http://www.
gamesforhealth.org.

SERIOUS GAMES INITIATIVE. Serious Games Initiative [on-
line]. 2007 [cited 17.08.2007]. Available from: http://www.
seriousgames.org.

SIMBIONIX. Simbionix, medical training simulators and clin-
ical devices for MIS (minimally invasive surgery) [online].
2007 [cited 17.08.2007]. Available from: http://www.
simbionix.com/.

SIMSURGERY. Surgical training and Surgery education with Sim-
Surgery [online]. 2007 [cited 17.08.2007]. Available from:
http://www.simsurgery.no/.

SURGICAL SCIENCE. Surgical Science - Safer surgeons faster
[online]. 2007 [cited 17.08.2007]. Available from: http:
//www.surgical-science.com/.

UNREALWIKI. UnrealWiki: ASE File Format [online]. 2007 [cited
17.08.2007]. Available from: http://www.unrealwiki.
com/wiki/ASE_File_Format.

VALVE CORPORATION. Valve Source Engine Features [on-
line]. 2004 [cited 17.08.2007]. Available from: http:
//www.valvesoftware.com/sourcelicense/
enginefeatures.htm.

VALVE DEVELOPER COMMUNITY. Compiling Models
[online]. 2007 [cited 17.08.2007]. Available from:
http://developer.valvesoftware.com/wiki/
Compiling_Models_Basics.

VALVE DEVELOPER COMMUNITY. SMD file format
[online]. 2007 [cited 17.08.2007]. Available from:
http://developer.valvesoftware.com/wiki/
SMD_file_format.

VEREFI TECHNOLOGIES. Verefi Technologies, Inc. [online]. 2007
[cited 17.08.2007]. Available from: http://www.verefi.
com/.

WESTWOOD, J. D., HALUCK, R. S., HOFFMAN, H. M., MO-
GEL, G. T., PHILLIPS, R., ROBB, R. A., AND VOSBURGH,
K. G. 2005. Highly-Realistic, Immersive Training Environment
for Hysteroscopy. Studies in Health Technology and Informatics
119 (Jan.), 176–181.

WIKIPEDIA. id Tech 4 — Wikipedia, The Free Encyclopedia
[online]. 2007 [cited 17.08.2007]. Available from: http:
//en.wikipedia.org/wiki/Doom_3_engine.

WÜNSCHE, B. C., KOT, B., GITS, A., AMOR, R., HOSK-
ING, J., AND GRUNDY, J. 2005. A Framework for Game
Engine Based Visualisations. In Proceedings of Image and
Vision Computing New Zealand 2005. Available from:
http://www.cs.auckland.ac.nz/˜burkhard/
Publications/IVCNZ05_WuenscheKotEtAl.pdf.

ZEPP, J. GoodKarma Physics Mod Beta 4 [on-
line]. 2005 [cited 16.08.2007]. Available from:
http://www.ataricommunity.com/forums/
showthread.php?t=440477.

280

http://www.crytek.com/technology/index.php?sx=eng2
http://www.crytek.com/technology/index.php?sx=eng2
http://www.devmaster.net/engines/
http://www.devmaster.net/engines/
http://www.unrealtechnology.com/html/technology/ue2.shtml
http://www.unrealtechnology.com/html/technology/ue2.shtml
http://www.unrealtechnology.com/html/technology/ue30.shtml
http://www.unrealtechnology.com/html/technology/ue30.shtml
http://www.havok.com/
http://www.iddevnet.com/doom3/code.php
http://www.iddevnet.com/doom3/code.php
http://www.immersion.com/medical/
http://www.immersion.com/medical/
http://www.virtools.com/news/pdf/2004/CARET.pdf
http://www.virtools.com/news/pdf/2004/CARET.pdf
http://www.mentice.com/
http://hdl.handle.net/1926/219
http://www.select-it.de/
http://www.select-it.de/
http://www.gamesforhealth.org
http://www.gamesforhealth.org
http://www.seriousgames.org
http://www.seriousgames.org
http://www.simbionix.com/
http://www.simbionix.com/
http://www.simsurgery.no/
http://www.surgical-science.com/
http://www.surgical-science.com/
http://www.unrealwiki.com/wiki/ASE_File_Format
http://www.unrealwiki.com/wiki/ASE_File_Format
http://www.valvesoftware.com/sourcelicense/enginefeatures.htm
http://www.valvesoftware.com/sourcelicense/enginefeatures.htm
http://www.valvesoftware.com/sourcelicense/enginefeatures.htm
http://developer.valvesoftware.com/wiki/Compiling_Models_Basics
http://developer.valvesoftware.com/wiki/Compiling_Models_Basics
http://developer.valvesoftware.com/wiki/SMD_file_format
http://developer.valvesoftware.com/wiki/SMD_file_format
http://www.verefi.com/
http://www.verefi.com/
http://en.wikipedia.org/wiki/Doom_3_engine
http://en.wikipedia.org/wiki/Doom_3_engine
http://www.cs.auckland.ac.nz/~burkhard/Publications/IVCNZ05_WuenscheKotEtAl.pdf
http://www.cs.auckland.ac.nz/~burkhard/Publications/IVCNZ05_WuenscheKotEtAl.pdf
http://www.ataricommunity.com/forums/showthread.php?t=440477
http://www.ataricommunity.com/forums/showthread.php?t=440477

Evaluation of Game Engines for Simulated Surgical Training
Stefan Marks, John Windsor, Burkhard Wünsche

(a) Unreal Engine 2 (b) id Tech 4 (c) Source Engine

Figure 1: Screenshots of our simulation scenarios implemented with different game engines.

Figure 2: Cooperative interaction on a skeleton model. One user (left figure) is moving the leg with a stick.

318

	Introduction
	Game Engines
	Game Engine Design
	Technical Advantages
	Important Features

	Methodology
	Engine Selection
	Evaluation

	Results
	Unreal Engine 2
	id Tech 4
	Source Engine

	Conclusion
	Future Work

