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Abstract

Head-mounted displays (HMDs) are highly immersive
display devices which are increasingly targeted to-
wards consumer-level video games, E-learning, train-
ing and other forms of digital entertainment. Despite
the hardware now being available, quality factors —
particularly latency — are still issues in large part
due to consumer graphics hardware being tailored for
throughput instead of latency, and the expectation
of a nausea-free experience even on weak hardware.
In this paper we discuss the benefits and disadvan-
tages of using image warping as a means to improve
frame rate and latency in the context of consumer
applications. As part of this, we suggest two appro-
priate algorithms for performing the image warping.
These methods are compatible with other latency re-
duction strategies such as predictive tracking, and re-
quire minimal changes to conventional 3D rendering
processes. In addition, they are implemented purely
in software and are therefore suitable for use on ex-
isting consumer PCs and HMDs. Initial evaluations
indicate that artefacts from both warping algorithms
are minimally visible for typical environments.

Keywords: head-mounted display, latency reduction,
frame rate, image warping

1 Introduction

Today, there are many general consumer applications
where people interact with 3D virtual environments.
Video games, computer aided design, E-learning, on-
line virtual worlds, 3D mapping and navigation and
architectural walkthroughs are just some examples.
Additionally, more and more devices are becoming
capable of running these applications; what was pre-
viously only attainable using high-end desktop com-
puters is now possible on portable laptop comput-
ers, tablets and even mobile phones at remarkably
detailed visual quality.

What has changed little is the way which we view
these virtual environments. It is still almost univer-
sally done by showing a single rendered image on a
flat panel monitor that takes up a small portion of the
user’s visual field. This does not provide a very im-
mersive experience, and only recently have more im-
mersive display technologies started to become avail-
able at reasonable cost and quality. Stereoscopy is
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one such technology that has appeared in computer
monitors, television sets, handheld gaming consoles
and smartphones, however the need to wear special
3D glasses is a factor that has hindered the uptake of
the technology.

One of the more immersive classes of display are
head-mounted displays (HMDs). These are worn on
the user’s head and have the benefit of producing
stereoscopic 3D, taking up a large portion of the
user’s visual field and blocking out the real world.
Many types also have sensors to track their orienta-
tion and/or position, allowing the user to look around
the virtual environment with natural head motion.
Traditionally HMDs have been expensive, or of low
quality, and have therefore been limited to specialised
industrial, scientific, military and enthusiast audi-
ences. Recently however, some HMDs that are both
low cost and high quality have been designed for gen-
eral consumer use. A notable example is the Ocu-
lus Rift (Oculus VR, 2012) which has gained sup-
port from prolific virtual reality (VR) enthusiasts and
game developers (Oculus VR, 2013), despite being
pre-production hardware.

While adapting 3D applications to use sophisti-
cated VR displays is technically straightforward, cer-
tain quality and performance factors such as render-
ing latency and frame rate become significantly more
important for an acceptable user experience. This
necessitates tighter control of these factors than pre-
viously required in these applications. When coupled
with the fact that most consumers would assume that
the experience for sophisticated VR displays should
be at least as good as that of conventional displays,
there arises a need for methods to improve these qual-
ity factors beyond what is possible by using conven-
tional methods.

In this paper we discuss a frame rate and latency
enhancement technique based on image warping, and
how it may be applied to and adapted for these sorts
of applications. After exploring related work, we dis-
cuss the architecture of our image warping enhance-
ment and the benefits it provides. We then discuss
the characteristics of the enhancement with respect
to consumer applications.

2 Related Work

Since low latency and high frame rates can be so im-
portant for virtual reality systems, much work has
been performed over the years in an attempt to en-
hance them.

A universal way to compensate for any type of la-
tency is to use prediction. In the context of HMDs,
by predicting the position of the head at the time the
render frame will become visible, instead of the raw
sampled position, the average latency of head mo-



tions can be reduced. Azuma and Bishop (1994) dis-
cuss several ways to predict head position and find it
can reduce the magnitude of tracking errors by 2–10
times.

One approach to provide optimal frame rates is to
guarantee that the time it takes to render a frame
is always less than the deadline for that frame being
scanned out to the display. Olano et al. (1995) dis-
cuss a method for achieving this for HMDs; using a
cluster of graphics processors to distribute computa-
tion. The authors also dynamically offset scan lines to
further reduce latency by compensating for the time
it takes to scan out an image to a CRT display. For
current consumer HMD systems this is impractical,
as the required cluster of graphics processors is very
uncommon, and modern consumer HMDs are LCD or
OLED based.

Kijima and Ojika (2002) develop the idea of shift-
ing scan lines by designing a modulator system that
is inserted between an LCD panel and the driving
circuitry. The modulator has a direct feed to the
predicted head position which bypasses additional
sources of latency. Since this process requires physi-
cal modification of the HMD, it is less suitable for use
on existing consumer HMDs, as it is unrealistic to ex-
pect average users to be able or willing to perform the
modification.

A third class of latency compensation techniques
has been researched that, like prediction, is able to be
implemented entirely through software. These tech-
niques are based on image warping, i.e. taking previ-
ously rendered views and modifying them to generate
new ones. Mark et al. (1997) discuss how this can be
utilised to improve general frame rates, and latency
when using a remote display. The authors, however,
do not provide an implementation of their system,
something that is accomplished in more recent work.

Smit et al. (2007) present and implement an ar-
chitecture for performing this warping. This is done
using dual GPUs, one for rendering the virtual envi-
ronment to produce what they call application frames,
and one for rendering warped display frames that are
then presented to the user. This architecture is tai-
lored for local VR systems, in particular fish-tank vir-
tual reality which combines stereoscopy with head-
coupled perspective. In their later work they improve
their architecture to reduce crosstalk with stereo shut-
ter glasses (Smit et al., 2008), adapt the system for
use on a single GPU (Smit et al., 2009), and explore
the quality and performance of different warping al-
gorithms.

In our own previous work (Peek et al., 2013) we
have implemented and tested a image warping archi-
tecture specifically designed for HMDs. Our user eval-
uation showed that image warping significantly im-
proves the smoothness of head tracking, and for most
users is indistinguishable from ideally fast rendering;
at least when head tracking is the only motion in the
scene.

3 Image Warping

We extend prior work by examining how the prac-
ticality of these techniques is affected by their use
in general applications, and with currently available
consumer-level hardware. This builds upon our pre-
vious work in this area and provides a more detailed
consideration of image warping in normal 3D applica-
tions. Within this paper, our reference scenario is an
interactive video game on desktop class PC hardware
using the Oculus Rift developer kit as the system
display, and a keyboard and mouse for input. This

is likely one of the major use cases for this wave of
HMDs, and it is complicated enough to surface the
issues we are looking for, while also allowing for some
generalisation to other hardware platforms and appli-
cations. Considering this problem domain, the follow-
ing points were considered especially important and
had a large influence on the process of our investiga-
tion.

3.1 Domain Requirements

The first restriction due to this sort of usage, is
that physical modification of computer hardware is
unattractive to the user, so any sort of enhancement
must be entirely software based. This rules out tech-
niques that involve modification of the HMD hard-
ware itself, such as the Reflex HMD proposed by Ki-
jima and Ojika (2002). Conversely, techniques based
on image warping via the GPU are practical in this
case as they are typically able to be run on any mod-
ern desktop GPU.

An extension to this restriction is that is cannot
be assumed that the user is willing or able to upgrade
their computer hardware, specifically their CPU or
GPU, in order to facilitate use of any enhancements.
Since a large proportion of typical users’ PCs have
only a single GPU, techniques that require multiple
GPUs (such as the work by Smit et al. (2007)) are
impractical unless they are able to be modified to
run on a single GPU (as in their later work (Smit
et al., 2009)). It may be noted however that while
many users have only a single dedicated GPU (dGPU),
most modern CPUs have an integrated GPU (iGPU)
that may be used in addition to the more powerful
dGPU. However, such iGPUs are significantly slower
(up to an order of magnitude), and so sophisticated
techniques may not run fast enough to produce any
improvement in latency or frame rate.

Furthermore, considering the range of PC configu-
rations in current use, a very large number have only
an iGPU as the sole graphics processor. In a July 2013
survey of desktop and laptop PCs used for gaming
(Valve Corporation, 2013), the most common graph-
ics processor was an iGPU (Intel HD 3000) and over
14% of systems had an iGPU as their only graphics
processor. Such systems pose an ambivalent target,
as while they have the most to gain from latency re-
duction and frame rate improvement, they are also
the most difficult ones to develop for due to their lim-
ited capacities. The consequence of this is that for
consumer applications, any enhancement technique
should be capable of running on even modest PC
hardware.

The last point of note concerns the structure of
the application that is to be enhanced. With HMDs
still being only a niche display type, it is unrealis-
tic to expect application developers to enact signifi-
cant changes to application architecture and render-
ing pipeline in order to implement an enhancement
currently useful to so few users. This is especially
true when considering its impact to development and
testing costs, or to the quality and performance of
conventional displays. The suitable response is to en-
sure that any proposed enhancement is compatible
with popular rendering models (such as forward and
deferred shading) with minimal changes, or even en-
tirely separable in the style of NVIDIAs 3D vision
(NVIDIA Corporation, 2013) or our own method for
head-coupled perspective (Li et al., 2012).



3.2 Overview

This paper discusses how image warping, such as that
by Smit et al. (2007), may be implemented taking
into account these special requirements. We also tai-
lor our method specifically for HMDs, where previous
work (Smit et al., 2007) has targeted fish-tank virtual
reality (FTVR) systems. In this section we present
a high-level overview of our image warping enhance-
ment, how it would be added to a conventional HMD
software application, and two warping algorithms de-
signed for the problem domain.

The central idea behind image warping (as a
means to improve frame rate) is that for a rendered
frame, subsequent frames are visually very similar and
therefore may be extrapolated from the original frame
with acceptably small errors. Error-free reference
frames must still be regularly generated to prevent
errors accumulating over time, and to account for the
fact that only certain changes can be extrapolated by
warping. To structure this method, we use an archi-
tecture similar to that proposed by Smit et al. (2007),
in which the simulation and warping run concurrently
and at separate rates. The simulation generates sim-
ulation frames using conventional rendering as fast
as it can. At the same time, the warper takes the
most recently produced simulation frame and uses it
to generate a display frame at exactly the display’s re-
fresh rate: first by warping the simulation frame with
up-to-date head orientation, and then performing the
HMD lens correction. It is only the display frames
that are made visible to the user via the HMD. Ad-
ditionally, because HMDs are stereoscopic displays,
each simulation and display frame contains a left and
right eye view which are rendered and warped inde-
pendently.

This set-up is able to increase frame rate because
the generation of display frames is less computation-
ally expensive than simulation frames, and thus able
to be performed more frequently on the same PC
hardware. However, because image warping short-
ens the generation of individual display frames, but
requires the sequential generation of both simulation
and display frames, it reduces some forms of latency
while increasing others.

Basic image warping can only be used to extrap-
olate object and viewpoint motion between frames.
Other types of motion require auxiliary data to be
generated with each conventionally rendered frame.
The required data for each type of motion is as fol-
lows.

Viewpoint rotation only requires the rendered im-
age colour

Viewpoint translation requires the colour and
depth of each pixel in the rendered image

Object rotation & translation requires the
colour, depth and velocity of each pixel in the
rendered image

Different algorithms exist for performing the actual
image warp. This paper suggests and discusses two
appropriate methods for our target domain in Sec-
tions 3.4 & 3.5.

3.3 Benefits

To quantify the benefits of image warping, we must
compare how it relates to conventional rendering.
Here we briefly discuss what variables influence the
frame rate and latencies of these two rendering pro-
cesses. In addition to frame rate, the two types of la-
tency of interest are what we call tracking latency Lt
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Figure 2: The constituent parts of tracking and sim-
ulation latency in the conventional rendering process

and simulation latency Ls. Tracking latency specifi-
cally concerns HMDs in that it is the time delay be-
tween a rotation of the user’s head and the rendered
frame accounting for that rotation being visible to the
user. Simulation latency is the time delay between a
change in the simulation’s state (including response
to user input) and that new state being visible to
the user. Usage of HMDs is particularly sensitive to
tracking latency — an excess of which causes motion
sickness — while simulation latency is more accept-
able; but only to the extent that while in need not be
aggressively reduced, it should also not be needlessly
increased. In a GPU-bottlenecked conventional ren-
dering process, as visualised in Figure 2, frame rate
and latencies are given by the following equations.

Lt = Tso + Tbs + Tgs + Tl + Tv + Td (1)

Ls = Tbs + Tgs + Tl + Tv + Td (2)

frame rate =
1

Tgs
(3)

Using this rendering approach, frame rate and la-
tencies are typically improved by reducing scene and
shading complexity to indirectly control Tgs. Other
delays are either impossible to affect from software,
or have consequences from being changed.

The rendering pipeline modified for image warping
is shown in Figure 3 and results in new equations (4–
7) for frame rate and latencies

Lt = Tso + Tbw + Tgw + Tl + Tv + Td (4)

Ls = Tbs + Tgs + Tp + Tbw + Tgw + Tl + Tv + Td (5)

frame ratesingle GPU =
1 + r

r × Tgw + Tgs
(6)

frame ratedual GPU =
1

Tgw
(7)

where r is the number of display frames generated per
simulation frame.



(a) Simulation frame (t0), rendered before head rotation

(b) Display frame (t1), result of warping the simulation frame after head rotation. Fringe
artefacts are evident in the top and right sides of the images, while a minor edge artefact is
visible on the right chair arm in the right-eye image

(c) Simulation frame (t2), rendered after no additional head rotation. It corrects the errors
introduced in the warped image

Figure 1: Example frame generation sequence, with an (unrealistically fast) head rotation to the upper-right.
The rotation occurs between the rendering of the first simulation frame and the first display frame
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Figure 3: The sources of latency in image warping for a dual GPU system. For a single GPU system, all
rendering work on the second GPU is shifted to the first and the cross-GPU transfer no longer exists

3.4 Reprojection Algorithm

The first warping algorithm we present is a repro-
jection of the rendered image as a textured screen-
aligned quad. Consider the following variant of the
matrix stack used to transform mesh vertices into
screen-space (used ubiquitously in conventional ren-
dering) for time t

~vt
′ = PHBM~v (8)

where P is the projection matrix, M is the
model/world matrix, and the view matrix (normally
V ) is split into the simulation controlled body matrix
B and the head coupled matrix H. The matrix to
reproject the transformed vertex ~vt

′ to its position at
time t + 1 is given by

R = PHt+1H
−1
t P−1 (9)

assuming there is no change in B or M . The full
process for this method of image warping is therefore

1. Sample the head position to obtain Ht

2. Render the scene conventionally to an off-screen
texture, using the transformation given in Equa-
tion 8

3. Sample the head position to obtain Ht+1

4. Render a quad mapped with the texture from
step 2, and aligned to the rear face of the screen-
space frustum to the back buffer, using the trans-
formation matrix given in Equation 9

5. Flip the back buffer to display the rendered quad
to the user

Since H is the only variable that is updated for
the warping, coupled head orientation and transla-
tions are the only types of motion enhanced by this

method. Changes to B are not considered in order
to fully decouple the warping from scene simulation,
although in future work it could be predicted. M is
likewise ignored due to being simulation controlled,
but is also per-object, making it significantly more
complicated to predict and store than B. It should
also be noted that because this method does not con-
sider frame depth information, the head translation
will be imperfectly warped, and objects will be dis-
torted as if their depth is the same as the distance
to the far clipping plane. The effect of this error is
discussed in detail in Section 4.5.

This warping method runs in constant time for
a given screen resolution, and is extremely fast as
it consists of just 4 vertices transformed by a single
matrix, and a single texture lookup per-pixel. This
makes it appropriate for use on low-end GPUs (par-
ticularly iGPUs) which are too slow to perform more
sophisticated warping algorithms.

3.5 Raytrace Algorithm

The second warping algorithm corrects for the trans-
lation error introduced in the reprojection method.
By utilising the depth buffer information that accom-
panies key frames, the distance to scene objects need
no longer be assumed constant. The disadvantage of
this is that the image warping can no longer be per-
formed by a forward texture lookup, and must resort
to a linear search through the frame to find the new
colour value. Forward lookup based methods such as
point splatting do exist (Smit et al., 2007), but ray-
tracing has attractive properties that will be discussed
in later sections.

Effectively, the core difference between the two al-
gorithms is that in reprojection, the simulation frame
is rendered as a flat quadrilateral, while under ray-
tracing it is rendered as a frustum-shaped height map.
To draw this height map, each pixel of the screen



is treated as a ray that is cast into the screen and
through the height map. The colour of the height
map where the ray intersects with it is used to colour
the pixel for which the ray was generated.

To perform this intersection, firstly each ray’s start
and end point is created in screen-space, and then
transformed into the coordinate system of the height
map by multiplying by R−1 (from Equation 9). A ray-
plane intersection is then performed against planes
at the front and back of the height map’s coordi-
nate system to give texture coordinates for the start
UV start and end UV end of a linear search. The linear
search iterates across the depth values of the simula-
tion frame until it meets the following inequality.

sampledepth(i ∗UV start + (1− i) ∗UV end) ≤ i (10)

where 0 < i < 1 and represents the offset and depth
of the search, and nd is the number of pixels (and
hence number of samples tested) between UV start
and UV end. Once the inequality returns true, the
colour at the successful UV coordinate is returned as
the result of the raycast.

This technique’s runtime is proportional to the
amount of translation of the viewing position. This
is because the amount of translation directly affects
how separated the start and end points are of the lin-
ear search, which subsequently dictates the number of
depth samples (nd) needed: the major performance
cost of this method. Another variable that controls
nd is the near clipping distance, which is normally
recommended to be made as large as possible to pre-
vent Z-fighting. The positive side of this is that for
no translation, no depth lookups are required, giving
comparable performance to reprojection. The average
number of texture samples needed is approximated by

nd ∝
translation

clipnear
(11)

assuming clipfar � clipnear.

4 Results & Discussion

The major contribution of this paper is the consid-
eration of how real-world factors influence the prac-
ticality of these frame rate and latency enhancement
methods. This section contains the discussion of these
factors.

4.1 Required Program Modifications

One of the factors influencing the practicality of image
warping is the extent to which it requires changes
to the architecture of a piece of software in order to
accommodate the enhancement. What’s desirable is
requiring few changes to the conventional rendering
process, as well as being compatible with a large range
of lighting and shading techniques.

In this regard both methods perform extremely
well. Both methods attach to the very end of the
rendering process, making the integration point be-
tween the simulation software and the enhancement
very small. The only process change is that the final
rendered image frame is stored in an off-screen tex-
ture, rather than the back-buffer of the swap-chain.
For reprojection, this is the only technical require-
ment, while for raytracing, there is the additional re-
quirement that the depth buffer must also present
alongside the off-screen texture and with valid data.

While depth buffers are ubiquitously used, some
programs render the scene as multiple layers to

improve Z precision, clearing the depth buffer in-
between rendering layers. This is incompatible with
the raytracing algorithm, as it expects objects to have
correct depth information. This does however have
the benefit of preventing excessive use of this optimi-
sation, which can cause incorrect occlusion where lay-
ers overlap, something barely noticeable on conven-
tional displays, but quite distracting on stereoscopic
displays (including HMDs).

While the requirement of a motion-field buffer
would allow simulation motion smoothing (Smit
et al., 2007), this would require a large step-up in
the intrusiveness of the enhancement which is one of
the reasons it was not considered in this paper.

4.2 Head Rotation and Translation

The image warping enhancement described in this pa-
per is concerned with improving frame rate and la-
tency specifically for head tracking. Furthermore, of
the two components of tracked head motion, orien-
tation and translation, orientation is strongly priori-
tised over translation. The reasons for this are three-
fold.

Firstly, we consider coupled head orientation to be
the major immersion factor for HMDs, as it is what
allows the user to naturally look around the virtual
environment.

Secondly, it is the latency in orientation tracking
that primarily causes motion sickness: by making the
world appear to wobble, roll and lag with fast head
movement, and by preventing the vestibulo-ocular re-
flex from correctly stabilising the user’s view of the
scene.

Lastly, the reference HMD (Oculus Rift developer
kit) only contains an orientation tracking system, and
none for positional tracking. This means that any
translation in the viewpoint caused by this tracking is
purely from correcting the rotation to revolve around
the user’s neck, and not around the midpoint of the
user’s eyes. This produced translation is quite small,
and so becomes negligible compared to changes in ori-
entation.

Another point of consideration is the instanta-
neous angular velocity of head rotation. This is im-
portant as the size of certain types of artefacts (Sect.
4.3 & 4.4), the performance of the raytrace algorithm
(Sect. 3.5), and sample-and-hold blurring (Sect. 4.7)
all depend on this velocity. The details of this re-
lationship are discussed in the relevant sections, but
in general, the slower the head rotation the better.
This turns out to be ideal regarding actual usage, as
our experience suggests long periods of small or no
rotation, with occasional bursts of medium speed ro-
tation. Rapid rotation is rare, and even suppressed
due to the weight and inertia of the HMD.

4.3 Fringe Artefacts

The major visible artefact caused by image warping
with HMDs is holes around the edges of the screen,
what we call fringe artefacts. This is caused by rota-
tion of the viewpoint, which results in sampling be-
yond the limits of usable data around the edge in the
direction of rotation. Raytracing naturally fills these
holes, while reprojection can be trivially adapted to
fill them in the same manner: by transforming the
texture coordinates of the quad’s vertices by R instead
of their positions. Both of these work by clamping
the sampled texture coordinates to stay within the
bounds of valid data, effectively stretching the edges
of the key frame over the holes.



(a) Fringe error caused by
warp; the red line separates the
valid image data and the error

(b) How the frame would look
if rendered without artefacts

Figure 4: Example of a fringe artefact, with compar-
ison to an error-free rendering

Since these artefacts always appear at the edges of
the screen, and due to the large field-of-view provided
by the evaluated HMD, these artefacts typically ap-
pear in the user’s peripheral vision. Peripheral vision
is more sensitive to motion than the rest of the field-
of-view, which may emphasise the flickering caused
by the artefacts rapidly appearing and disappearing
as they are corrected. Peripheral visual acuity is how-
ever worse than central vision (foveal), and the ge-
ometry of the Oculus Rift lenses prevents the user
from looking directly at objects in the periphery of
the HMD, meaning fringe artefacts are very difficult
to directly observe.

In addition, HMD rendering is frequently designed
to allow for rendering beyond the normal edges of the
display. This is done to compensate for a shrinking of
the rendered image due to lens distortion correction.
This can be reused as-is to hide fringe artefacts by
pushing them further off the sides of the display, at
the cost of increasing Tgs due to rendering more pixels
than are visible.

4.4 Edge Artefacts

When translating the viewpoint position using the
raytrace algorithm, near objects will be shifted by the
warp more than distant objects. Where depth in the
scene changes suddenly, such as when a near object
occludes a far object, the two objects may be warped
away from each other creating a visible artefact along
the edge between them. Because our raytracing algo-
rithm treats the height map as continuous, these arte-
facts do not appear as holes, but rather as a stretching
of the colour at the edge.

The algorithm may be trivially adapted to stretch
image data across the gap in one of two ways. The
first approach fills the gap using the farther side of the
edge, while the second approach is a linear interpola-
tion of the near and far sides. The benefit of the first
method is that it more realistically handles object oc-
clusions, which are the most common cause of edge
artefacts, albeit at the expense of being incapable of
handling multisampled anti-aliasing. The linear inter-
polation approach removes this incompatibility, but
at the cost of having less realistic fill appearance. A
comparison of the the two filling methods can be seen
in Figures 5c & 5d.

The size of edge artefacts is directly related to the
amount of coupled head translation, which is in turn
related to the velocity of head rotation (Sect. 4.2),
and to the ratio of the object depths as given by Equa-

(a) Simulation frame (b) Display frame made by
warping the simulation frame;
missing data causes visible hole

(c) Hole filled using far edge (d) Hole filled by interpolating
between both near and far edges

Figure 5: Example of an edge artefact caused by
moving the viewpoint to the right, as well as the two
filling methods that could be used to mask it

tion 12.

error ∝ translation×
(
distancefar − distancenear
distancefar × distancenear

)
(12)

From this equation, it can be seen that as the ob-
jects get farther away, or closer together, the error
approaches zero. Slow head rotation, coupled with
objects at reasonably far distance and frequent key
frame generation all serve to minimise the visibility of
edge artefacts. Due to the many variables involved in
their size and contrast, it is difficult to give exact val-
ues for these variables beyond which these artefacts
become negligible; however the presence of sample-
and-hold blurring significantly reduces their visibility,
which is discussed in Section 4.7.

4.5 Translation Errors in Reprojection

It was mentioned within the description of the repro-
jection algorithm, that while the method attempts to
correct for viewpoint translations, it is unable to do so
without error due to ignoring depth information. The
effect of this is that translation is under-compensated
for near objects, but approximately correct for far ob-
jects. The amount of error can be determined through
Equation 12 where distancenear is the distance to the
object, and distancefar is the distance to the far clip
plane. The appearance of this error is that, during
head rotation, nearby objects jerk slightly in the op-
posite direction of the rotation.

Considering the points discussed in Section 4.2
along with the fact that for typical virtual environ-
ments most objects are at reasonable distances, the
visibility of these errors is quite small.



4.6 Head-coupled Scene Objects

One of the major assumptions of these image warping
methods is that no scene objects are coupled to the
head position or orientation. Unfortunately there are
a few common scenarios that violate this assumption.
The most common examples of this are the head-up
display and other types of 2D user interfaces. These
are drawn at fixed positions on-screen and so may
be modelled as scene objects coupled to the camera’s
position. Examples of other common coupled 3D ob-
jects are parts of the player’s avatar, particularly the
hands and held objects.

The violation in the warping model occurs because
these types of objects are not transformed by a matrix
stack of the form given by Equation 8. The visible
effect of this is that these objects will judder in the
direction of any head motion, instead of remaining
stationary (relative to the user’s head).

The simplest solution to this problem is to avoid
using these types of head-coupled objects. Some video
games already follow this model and do not show any
2D HUD, and opt to display the equivalent informa-
tion entirely using in-game objects.

Another option is to shift the rendering of head-
coupled objects themselves into the warping pass.
There are three main disadvantage to this. It deterio-
rates the performance of the warping pass due to the
increase in rendering complexity, although not signif-
icantly as most HUDs tend to be reasonably simple.
It more tightly couples the warping pass to the sim-
ulation logic, making it more difficult to run them at
independent rates. And finally it increases the intru-
siveness of the enhancement by requiring more deep
changes to the conventional rendering process.

A middle ground could be to modify the warp-
ing methods to detect head-coupled objects and then
avoid warping them. This would require some way
to differentiate between head-coupled and normal ob-
jects. Since head-coupled objects are typically ren-
dered in front of all other scene objects, a simple solu-
tion would be to apply a threshold to the depth buffer,
where objects below the threshold are not warped,
while those behind are. While this is trivial to imple-
ment, it does introduce edge and transparency arte-
facts which, due to the great difference in depth be-
tween HUD and scene, would be significantly more
visible than their manifestations in ordinary scene ob-
jects.

4.7 Sample-and-hold Blurring

One of the most interesting factors that deserves at-
tention is a blurring effect due to the finite frame rate
and sample-and-hold nature of the HMDs display.
This appears as a linear blur during head rotation
when fixated on a stationary point in the scene. While
a similar blur also occurs when fixated on moving ob-
jects, whether on a conventional monitor or HMD,
it is how the blur caused by head rotation interacts
with and masks warping artefacts that is of particular
interest.

The reason this occurs is that while the vestibulo-
ocular reflex causes continuous tracking of the object
on the display, the motion of the object on the display
itself occurs in discrete steps. This means that the
focused image of the object follows a rapid saw-tooth
pattern across the surface of the retina, causing it to
be perceived as blurred since it moves faster than the
threshold of persistence of vision.

It has been noted previously that many types
of artefacts depend on head translation, and subse-
quently head rotation. Because the size of this blur

also depends on the amount of head rotation, it will
naturally mask these artefacts by blurring them by
an amount directly proportional to their size. We
find the size of this blur effect due to head rotation
to be approximated by the following equation

blur width =
ω

frame rate
(13)

where ω is the angular velocity of the user’s head in
radians per second, and blur width is the visual angle
of the perceived blur in radians.

The blur is itself a visual artefact however, albeit
one that cannot be reduced much using software. The
blur can be minimised by ensuring that the tracking
frame rate is at least equal to the display’s refresh
rate, 60Hz in the case of the Oculus Rift. Other-
wise the blur may only be reduced though redesigning
the HMD hardware to support a higher refresh rate,
and/or strobe its image.

5 Future Work

While the raytrace warp (Sect. 3.5) has fast per-
formance for minimal head movement, the fact that
performance deteriorates linearly with the speed of
head motion makes the method unusable on low and
mid-range hardware. It does not help that the ma-
jor performance cost is texture bandwidth, which is
particularly limited on iGPUs as it must be shared
with the CPU. Therefore more work is needed to ei-
ther optimise this algorithm, or to find another of
better performance characteristics that supplements
the reprojection algorithm as a higher quality warp-
ing method for faster systems.

Another issue with the proposed enhancement ar-
chitecture is timing issues caused by GPU command
buffering. In order to avoid excessive user-space to
kernel mode switches on the CPU, and to prevent
the GPU from stalling with no work to do, consumer
GPU drivers and hardware will buffer rendering com-
mands. This helps to improve throughput at the ex-
pense of latency. This is preferable on conventional
display types which are latency-insensitive, but highly
undesirable for VR systems such as HMDs which are
not. This causes further issues on a single GPU sys-
tem where the concurrent simulation and warping
logic interleave their rendering commands, making
controlling the timing of them very difficult. Future
work is needed to find ways to avoid command buffer-
ing during the generation of display frames (while
it remains acceptable for simulation frames), which
might be possible though finding a way to give higher
priority to warping commands and by manually flush-
ing the command buffers.

In this paper we have given a technical discussion
on the perception of the benefits and artefacts of the
warping algorithms, and personal experience supports
our conclusions. However, a proper user study is re-
quired to ensure the proposed enhancements really do
give a better user experience with actual users and in
representative applications.

The last major point in need of further attention
is the practicality of the proposed enhancements as
injectable algorithms. Since the enhancement is so
minimally intrusive, it might be possible to modify
it so that it can be retroactively applied to existing
HMD applications in the vein of NVIDIAs 3D Vi-
sion (NVIDIA Corporation, 2013) or our method for
conversion of desktop VR to support head-coupled
perspective (Li et al., 2012).



6 Conclusion

We have presented and discussed the use of and image
warping based enhancement for improving frame rate
and head tracking latency, that is appropriate for use
with consumer HMDs (particularly the Oculus Rift)
and applications.

Two algorithms are suggested for performing the
actual warping, one based on reprojection and the
other on raytracing, that are suitable for use in PC
systems with either one or two GPUs, and of vari-
able processing power. The reprojection algorithm
has the constant performance of rendering a single
textured quad, as does the raytracing method for
slow head rotations, although the raytracing com-
putation cost increases linearly with head rotation
speed. These warping methods exploit properties of
real-world HMD usage such as minimal head trans-
lation and require only small changes to the conven-
tional rendering process for HMDs.

Furthermore, we have described two types of er-
ror that are visible at the edges of the display and
along object edges during head motion, and how the
sample-and-hold nature of HMD displays produces a
blur which helps to mask them.

Lastly we believe this type of enhancement in their
current form should prove valuable for improving user
experience in many consumer HMD applications, and
even more with the suggested slight modifications.
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The design and implementation of a vr-architecture
for smooth motion, in ‘Proceedings of the 2007
ACM symposium on Virtual reality software and
technology’, VRST ’07, ACM, New York, NY,
USA, pp. 153–156.

Smit, F. A., van Liere, R. and Fröhlich, B. (2008),
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