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Abstract

An increasing number of computer applications require
complex 3D environments. Examples are entertainment
(games and movies), advertisement, social media tech-
nologies such as “Second Life”, education, urban plan-
ning, landscape design, search and rescue simulations, vi-
sual impact studies and military simulations. Many virtual
environments contain thousands of similar objects such
as characters, trees, and buildings. Placing these objects
by hand is cumbersome, whereas an automatic placement
does not allow sufficient control over the desired distri-
bution characteristics. In previous work we presented a
prototype for a sketch-based model-by-example approach
to generate large distributions of objects from sketched ex-
ample distributions. In this paper we present an improved
algorithm and we perform a formal user study demonstrat-
ing that the approach is indeed intuitive, effective, and that
it works for a large number of regular, irregular and clus-
tered distribution patterns. Remaining limitations related
to Gestalt and semantic concepts are illustrated and dis-
cussed.

Keywords: sketch-based modeling, sketch-based inter-
face, crowd modeling, texture synthesis, mass-spring sys-
tem

1 Introduction

The use of virtual environments (VE) is expanding rapidly
and applications range from entertainment (games and
movies), to education, social media (e.g., “Second Life”),
architecture, engineering, and urban design and planning.
Creating virtual environments can be a time-consuming
process, especially when modelling scenes containing
thousands of similar objects such as characters, trees, and
buildings. Such aggregations of objects are, however, nec-
essary to make computer generated scenes look natural
and visual attractive. Placing objects individually is cum-
bersome, whereas using statistical models, such as regular
or random patterns, does not give the user sufficient con-
trol and often looks artificial.

In previous work we showed that a model-by-example
technique using sketch input is a promising approach
to rapidly generate crowds (Guan & Wünsche 2011).
Sketching provides complete freedom over the input, en-
courages creativity (Gross & Do 1996), and facilitates
problem solving (Wong 1992). Large point distributions
are defined by sketching the outline of the domain of the
distribution (e.g., boundary of a forest) and then sketch-
ing a small example distribution, which is replicated over
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the domain using a combination of texture synthesis and
proprietary techniques.

The technique allows the generation of a large num-
ber of different outputs, but suffers from several shortcom-
ings, especially regarding the synthesis of clustered distri-
butions. Also no user study was performed to confirm that
the method is indeed effective in practice. In this paper
we present a novel physical-based technique for optimis-
ing clustered distributions, while maintaining the charac-
teristics of the original input. A user study confirms that
the technique is intuitive, effective, efficient and fun.

In the following discussion we use the term “crowd”
to mean any aggregation of objects, e.g., a forest (trees),
herd (animals), village (residential buildings), or city
(skyrises).

Section 2 reviews the literature in this field. Section 3
presents design requirements and our previously pub-
lished algorithm for crowd modelling. Section 4 presents
a new algorithm for synthesising clustered distributions
and section 5 gives implementation details. The algorithm
is evaluated in section 6 using experimental results and a
user study. We conclude the paper with section 8, which
also gives an overview of future work.

2 Literature Review

A large number of mathematical methods exists for cre-
ating point distributions. Most of them are concerned
with creating random distributions with certain statistical
properties. For example, Poisson Disk sampling patterns
are popular in the graphics community, e.g., for rendering
and illumination (Jones 2006), because they have mini-
mal low frequencies and no spikes in the power spectrum.
Quasi-Monte Carlo methods are popular in problems in-
volving integration, such as global illumination (Szirmay-
Kalos 2008) and area computation of point-sampled sur-
faces (Liu et al. 2006). Near uniform distributions with
user defined characterisatic, such as alignment with a vec-
tor field, can be created using diffusion-advection equa-
tions (Botchen et al. 2005).

The literature offers much less references regarding
point distributions for object placement. Many applica-
tions define the positions of large groups of objects us-
ing application specific physically or statistically moti-
vated techniques, similar to the ones explained above.
The popular landscape synthesis tool “Terragen” uses en-
vironmental parameters and directional controls to mod-
ify a fractal noise texture specifying the location of veg-
etation (Planetside Software, 2006). Procedural meth-
ods have been used for city simulations (Greuter et al.
2003). Diffusion-advection equations are useful for time-
dependent processes with distance constraints such as
traffic patterns (Garcia 2000). Bayesian decision pro-
cesses (Metoyer & Hodgins 2004) and the partial dif-
ferential equations have been used to describe local and
global behaviour patterns of crowds (Treuille et al. 2006).
Crowd behaviour, based on a given initial position, can be
simulated using an agent-based method (Reynolds 1987,
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Funge et al. 1999, Sung et al. 2005, Massive Software
2009).

Professional crowd simulation tools usually offer inter-
faces for randomly generating crowds over a user defined
domain by specifying the size and/or density of charac-
ters (WorldOfPolygons.com 2006). A spray interface for
distributing grass, trees and other objects over a terrain has
been presented by van der Linden (2001).

3 Crowd Modelling Prototype

In previous research we designed a prototype for sketch-
based crowd modelling (Guan & Wünsche 2011).

3.1 Requirement Analysis

The solution was motivated by an analysis of crowds in
photographs and by a user study. The evaluation showed
that most crowds can be characterised by the shape of their
domain and their distribution pattern. Most patterns could
be divided into three classes: random, regular and clus-
tered. Within each class there is an infinite number of
different distribution patterns, e.g., a regular distribution
can be a rectangular grid, or a more complex repetitive ar-
rangement. In either case the pattern can be completely
regular or have different degrees of jitter in it.

Our analysis showed that a feasible way to define a
large variety of crowds and collections of objects is to de-
fine its domain and an example distribution. The program
must be able to differentiate between different types of
distributions, such as regular, irregular and clustered, and
must be able to replicate the characteristics of any such
pattern without merely repeating it.

3.2 Design

Our original solution (Guan & Wünsche 2011) allows
users to sketch a domain and a sample distribution us-
ing dots or short strokes. The sketched example distri-
bution is analysed using a k-means++ algorithm (Shindler
2008) and Euclidean shortest spanning tree to determine
the number of clusters in the user’s input. If the user input
contains only one cluster then we determine whether it is
regular or stochastic by analysing the distribution of edges
of a Euclidean shortest spanning tree.

For a regular input distribution we choose the small-
est enclosing square and use the thus created texture im-
age as exemplar for a Wang tiling texture synthesis algo-
rithm (Cohen et al. 2003). We found that this algorithm
preserves structures in the input texture well. For irreg-
ular distributions we choose the exemplar texture analo-
gously, but then apply a Chaos Mosaic algorithm (Guo
et al. 2000).

For a clustered input we compute the mean and stan-
dard deviation of the size of all clusters and of the dis-
tances of the points in them to the respective centers. We
then generate new clusters based on these probability dis-
tributions. The clusters are then randomly placed subject
to a minimum distance criterion.

The synthesis of clusters does not preserve the charac-
teristics of the user input. For example, we are unable to
replicate uniformly spaced clusters. If the user input con-
tains randomly distributed clusters, then the synthesised
result might still not look realistic, since the power spec-
trum of the synthesised cluster positions can vary dramat-
ically from the exemplar.

4 Cluster Synthesis

The above described algorithm suffers from a poor syn-
thesis of clustered input. In order to find a solution we
observe that we can replace clusters with their centroids.
The resulting point distribution can be used as input for

the original algorithm, and the synthesised point distribu-
tion represents the location of all synthesised clusters. The
generation of individual clusters is then performed as de-
scribed in (Guan & Wünsche 2011). A flow chart of the
resulting improved algorithm is shown in figure 1.

Figure 1: Flowchart of the improved algorithm for sketch-
based crowd modelling.

Note that in theory an example input can contain clus-
ters of clusters, e.g., the soldiers in an army can be ar-
ranged in, say, n×m large groups, where each large group
contains k× l small groups, and each small group has sol-
diers standing in a grid like patterns. Such cases could be
resolved by recursively applying the above algorithm, but
since this case neither occurred in our user studies nor in
our evaluation of image data bases, we did not implement
this generalisation.

The above method does not put any constraints on the
distance between clusters. As a result it is possible that
cluster positions are synthesised such that clusters over-
lap and appear as one big cluster. This situation must be
avoided, since the resulting distribution does not reflect
the properties of the example input and hence looks unin-
tuitive. The situation is illustrated in figure 2.

Figure 2: Left: Example point distribution (black dots)
and the corresponding cluster centres (red dots) and
bounding circles (red). Right: A hypothetic synthesised
distribution where two cluster centres are too close result-
ing in overlapping clusters, which are perceived by users
as one uncharacteristically large cluster.

4.1 Cluster Optimisation

In order to improve the synthesised clusters we need to
find a solution which assures that cluster centres are at
least a distance dminClusters apart. In the examples in this
section we set dminClusters to the diameter of the largest
cluster. This setting is good for illustration purposes, but
does not result in a clear visual differentiation between
clusters. We hence recommend to use in practice for
dminClusters at least 1.5 times the largest cluster diameter.
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Figure 3: An irregular distribution of cluster centres (black dots) and the corresponding cluster sizes (red circles) and
Delauney triangulation (blue lines). (a) The original configuration. (b) The result of applying a traditional mass-spring
system where the rest length of each spring is the maximum of the original edge length and the cluster diameter. (c) The
result of applying our modified mass spring system.

Figure 4: A jittered regular distribution of cluster centres (black dots) and the corresponding cluster sizes (red circles) and
Delauney triangulation (blue lines). (a) The original configuration. (b) The result of applying a traditional mass-spring
system where the rest length of each spring is the maximum of the original edge length and the cluster diameter. (c) The
result of applying our modified mass spring system.

A naive approach shifting clusters until they don’t
overlap could significantly change the distribution pattern
generated by the underlying texture synthesis method (see
figure 1). We optimise cluster positions using a mass-
spring system. Cluster centres represent the mass points
of the mass-spring system, whereas the springs are given
by the edges of the points’ Delauney triangulation. Exam-
ples are given in part (a) of figure 3 and 4.

All springs are given the same spring constant
kstandardSpring. If the springs’ rest lengths are equal to the
corresponding edge lengths of the Delauney triangulation,
then no forces are generated and the system is in balance.
We set a spring’s rest length lrest to:

lrest = max(ledge,dminClusters)

where ledge is the length of the corresponding edge in
the Delauney triangulation and dminClusters is, as explained
above, the desired minimum distance between clusters.

If the distance between two cluster centres is smaller
than lrest then a force is generated which pushes them apart
(see section 5). The result of applying this algorithm to the
configuration in part (a) of figure 3 and 4 can be seen in
part (b) of those figures.

Two problems can be observed:

• Clusters are still overlapping.

• Some points shift significantly from their original po-
sition, which changes the appearance of the pattern
generated in the synthesis step. For example, the pat-
tern in figure 4 (b) does not anymore look like a reg-
ular grid.

The cause of these problems is that spring forces change
linearly with length changes from the rest length. It is
not possible to specify that some position changes, e.g.,
in order to avoid cluster overlap, are more important than
others.

4.1.1 Non-Linear Springs

In order to overcome the problem of overlapping clus-
ters we use non-linear springs, where the spring force
increases dramatically if the spring length is less than
the desired minimum cluster distance dminClusters. This is
achieved by computing the current length l of a spring and
increasing its spring constant kstandardSpring by a factor f ,
if l < dminClusters.

The physical interpretation of this modification is il-
lustrated in figure 5: Given are two points connected by a
spring with length lrest and spring constant kstandardSpring.
Moving the points apart results in a force pulling them
together (b), whereas pushing the points closer together,
results in a force pulling them apart (c). If the distance be-
tween the points is less than dminClusters then the spring is
replaced with one of equal length, but with a much higher
spring constant f ∗ kstandardSpring. The result is a spring,
which is relatively easy to extend or compress down to
a length of dminClusters, but very difficult to compress any
further than this.

4.1.2 String-Springs

In order to prevent large movements away from the origi-
nal cluster positions we record the position of cluster cen-
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Figure 5: Physical interpretation of a non-linear spring:
Two points are initially connected by a spring with rest
length lrest and spring constant ksmall (a), resulting in mod-
erate forces resisting an extension (b) or compression (c)
of the spring. If the distance between points is less than d
then we replace the spring with a new one, which has the
same rest length, but a much higher spring constant klarge.
The result is a spring, which is relatively easy to extend
or compress down to a length of d, but very difficult to
compress any further than that.

troids and connect them with springs to the current posi-
tion. We want to achieve that cluster centroids can move
from their original position by a distance of dmaxO f f set , but
any further movement should be very difficult.

We achieve this behaviour using a new concept we
term string-spring. A string-spring can be physically
imagined as a string of length dmaxO f f set/2 connected to
a spring with a rest length of dmaxO f f set/2. An example
is given in figure 6 (a). As long as the two points con-
nected by the string-spring are less than dmaxO f f set apart
no force is generated since the string can compensate for
any position change of the spring, i.e., the spring is never
compressed (figure 6 (b)). However, if the two points
are moved further than dmaxO f f set apart, then any amount
above this threshold results in an extension of the spring
and a force pulling the two points together (figure 6 (c)).

Figure 6: A string-spring can be physically imagined as
a string of length d/2 connected to a spring with a rest
length of d/2 (a). If the two points connected by the
string-spring are less than d apart no force is generated,
since the string prevents compression of the string (b). If
the distance exceeds d, then any amount above this thresh-
old results in an extension of the spring and a force pulling
the two points together (c).

The results of applying our improved mass-spring sys-
tem to the configuration in part (a) of figure 3 and 4 are
shown in part (c) of those figures. It can be seen that in
contrast to the application of the original mass-spring sys-
tems (part (b) of the figures) the clusters do not overlap
and that the overall distribution pattern has a higher re-
semblance with the original one. This is best illustrated
by figure 4, where both image (a) and (c) look like a regu-
lar grid with some jitter, whereas image (b) looks slightly
random.

5 Implementation Details

We have implemented the above described algorithms us-
ing Microsoft Visual C++ and OpenGL. So far we have
only integrated the generation of sketched tree objects
with our crowd generation software.

5.1 Mass-Spring System

The mass-spring system is implemented as a special case
of a particle system, where the n particles are the cluster
centroids. Each particle Pi has a position xi, velocity vi,
acceleration ai and applied Force Fi.

The applied force at any time is given by the sum of all
spring forces connected to that particle. If two particles Pi
and Pj with positions xi and x j, respectively, are connected
by a spring with rest length li j and spring constant ki j, then
the resulting force is given by Hookes Law:

Fi j = −ki j(|xi −x j|− li j)
xi −x j

|xi −x j|
The second term represents the difference between the

current length and the rest length of the spring, and the
third term is a unit vector expressing the direction of the
resulting force. In our mass-spring system the term Fi j is
added to the total force acting on particle Pi, and the term
−Fi j is added to the total force acting on particle Pj.

The spring constant is kstandard , but increases to f ∗
kstandard if the distance between two particles falls below
dminClusters. For the string-springs we compute the dis-
tance between the original and current particle position. If
the distance is higher than dmaxO f f set then we apply equa-
tion 5.1 with a spring constant kstringSpring.

The constant f ∗ kstandard must have the highest value,
since non-overlapping clusters are most important. The
constant kstringSpring must be much larger then kstandard in
order to avoid large displacements of cluster centers. We
use:

kstandard = 1.0

f = 80.0

kstringSpring = 30.0

5.2 Numerical Solution

The above mass-spring system results in a physical simu-
lation where particle positions change over time. We are
interested in its steady state solution, i.e., where the sum
of all forces acting on particles are zero. In order to get a
unique solution two requirements must be fulfilled:

• We need a fixed point of reference. This is achieved
by computing the convex hull of all particle positions
and fixing the positions of all points on the boundary
of the convex hull. Points less then dminClusters apart
from an already fixed point are not fixed (since we
want them to move apart).

• We need to introduce a damping term to prevent the
system from oscillating. The damping term will re-
move kinetic energy and thus enable the system to
reach a steady state.

The final mass-spring system is described by the set of
equations

Fi = mi ∗ai = −kxi − cvi i = 1, . . . ,n

where Fi is the sum of all spring forces acting on particle
Pi and c is the viscous damping coefficient, which we set
to 0.2. In order to solve the system it is converted to a sys-
tem of ordinary differential equations (ODEs), which can
be expressed by two vectors: the current state containing
the positions and velocities of all particles, and the state
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derivative containing the velocities and accelerations of all
particles (Witkin et al. 1994). The initial state is given by
the original particle positions and by setting all velocities
and accelerations to zero. The final position of all parti-
cles can then be easily computed by using an ODE solver,
which terminates if the position changes in each time step
are below a given threshold. Note that we use stiff springs
(high spring constant) and the Euler method is hence nu-
merically unstable. We use a fourth-order Runge-Kutta
method (Press et al. 1992).

6 Results

6.1 Experimental Results

We have evaluated both the individual components of our
algorithm, and the algorithm as a whole.

6.2 Exemplar Classification

Figure 7 shows the results of classifying input into regular
(a), irregular (b)-(e), and clustered patterns (f)-(i). Over-
all the classification works well. The clustering algorithm
fails if two clusters’ bounding boxes overlap, e.g., nested
v-shaped point distributions. This is due to the distance
metric used in the k-means++ algorithm.

Figure 7: Examples of user input classified as regular (a),
irregular (b)-(e), and clustered pattern (f)-(i).

6.3 Examples

The figures 8-10 show examples of regular, irregular and
clustered input (red boxes), respectively, the resulting syn-
thesised point distributions, and 3D scenes generated with
them.

6.4 Limitations

The texture classification algorithm is unable to recognise
Gestalt concepts. This was already demonstrated in fig-
ure 7, where items (d) and (e) were classified as irregu-
lar. The reason for this is, that we test for regularity by
constructing an Euclidean shortest spanning tree and then
analyse the distribution of its angles and edges. For a reg-
ular grid, for example, the distances to the neighbouring
vertices have all approximately similar lengths. The an-
gles with the x-axis are clustered around two values, e.g.,
roughly zero degree or roughly 90 degree if the grid is axis
aligned. However, for the diamond shape in image (e) the
distribution of edge angles is not bimodal.

Figure 8: Example of a regular input (red box) and the
synthesised point distribution (left) and model of a planta-
tion forest generated with it (right).

Figure 9: Example of a irregular input (red box) and the
synthesised point distribution (left) and model of a natural
forest generated with it (right).

Figure 10: Example of a clustered input (red boxes) and
the synthesised point distribution (left) and model of an
urban park with clusters of trees generated with it (right).

Figure 11: Example of an input point distribution (red dots
in box) with Gestalt information (star shape). The input is
classified as irregular and as a consequence the Chaos Mo-
saic algorithm is applied, which results in an unexpected
output.
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This problem extends to clustered distributions. For
example, the input in figure 7 (g) is correctly classified
as clustered. However, the point distribution within each
cluster is recognised as irregular. As a result, newly gener-
ated clusters contain a random distribution of points gen-
erated with the Chaos Mosaic algorithm. An improve-
ment over the current solution would be to recognise in-
put distributions with Gestalt information and just repeat
them using Wang tiles or another tile based algorithm.
We have surveyed a wide class of texture synthesis al-
gorithms (Guan & Wünsche 2011, Manke & Wünsche
2010), but we are not aware of any technique to repli-
cate semantic information and Gestalt concepts in a nat-
ural manner without just repeating the input.

A second problem is that example distributions with a
small number of points are insufficient to synthesise real-
istic looking results. As an example consider figure 12.
The input consists of six clusters, which is enough for the
Wang tiling algorithm to generate a realistic regular dis-
tribution of cluster centroids. For each cluster centroid a
new cluster is synthesized. Since one of the input clusters
is regular, the algorithm also produces some regular clus-
ters. The number of points in the synthesised clusters de-
pends on the variation within the input clusters. Since only
one input cluster is regular all synthesised regular clusters
have the same number of points, i.e., four, and they all
have the same pattern (encircled in yellow).

Figure 12: Example of a clustered input (red boxes) with
regularly distributed cluster centroids. The clusters them-
selves have irregular distributions with the exception of
one (encircled in yellow). The synthesised point distri-
bution (left) suffers from repetitions, which however are
barely noticeable in the resulting 3D model (right).

6.5 User Study

We evaluated the usability, efficiency and effectiveness of
our algorithm with a user study. Participants had to com-
plete three tasks:

• Task 1: Modelling a plantation forest with hundreds
of trees (a picture of a real plantation forest demon-
strating the near regular arrangement of trees was
shown).

• Task 2: Modelling a natural forest with hundreds of
trees (an aerial picture of a real natural forest demon-
strating the random arrangement of trees was shown).

• Task 3: Modelling an urban park with clusters of
trees (an aerial picture of a park with dozens of clus-
ters of trees was shown).

We surveyed the participants after each task and at the
end of the user study. Answers were recorded on a 7-
level Likert scale ranging from -3 (strongly disagree) to
3 (strongly agree).

The study had 20 participants, 16 male and 4 female.
All of the participants were university students or staff
with six aged 16-20, eleven aged 21-25, two aged 31-35
and one between 40-45 years old. The participants were

Average SD
Task 1 (Plantation forest) 38.38 19.63
Task 2 (Natural forest) 37.79 22.61
Task 3 (Park) 61.63 41.64

Table 1: Average completion times and standard deviation
(SD) in seconds for the tasks 1-3.

from the following departments: Computer Science (8),
Commerce (5), Medicine (2), Arts (2), Education (2) and
Pharmacy (1). Twelve of the participants had never used
a modelling tool, four rarely and four did sometimes use
one. From those users who had used 3D modelling tools
the most commonly used software was Blender, Google
Sketchup, and 3D Studio Max.

6.6 3D Modelling Tasks

Users were told that they had to sketch the outline of the
modelled scene and an example distribution indicated by
dots or short sketches. Users were able to clear and restart
the input if they were unsatisfied with the results. In gen-
eral users required several tries to get a feeling how the
resulting distribution would look like for a given input.
The average completion times for the modelling tasks 1-3
are shown in table 1. It can be seen that generating regular
and irregular patterns is similarly easy, but that generating
clustered patterns requires at least 50% more time on aver-
age. One user in particular struggled and initially sketched
the shape of each cluster. The user required help from the
study supervisor and took more than 160 seconds to com-
plete the task.

We evaluated users’ experiences with the tool for three
modelling tasks involving the creation of a plantation for-
est (regular example input), natural forest (random exam-
ple input), and an urban park (clustered input). Table 2
summarises the results. It can be seen that all tasks were
understood and easy-to-complete. Users strongly agreed
that the tool simplified the modelling task and they were
satisfied with the results. The lowest satisfaction, albeit
still positive, was for modelling a clustered distribution.

A general complaint was the lack of an “eraser” tool
to correct mistakes and incrementally modify the input
sketch until the example input generated the desired re-
sult. Another problem was the lack of information about
how the density of points in the input would be reflected in
the resulting 3D scene. Several users initially drew points
too close together and had to restart after they saw the re-
sulting 3D output.

When sketching a regular input distribution several
users had problems with the tool initially classifying the
input as random. In a few instances users had to be told
to sketch the input more carefully to make sure that it got
recognised as regular input. A few users commented that
the program should give feedback during the interaction.

Users struggled most when modelling clustered distri-
butions. Several users represented clusters with circular
sketches filled with points. In other cases clusters were
too close together and were not recognised as individual
clusters resulting in an unexpected output. Finally several
users drew clusters filling most of the domain, such that
no new clusters were synthesised.

6.7 General Questions

In addition to the three tasks above we allowed users to ex-
periment and model any distribution of their choice. Ex-
amples were buildings in a city, a flower bed, fish in the
ocean, rabbits in the forest, people at a festival, people in
a cinema, students in a playground, and the hospital ward
shown in figure 13.

We then asked questions regarding the overall usabil-
ity, usefulness, and user satisfaction with the application.
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Task 1 (Plantation forest) Task 2 (Natural forest) Task 3 (Park)
Average SD Average SD Average SD

Q1: I understood the task 2.25 0.71 2.45 0.76 2.20 1.01
Q2: The task was easy 2.50 0.69 2.50 0.61 1.70 1.66
Q3: The tool simplified the modelling task 2.65 0.59 2.70 0.57 2.25 1.45
Q4: I am satisfied with the result 2.50 0.61 2.55 0.60 2.20 1.20

Table 2: Average response on a 7-level Likert scale (from -3 to +3) and standard deviations (SD) to the questions on the
left for the tasks on the top.

Figure 13: Example of a result of the free-drawing task
in the user study: distributions of beds in a hospital ward
(without partitioning walls).

The results are summarised in table 3. Overall users were
satisfied with the usability of the tool. Participants were
able to successfully complete modelling tasks in less than
a minute, and overall users agreed that the tool was in-
tuitive. The majority of users agreed that the application
is easier to use than traditional modelling tools, but large
variations in answers were observed. We believe that this
might have to do with the limited functionality of the tool
and the lack of feedback (error messages, help).

Despite that participants agreed that the tool is useful,
and a worthwhile addition to traditional modelling tools.
Most users would use the application in future, if they had
the opportunity to do so. Overall users were satisfied with
the application and enjoyed using it. The lowest satisfac-
tion was with the interface. Reasons were the lack of feed-
back, undo and “eraser” functionalities.

7 Conclusion and Future Work

We have a presented a novel tool for modelling large dis-
tributions of objects by sketching the boundary of the
occupied domain and a small sample distribution. Our
work extends a previously presented prototype and in-
cludes new functionalities for synthesising clustered dis-
tributions. This is achieved by representing clusters by
their centroids and using the resulting point pattern as in-
put for a synthesis step. In order to prevent clusters from
overlapping or being located too close together we devel-
oped a novel mass-spring systems. We showed that this
postprocessing step was able to correct cluster distances,
while still maintaining the overall characteristics of the
synthesised pattern.

We demonstrated that the tool can successfully gener-
ate a large number of regular, irregular and clustered distri-
butions. Gestalt and semantic properties of input patterns
cannot be synthesised and hence result in unexpected out-
put. If the example input has too few points this can lead
to repetitive patterns.

A user study demonstrated that participants were sat-
isfied to very satisfied with the application. Regular and
irregular distributions could be generated in less than 40
seconds without help. Some users had problems with gen-
erating clustered output. The most commonly mentioned

problems were related to the interface, i.e., lack of feed-
back, no undo functionality, no “eraser”, and a lack of im-
mediate feedback of the effect of user input on the result-
ing 3D scene.

In future work we want to increase the range of repro-
ducible input distribution patterns and in particular incor-
porate Gestalt concepts. In addition we want to fully inte-
grate this crowd modelling software into our “LifeSketch”
software for prototyping virtual environments (Olsen et al.
2011, Yang & Wünsche 2010).

References

Botchen, R. P., Weiskopf, D. & Ertl, T. (2005), Texture-
based visualization of uncertainty in flow fields, in ‘Pro-
ceedings of IEEE Visualization’, pp. 647–654.

Cohen, M. F., Shade, J., Hiller, S. & Deussen, O. (2003),
‘Wang tiles for image and texture generation’, ACM
Trans. Graph. 22(3), 287–294.

Funge, J., Tu, X. & Terzopoulos, D. (1999), Cognitive
modeling: knowledge, reasoning and planning for in-
telligent characters, in ‘Proc. of the 26th annual confer-
ence on Computer graphics and interactive techniques
(SIGGRAPH ’99)’, ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, pp. 29–38.

Garcia, A. L. (2000), Physics of traffic flow, in ‘Numerical
Methods for Physics’, 2nd edn, Prentice Hall, chapter 7.

Greuter, S., Parker, J., Stewart, N. & Leach, G. (2003),
Real-time procedural generation of ‘pseudo infinite’
cities, in ‘Proceedings of the 1st international confer-
ence on Computer graphics and interactive techniques
in Australasia and South East Asia (GRAPHITE ’03)’,
ACM, New York, NY, USA, pp. 87–ff.

Gross, M. D. & Do, E. Y.-L. (1996), Ambiguous inten-
tions: a paper-like interface for creative design, in ‘Pro-
ceedings of the 9th annual ACM symposium on User
interface software and technology (UIST ’96)’, ACM,
New York, NY, USA, pp. 183–192.

Guan, L. & Wünsche, B. C. (2011), Sketch-Based Crowd
Modelling, in ‘Proceedings of the 12th Australasian
User Interface Conference (AUIC 2011)’, pp. 67–
76. http://www.cs.auckland.ac.nz/˜burkhard/
Publications/AUIC2011_GuanWuensche.pdf.

Guo, B., Shum, H., & Xu, Y.-Q. (2000), Chaos mo-
saic: Fast and memory efficient texture synthesis,
Technical report MSR-TR-2000-32, Microsoft Re-
search. http://research.microsoft.com/pubs/
69770/tr-2000-32.pdf.

Jones, T. R. (2006), ‘Efficient generation of poisson-disk
sampling patterns’, Image Rochester NY 11(2), 1–10.

Liu, Y.-S., Yong, J.-H., Zhang, H., Yan, D.-M. & Sun, J.-
G. (2006), ‘A quasi-monte carlo method for computing
areas of point-sampled surfaces’, Comput. Aided Des.
38, 55–68.

Proceedings of the Thirteenth Australasian User Interface Conference (AUIC2012), Melbourne, Australia

75



Average SD
Q 1.1: The modelling process is intuitive 2.00 0.86
Q 1.2: I quickly learned how to use the tool 2.35 0.81
Q 1.3: I easily remembered the tool’s functionalities 2.10 1.17
Q 1.4: I quickly learned how to use all functionalities 2.10 1.07
Q 1.5: The tool is easy to use 2.35 0.88
Q 1.6: The tool is easier to use than traditional modelling tools (e.g., Blender) 1.50 1.51

Q 2.1: The tool is useful 2.15 0.75
Q 2.2: The tool is more useful for generating large distributions than traditional modelling tools 2.11 0.81
Q 2.3: The tool is a useful addition to traditional modelling tools 2.16 0.90
Q 2.4: The distributions generated with the tool look realistic 2.10 0.91
Q 2.5: The distributions generated with the tool look as expected 2.15 0.99
Q 2.6: The distributions generated with the tool look as I wanted 2.30 0.66
Q 2.7: The tool made the modelling of large distributions more effective 2.55 0.69
Q 2.8: I would use the tool frequency, if I could 1.95 0.94

Q 3.1: Overall I am satisfied with the interface of the tool 1.95 1.10
Q 3.2: Overall I am satisfied with the functionalities of the tool 2.10 1.12
Q 3.3: Overall I am satisfied with the results achieved with the tool 2.20 0.95
Q 3.4: The tool was fun to use 2.55 0.60

Table 3: Questions regarding usability (Q1.1 - Q1.6), usefulness (Q2.1 - Q2.8), and user satisfaction (Q3.1 - Q3.4). The
columns give the average response on a 7-level Likert scale (from -3 to +3) and their standard deviation (SD).

Manke, F. & Wünsche, B. C. (2010), Fast spatially
controllable multi-dimensional exemplar-based texture
synthesis and morphing, in M. P. J. A. H. Ran-
chordas, A., ed., ‘Computer Vision and Computer
Graphics’, Vol. 68 of Communications in Computer
and Information Science, pp. 21–34. http://www.
cs.auckland.ac.nz/˜burkhard/Publications/
SpringerCCIS2009MankeWuensche.pdf.

Massive Software (2009), ‘Homepage’. http://www.
massivesoftware.com.

Metoyer, R. A. & Hodgins, J. K. (2004), ‘Reactive pedes-
trian path following from examples’, The Visual Com-
puter 20, 635–649.

Olsen, D. J., Pitman, N. D., Basakand, S. &
Wünsche, B. C. (2011), Sketch-based building mod-
elling, in ‘Proceedings of GRAPP 2011’, pp. 119–
124. http://www.cs.auckland.ac.nz/˜burkhard/
Publications/GRAPP2011_OlsenEtAl.pdf.

Planetside Software, (2006), ‘Terragen’. http:
//www.planetside.co.uk/terragen/tgd/tg2faq.
shtml#faq34.

Press, W. H., Vetterling, W. T., Teukolsky, S. A. & Flan-
nery, B. P. (1992), Numerical Recipes in C - The Art
of Scientific Computing, 2nd edn, Cambridge Univer-
sity Press. http://www.library.cornell.edu/nr/
bookcpdf.html.

Reynolds, C. W. (1987), Flocks, herds and schools: A dis-
tributed behavioral model, in ‘SIGGRAPH ’87: Pro-
ceedings of the 14th annual conference on Computer
graphics and interactive techniques’, ACM, New York,
NY, USA, pp. 25–34.

Shindler, M. (2008), Approximation algorithms for the
metric k-median problem, Technical report, UCLA,
Los Angeles, CA. http://cs.ucla.edu/˜shindler/
shindler-kMedian-survey.pdf.

Sung, M., Kovar, L. & Gleicher, M. (2005), Fast and accu-
rate goal-directed motion synthesis for crowds, in ‘Pro-
ceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation (SCA ’05)’, ACM,
New York, NY, USA, pp. 291–300.

Szirmay-Kalos, L. (2008), Monte Carlo Methods in
Global Illumination - Photo-realistic Rendering with
Randomization, VDM Verlag, Saarbr&#252;cken, Ger-
many, Germany.

Treuille, A., Cooper, S. & Popović, Z. (2006), ‘Continuum
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