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Abstract

The design and animation of digital 3D models is an
essential task for many applications in science, en-
gineering, education, medicine and arts. In many
instances only an approximate representation is re-
quired and a simple and intuitive modelling and
animation process, suitable for untrained users, is
more important than realism and extensive features.
Sketch-based modelling has been shown to be a suit-
able interface because the underlying pen-and-paper
metaphor is intuitive and effective.

In this paper we present LifeSketch, a framework
for sketched-based modelling and animation. Three-
dimensional models are created with a variation of
the popular “Teddy” algorithm. The models are anal-
ysed and skeletons with joints are extracted fully au-
tomatically. The surface mesh is bound to the curved
skeletons using skinning techniques and the result-
ing model can be animated using skeletal animation
methods.

The results of our evaluation and user study sug-
gest that modelling and animation tasks are consid-
erable more efficient than with traditional tools. The
learning curve is very flat and a half page document
was sufficient to familiarise users with the tools func-
tionality. Users were satisfied with the automatically
extracted joints, but some users struggled selecting
the appropriate rotation axes and angles for animat-
ing the resulting 3D objects. A more intuitive, prefer-
able automatic or sketch-based approach for anima-
tions is needed. Overall users were satisfied with the
modelling capabilities of the tool, found most of its
functionality natural and intuitive, and they enjoyed
using it.

Keywords: sketch-based modelling, skeletal anima-
tion, skinning, human-computer interfaces

1 Introduction

The design and animation of 3D computer models is
essential for many applications in science, engineer-
ing, education, medicine and arts. In many cases
rough prototypes of a model are sufficient. For ex-
ample, in the early production stages of professional
animations storyboards are used to translate the story
into images and organize scenes (Hart 1999). Im-
provements in computer technology have led to digital
storyboards and sketch-based design tools (Landay &
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Myers 2001) and simple sketch-like interfaces for hu-
man character animation (Mao et al. 2006). In med-
ical imaging and scientific computing rough proto-
types (frequently termed default models) are used for
segmentation, feature recognition and object track-
ing (Cootes et al. 1995, Lepetit & Fua 2005). In such
applications the topology of the model is more impor-
tant than its exact geometry. Approximate models
are also useful for demonstrating basic concepts, e.g.,
in education.

Creating models and animations with sketches is
particularly attractive since it encourages creativ-
ity (Gross & Do 1996) and enables user to concentrate
on the overall problems rather than details (Wong
1992). The past decade has seen a tremendous in-
crease in the design and use of sketch-based interfaces.

In this paper we present LifeSketch, a prototype of
a sketch-based modelling and animation system. The
modelling process is based on Igarashi et al.’s famous
“Teddy” system. The main contribution of our work
is an animation system which automatically detects
movable parts and enables skeletal animation based
on curved bones. A subsequent user study demon-
strates that the system is sufficient for creating rough
3D models and the automatic joint detection is intu-
itive.

Section 2 reviews previous work on sketch-based
modelling and animation systems. Section 3 presents
the design of our system including the modelling, an-
imation and rendering steps. Section 4 discusses the
user study we use to evaluate our system and sec-
tion 5 summarizes result of the user study and our
own evaluation. We conclude the paper in section 6
and discuss important future work.

2 Literature Review

2.1 Sketched-Based Modelling Systems

Our analysis of successful sketch-based modelling sys-
tems for 3D objects showed that virtually all applica-
tions use the following three steps:

1. Features characterising the 3D object to be mod-
elled are sketched in 2D using as few strokes as
possible

2. The sketched 2D strokes are mapped to 3D
shapes according to application specific con-
straints, which reflect assumptions about the
shape of the 3D object to be modelled

3. Ambiguities are resolved and more detailed fea-
tures added by using modifier strokes. Fre-
quently these strokes are directly applied to the
3D shape resulting from the previous step

These steps do not include 2D sketch processing
and recognition, which is a non-trivial task. Igarashi
et al. (1997) evaluate each stroke input for potential



geometric relations such as connections, alignments,
horizontal and vertical strokes, and symmetry. In-
teractive beautification is performed after identifying
the most suitable geometry relation. Sezgin et al.
(2001) eliminate noise from free-hand drawings by
combining average based filtering and scale space fil-
tering. The method uses curvature information and
pen speed data in order to differentiate between shape
features of a curve and unintended wriggles.

Different approaches have been suggested to clas-
sify sketch-based modelling algorithms. Eggli et al.
(1997) categorize sketch-based modeling systems by
the different types of drawing the user wants to create:
technical, symbol and free-form. McCord et al. addi-
tionally differentiate free-form shapes into blobby and
domain specific shapes (McCord et al. 2008). Olsen
et al. (2009) present an excellent survey of sketch-
based systems and classify them according to the type
of modeling operation considered, i.e., creating full
models from sketches, augment existing models with
sketches, and deform existing models using sketch in-
put.

We suggest to classify sketch-based modelling
techniques according to the sketched primitives used
to characterise the desired 3D model: silhouettes,
contours, cross-sections and skeletons. In addition
3D objects can be created by deforming more basic
shapes using sketch-input.

This classification takes into account that the most
natural description of objects depends not on their
type (e.g., man-made vs. natural), but on their struc-
ture and the required level of abstraction. This in
turn can vary for different users and different ap-
plications. In many instances several of these con-
cepts must be combined. For example, the stem and
branches of a flower can be represented by a skele-
ton and its leaves by silhouettes and shape modify-
ing strokes (Ijiri et al. 2005). Note that the type of
captured primitives together with assumptions made
about the shape of the desired 3D object determines
the algorithms used to reconstruct the 3D surface
from the sketch input.

2.1.1 Silhouette-Based Methods

The arguably most popular class of sketch-based 3D
modelling techniques uses sketch input to represent
the silhouette (outline) of a 3D object. The outline,
usually referred to as contour, is expanded to a 3D
object by making the assumption that the object is
“blobby”, i.e., the cross section of each component of
the sketched contour is circular.

The arguably best known system in this class is
Igarishi et al.’s Teddy application (Igarashia et al.
1999). A 3D object is computed by sampling the con-
tour (outline), triangulating the sample points, com-
puting a skeleton from the mid-points of all internal
edges of the triangles, and then fitting circular cross-
sections around the skeleton. Additional functionali-
ties for cutting and combining objects allow the cre-
ation of complex, inflated (blobby) shapes. Various
modifications have been suggested, e.g., for smooth-
ing the resulting 3D surface (Igarashi & Hughes 2003),
smoothing the underlying skeleton (Levet & Granier
2007), or for modifying the shape by sketching con-
tours of local features (Zimmermann et al. 2008).

Karpenko et al. use implicit surfaces to “in-
flate” contours to 3D bodies. As a result different
sketched components can be easily blended together
(Karpenko et al. 2002). Similar ideas are employed in
ShapeShop (Schmidt et al. 2006) and MIBlob which
uses implicit surfaces to inflate contours traced in
medical images (de Araújo et al. 2004). Other authors
have shown that complex 3D objects can be edited us-
ing stylus strokes that retrace an object’s silhouette

(Cheutet et al. 2005, Hua & Qin 2003). The modifi-
cation of a models silhouette subsequently rescales it
so that it remaps itself to the new silhouette.

Two interesting application of silhouette-based al-
gorithms are garment and tree modelling. For tree
modelling the user sketches the outline of the crown
of the tree and the algorithm computes a fitting
branching structure based on existing templates and
a probabilistic distribution (Chen et al. 2008). Gar-
ments can be modelled by sketching their outline and
the algorithm automatically fits them to the body
shape (Turquin et al. 2007).

2.1.2 Contour-Based Methods

Contour-based methods are related to silhouette-
based techniques. We use the popular definition that
silhouettes represent the outline of shape (e.g., the
shape of its shadow), but contours include all visible
lines and divisions of a shape, e.g., discontinuities in
the surface gradient. Karpenko & Hughes (2006) ex-
tend the closed shape outline of “Teddy” with cusps,
T-junctions, and overlapping sketch lines in order to
represent local details. Nealen et al. (2007) allow the
user to draw arbitrary silhouette lines and use free
form deformations to adapt the underlying 3D shape.

Gain et al. (2009) enable users to model 3D ter-
rains by drawing the silhouette, spine and bounding
curves of both extruding (hills and mountains) and
embedding landforms (river courses and canyons).

A popular application of contour-based methods
is the sketching of technical drawings and 3D CAD
models. Computer designed items are often charac-
terized by a blocky shape, flat or arced surfaces, sharp
or evenly rounded edges and corners, many parallel
and orthogonal edges and faces, and symmetrical fea-
tures. These features can be captured using silhou-
ettes which can then be interpret using application
specific constraints, e.g., that surfaces of CAD ob-
jects frequently form 90 degree angles. Examples in-
clude “SKETCH” (Zeleznik et al. 1996), where com-
plex objects are constructed using a combination of
sketched 3D primitives. “Quick-sketch” allowed users
to sketch 3D solid objects and B-spline surfaces (Eggli
et al. 1997). A subsequent system, “3D Sketch”, cre-
ates an edge graph from a user sketch and matches
it with existing topologies. After identifying planar
faces and determining a view point the edge graph
can be projected into a 3D model (Mitani et al. 2002).
Recently active contour models were proposed to al-
low both curve creation and modification from totally
arbitrary view points (Kara & Shimada 2007). The
depth coordinates are computed by minimizing the
spatial deviation from the original target curve.

2.1.3 Skeleton-Based Methods

The third group of sketch-based modelling techniques
are skeleton-based. These methods can be considered
the dual to the silhouette-based techniques which fre-
quently use the sketched outline to compute a skele-
ton (as done in “Teddy”).

Skeleton-based techniques are most popular for
modelling complex fibrous and branching structures.
Ijiri et al. (2005) use sketch input to model the stem
and branches of flowers. The 3D shape of a stem
is computed by solving a differential equation such
that the curvature and appearance of the resulting
3D shape is identical to the 2D sketch. User input
can be reduced by combining the technique with L-
systems. The L-systems reproduction rules simulate
a growth pattern which can result in arbitrary com-
plex shapes and the sketch input controls the overall
appearance and the depth of the recursion. The tech-
niques has been used for tree modelling (Ijiri et al.



2006) and modeling Purkinje fibres in the heart (Ijiri
et al. 2008). Takayama et al. (2008) present a tool for
modelling the myocardial fibre structure of the heart
muscle. The user first creates a depth field represent-
ing layers of the muscle tissue and then indicates the
fibre orientation within each layers using sketches.

A more general system is “Thor” (Arcila et al.
2008). The user draws a skeleton using a serious of
sketches. The initial sketch defines the main shape
and subsequent sketches modify it. The user can
draw a radius for each skeleton segment and a 3D sur-
face is generated by fitting a generalised cylinder to
it. Grimm & Hughes (1998) take a similar approach
based on implicit surfaces.

2.1.4 Cross Section-Based Methods

A less common approach for creating 3D models is to
sketch 2D cross-sections. McCord et al. (2008) model
orchids by allowing users to sketch the cross section
of the labellum of an orchid. The cross section is
then expanded into a 3D surface by fitting ellipsoidal
contours around it and modifying the surface with a
noise function which depends on the distance to the
cross section and the apex of the cross section.

Xie & Wünsche (2010) model 3D terrains by
sketching and labelling contour lines which are sam-
pled, triangulated and then interpolated to compute a
digital elevation mesh representing the terrain. Cross
sections are used in most professional modelling tools,
but are usually not sketched but represented by para-
metric curves. 3D surfaces are obtained by extrusion
or by computing the tensor product with a second
parametric shape. Google SketchUp employs some of
these principles using an interface mixing sketch and
CAD elements (Google 2009).

2.1.5 Deformation-Based Methods

The last category of modelling systems uses sketch
input to deform (usually sketched) 3D models. In
the easiest case surfaces are simply “pulled” to fit
a modifier stroke, e.g., when bending sketched leaf
shapes (Ijiri et al. 2005). A more complicated ap-
proach is to use a free form deformation which ei-
ther applies directly to the surface of the input ob-
ject (Nealen et al. 2007) or to the underlying vol-
umetric representation if the shape is implicitly de-
fined (Sugihara et al. 2008)

2.2 Sketched-Based Animation Systems

Relatively few techniques exist for the sketch-based
animation of objects. The majority of methods either
allow users to define motion paths or to adjust rigid
characters to compose different poses.

Steger (2004) presents a visual language for creat-
ing simple 2D animations within a sketch-based inter-
face. Motions are represented by motion paths, which
are drawn as arrows. Disparate motions are synchro-
nized using events which are indicated by time stamps
along the motions paths. Motion Doodles (Thorne
et al. 2004) allow the user to sketch a motion path
for a sketched character which can consist of up
to seven components with predefined functionalities
(head, body, arms, etc. ). The system parses the
motion path and maps it to a parameterized set of
18 different output motions. Motion paths have also
been used for robot navigation (Sakamoto et al. 2009).
Additional control is achieved by stroke gestures and
sketching operation areas.

Davis et al. (2003) achieve animations of articu-
lated 3D characters by creating 2D sketches of the
character in key frame poses. The authors use a set

of constraints reflecting assumptions about the inten-
tions of the user. For example, the system assumes
that all objects are rigid. If a bone has different
lengths in different key frames then this indicates a
rotation. When the bone is longest it is assumed to
be parallel to the image plane. Mao et al. (2007) use
a similar approach. Users can sketch skeletons and
body outlines at key frame poses. The body contour
is used to estimate the fat distribution which influ-
ences the animation.

There are several papers about animating sketched
objects. In all of these applications the animation it-
self does not use sketch-input. Igarashi et al. (2005b)
use spatial key framing where key frames are not de-
termined by points in the temporal domain, but by
key poses of the 3D object. A different approach is
used for the “As-Rigid-As-Possible Shape Manipula-
tion” (Igarashi et al. 2005a). The user can animate a
shape by selecting arbitrary points within it and mov-
ing them. This is achieved by triangulating the 2D
shape and computing a configuration containing the
moved points (triangles) such that distortions of all
other triangles are minimised. The system is very in-
tuitive and easy to use when employing a multi-touch
interface. However, it does not extend to 3D shapes
and the animations would be difficult to control using
sketch-input (mouse, tablet and pen).

3 System Design

We want to have a system which is easy to use and
intuitive, but at the same time flexible and extend-
able so that it can be integrated into more complex
modelling environments. Our analysis of the litera-
ture shows that the Teddy algorithm is one of the
most popular modelling tools, that many improve-
ments exist, and that it has been well tested with
even a commercial game based on it. For animation
purposes we would like to use skeletal animation since
it is widely used, supported by many graphics APIs
and graphics engines, and because of the possibility
to use existing motion capture and animation data.
Baran and Popović demonstrated that it is possible
to animate a wide variety of shapes with the same
skeleton (Baran & Popović 2007).

Our system can be divided into five modules which
are explained subsequently:

1. Model and spine generation

2. Skeleton generation - bones and joints

3. Sketelal animation and skinning setup

4. Rendering

5. Animation

3.1 Model and Spine Generation

The sketch-based model is created using the Teddy
algorithm (Igarashia et al. 1999). The user sketches a
2D outline of the shape which is sampled. The sample
point are triangulated using a Constrained Delauney
Triangulation and classified according to the number
of internal edges. Triangles with one internal edge are
termed terminal triangles, triangles with two internal
edges split triangles, and triangles with three inter-
nal triangles (i.e., no edge on the contour) are called
junction triangles.

A skeleton, the so-called chordal axis, is defined by
connecting all the mid points of internal edges and
centroids of junction triangles. Small side branches
of the skeleton are eliminated by using a pruning op-
eration (Igarashia et al. 1999). Starting from the ter-
minal triangle, triangles are merged until the merged



Figure 1: Left image: A sleeve triangle indicated by
light grey lines. Second image from the left: The tri-
angle fan after performing a pruning operation. The
green dot represents an elevated spine node (ESNs),
the yellow dots are vertices on the sketched contour
and the red dots are vertices on the quarter circles
connecting contour vertices to ESNs. The two images
on the right show how these vertices are triangulated
by connecting the mid points of the quarter circles
and by subdividing the resulting quadrilaterals.

Figure 2: Left image: A junction triangle with
a pruned edge resulting in a triangle fan (grey
lines). The green dots represent elevated spine nodes
(ESNs), the yellow dots are vertices on the sketched
contour and the red dots are vertices on the quarter
ovals connecting contour vertices to ESNs. Second
image from the left: After elevating the spine nodes
the 3D vertices corresponding to the triangle fan are
triangulated using the same algorithm as for a pruned
sleeve triangle. Two images on the right: The re-
maining part of the junction triangle can be divided
into four spherical triangles by connecting the ESNs
of the pruned edge to the other ESNs and the con-
tour point opposite to it. The four spherical triangles
can be triangulated by connecting the vertices along
the quarter circle in a zig-zag pattern similar as for a
normal junction triangle.

triangle is larger than the half circle around its in-
ternal edge. The merged triangle is then triangulated
again using a triangle fan originating at the mid-point
of its internal edge.

A 3D shape is formed by elevating all nodes of the
chordal axis orthogonally to the sketch plane. The
height is equal to the distance of a node to the next
sample point on the sketched contour. Note that the
nodes are either the mid-points of internal edges or
the centroids of junction triangles, i.e., the distance is
easily computed. The sample points on the contour
and the elevated nodes are then connected by quarter
circles which are sampled and triangulated to create
a surface mesh.

Surface construction for pruned sections of the
chordal axis requires special considerations which are
not explained in the Teddy paper and subsequent pa-
pers. Two examples are indicated in figure 1 and 2.
The complete details are given in (Yang 2009).

3.2 Skeleton Generation - Bones and Joints

In order to animate the object we have to define a
skeleton which is a hierarchical structure consisting
of bones and joints. The chordal axis is an ideal
candidate for this since it lies approximately in the
centre of the sketched contour and it has a branched
structure. We define a spine tree by first finding the
largest junction triangle. The largest junction trian-
gle usually represents the widest component of the
final shape. For example, for a human shape that

would be the body. We therefore make the centre of
this triangle the root of the skeleton. We then tra-
verse the chordal axis graph in pre-order starting with
this node. The resulting spine tree has the following
properties:

• All centres of junction triangles are called branch
nodes and are internal nodes of the spine tree.
The root of the tree is the centre of the largest
junction triangle. If no branch node (i.e., no
junction triangle) exist then the resulting object
is rigid.

• All branch nodes, which are directly connected to
a branch node detected earlier in the pre-order
traversal of the tree, are children of that node.
The branch nodes are connected by sections of
the chordal axis.

• The leaves of the tree are spine nodes belonging
to terminal triangles. The leaves are the children
of the branch node to which they are directly
connected by sections of the chordal axis.

The tree represents a hierarchical skeleton, but the
branch nodes (centres of the junction triangles) do not
represent suitable joints of the skeleton as illustrated
in the images on the left of figure 3 and 4.

Marr & Nishihara (1978) noted that the concave
parts of a silhouette define the subparts of an ob-
ject. We observed that the edges of junction triangles
isolate the subparts of the sketched shape and hence
define candidate joints. In a previous paper we pre-
sented an algorithm for selecting folding axes of a 2D
sketched contour by merging edges of junction trian-
gles and determining “bendable” sections (McCord
et al. 2008). The results approximate how a piece
of paper of the sketched shape can be bend. Ap-
plying this algorithm to 3D shapes obtained by the
Teddy algorithm does not lead to satisfactory results
as demonstrated in the images on the right of figure 3
and 4. Whereas the folding axis in the middle of the
torso of figure 3 is still acceptable, the one separat-
ing the right shoulder from body is unintuitive. The
same problem occurs for the folding axis separating
groups of two and three fingers in figure 4.

Figure 3: The chordal axis of a sketched contour of a
doll (left) and folding axes constructed from it (bold
lines) using a paper metaphor (right).

The results indicate that in order to make the
tool intuitive we must find a clearly separated subset
of these folding axes. We achieve this by clustering
branch nodes. All spine nodes lying on edges of junc-
tion triangles are potential joints. For each branch
node we compute the circumcircle of the correspond-
ing junction triangle. If the circumcircles of two adja-
cent branch nodes intersect they belong to the same
component. If they do not intersect the spine node on



Figure 4: The chordal axis of a sketched contour of
a doll (left) and the folding axes constructed from it
(bold lines) using a paper metaphor (right).

the edge nearest to the parent spine node is a joint.
The algorithm is illustrated in figure 5. The five red
dots in the image on the bottom right are the final
joints of the skeleton.

3.3 Sketelal Animation and Skinning Setup

An object is animated by moving its bones around
joints. In order to get a smooth deformation of the
surface mesh the mesh vertices must be associated
with bone movements. We use the popular Linear
Blend Skinning algorithm which is also frequently
called Skeleton Subspace Deformation (SSD). The al-
gorithm is unpublished in the literature but an ex-
cellent description is found in (Lewis et al. 2000). A
linear blend skin is created by beginning with a static
model of the character. We use the 3D model and hi-
erarchical skeleton (spine tree) explained in the previ-
ous subsections. Note that the bones of the skeleton
are the sections of the spine tree, which connect two
joints or a joint and a leaf. Hence the bones are usu-
ally curved. We now define for each bone a curvilinear
coordinate system by parameterising the correspond-
ing curved section of the spine tree. At each point of
the bone two orthogonal vectors are created by the
normal vector of the sketch plane and cross product
of the normal and tangent of the bone at that point.
Using this coordinate system we can now compute
the coordinates of a mesh vertex with respect to the
bone. This is done by first projecting it onto the
sketch plane and then finding the closest point to it
on the curved bone.

If vertices are bound to only one bone then linear
blend skinning results in gaps or overlaps in the sur-
face. This is avoided by binding a vertex to several
bones. We do this by determining for each vertex its
distance to a joint and computing appropriate ver-
tex weights. If a vertex has an equal distance to two
bones then its weights are 0.5 for each bone. In our
case distance is defined by the distance of a sample
point to a junction triangle in the original 2D sketch.
Since all 3D vertices and the skeleton result from this
triangulation it is an appropriate and easy method to
determine vertex weights.

In order to animate the mesh vertices we need to
rotate bones around their parent joints (i.e., the joint
connecting the bone to its parent in the hierarchical
skeleton). Let vk

d be the coordinates of a vertex in a
dress pose with respect to bone k. The position v of
the deformed vertex is computed by:

v̄ =
n∑

i=0

wiMiL−1
i Lvvi

d (1)

Figure 5: The joint detection algorithm for finding
spine nodes which divide the sketched contour into
separate parts for animation. The algorithm traverses
branches (red and blue lines) in the spine tree. Each
branch connects two branch nodes or one branch node
to a leaf. Each step tests the intersection (red and
light blue cycle) between two adjacent branch nodes’
boundary circles. If there is no intersection between
two boundary circles or the branch connects a branch
node to a leaf, a boundary edge is found (green lines).
The spline nodes on these boundary edges are the
joints of our skeleton.

where wi is the weight of the vertex with respect
to bone i, Lv is the matrix transforming the vertex
v from its surface representation to the world coor-
dinate system, L−1

i transforms the vertex from the
world coordinate system into the static i-th coordi-
nate frame (dress pose), and Mi expresses the motion
of the i-th coordinate frame. The effect of this trans-
formation is that we can express a rotation around an
axis of the coordinate frame of the parent joint as ro-
tation around the x-, y- or z-axes. Note that since we
have a hierarchical skeleton the matrix Li is in fact
the product of the matrices representing each bone in
the coordinate system of its parent bone.

3.4 Rendering

Two rendering algorithms were implemented:
Gouraud shading is the most popular algorithm for
polygon rendering and provides a smooth shaded
representation of the surface. However, the surfaces
produced by the Teddy algorithm frequently suffers
from shading artifacts caused by irregularities in the
triangulation. This can be remedied using a mesh
smoothing algorithm (Igarashi & Hughes 2003),
which we plan to implement in future. For the



current model we found that using a toon shader
gives visually acceptable results. We implemented
the approach presented in (Villar 2007–2009). The
cartoon-like appearance corresponds well with the
intended usage, i.e., creating rough prototypes of 3D
objects and scenes. Figure 6 illustrates the different
effects achieved with these rendering algorithms.

Figure 6: Two sketch-based models rendered using
Gouraud shading (left) and toon shading (right).

3.5 Animation

An efficient animation of sketched objects can be
achieved in three ways: The first possibility is an au-
tomatic animation, i.e., without requiring any user
inputs. This can be achieved using physically-based
modelling, but usually requires some domain knowl-
edge. For example, when we detect that an object
does not have joints it can be considered rigid and
animated using a physics library such as ODE (Smith
2007). This way the object could collide with other
rigid objects or tumble down a (sketched) slope.

If the object does have joints it can still be ani-
mated automatically, e.g., using an evolved locomo-
tion controller (Sims 1994, Sanders et al. 2003). In
this case naturally placed joints are essential and ap-
propriate constraints (hinge joint, ball joint, etc. )
must be known. A sketched object could also be
animated by rigging it with an existing animated
skeleton using the algorithm presented in (Baran &
Popović 2007)

Finally a sketched object can be animated effi-
ciently using sketch input as explained in subsec-
tion 2.2. In this case the joints must be intuitively
placed and the user must be able to understand how
a desired shape can be achieved by rotating a section
of the shape around a joint.

In order to test the user’s understanding of joint
locations and rotations we implemented a very simple
key-based interactive animation tool. In this instance
keyboard input is preferable over sketch input since
it avoids ambiguous responses due to confusion about
how to select a joint or about how sketch a desired
behaviour.

After the user has drawn a closed contour our sys-
tem immediately creates the corresponding 3D model
and indicates movable parts by thick dotted blue lines
as illustrated in figure 7. The user can rotate mov-
able parts using four keys: The first key provides
a toggling through all possible rotation axes. The
currently active joint is indicated by a yellow dotted
line. A second key is used for toggling through the
three possible rotation axes represented by the coor-
dinate system of the parent bone at the joint. The
last two keys are used for rotating the selected com-
ponent forwards and backwards around the selected
rotation axis.

4 User Study

We performed a user study in order to evaluate the
effectiveness of our “LifeSketch” framework. The par-
ticipants had to do five tasks of various difficulty. The
tasks required increasingly complex interactions and

Figure 8: The four pictures shown to the users for the
tasks 1,2,4 and 5.

had an increasing demand on 3D perception and men-
tal modeling. Our main objectives were to determine
whether users are able to model simple shapes, under
which circumstances the modelling is most successful,
whether the automatically detected joints are natural
and intuitive, and whether users can use the joints
correctly in order to deform a simple shape.

4.1 Hypotheses

Based on our experience with teaching students and
based on results from cognitive science we formulated
the following hypotheses which formed the bases for
our experiments:

• It is easy to create a 3D model from an existing
model if the view plane is the sketch plane. In
this case the 3D model’s contour is identical to
the sketch contour and the user only has to copy
the contour.

• It is harder to create an appropriate contour
sketch for a 3D model shown from a different per-
spective, since in this case the user has to create
a mental model of the object and rotate it to find
the correct sketch contour.

• It is hardest to create a sketch for a shape which
is only described in words (i.e., without visual
template).

• Animating a 3D model is relatively easy if the
shape’s components move inside the image plane,
i.e., the rotation axis is orthogonal to the image
plane.

• It is more difficult to animate an object if ro-
tations around axes in all three dimensions are
required.

4.2 Tasks

In order to test the hypotheses above, we designed
the following five experiments:

1. The user is shown the 3D model of a hand in fig-
ure 8 “Task 1” and is asked to copy it. Note that
the view direction is orthogonal to the sketch
plane, i.e., the user only needs to draw the con-
tour of the 3D model.

2. The user is shown the 3D model of a doll in fig-
ure 8 “Task 2” and is asked to copy it. Note that
the two views do not contain the contour, i.e.,
the user must reconstruct it mentally.



Figure 7: Examples of sketched-based models: (a) doll, (b) hand, (c) lobster, (d) egg, (e) blobby saw, (f) sea
star (star fish). Each image shows the sketched contour and resulting skeleton (left), and the Gouraud shaded
3D model (right). The joints separating movable components are indicated by thick blue dotted lines. The
root of the hierarchical skeleton for skeletal animation is indicated by a red dot.

3. The user is asked to create a 3D model of a
duck. No images are shown and no instructions
are given.

4. The user is shown the images of the doll model in
figure 8 “Task 4” and is asked to copy the poses
by moving the model’s legs and arms. Note that
the rotations are within the sketch (view) plane.

5. The user is shown the images of the hand model
in figure 8 “Task 5” and is asked to copy the
pose by moving the hand’s fingers. Note that
this requires rotations around several axes (for
the thumb) and that the fingers move out of the
image plane.

5 Results

5.1 Efficiency

We first evaluated the efficiency and correctness of
the algorithm. More than a dozen simple models
were constructed and a selection of them is shown
in figure 7. The most complex model, the lobster,
took about 20-30 seconds to sketch. The contour
has 243 sample points. The resulting 3D model has
2087 vertices, 4170 triangles, and took 0.493 seconds
to compute on a machine with E7200 dual 2.53GHz
CPUs with 4GB RAM and NVIDIA GeForce 9600GT
graphics card with 512MB memory. The subsequent
animations were all performed in real-time with no
noticeable delays - the exact frame rate was not mea-
sured.

5.2 Correctness

All models we created were plausible with no ma-
jor artifacts such as holes or non-manifold surfaces.
Figure 7 demonstrates that most detected joints are
meaningful. In particular note that the egg (stone)
has no joints even though its triangulation contains
junction triangles. In none of our examples were “nat-
ural” joints missing. In Figure 7 (a) it could be ar-
gued that the doll figure should also have an elbow
joint, but when interviewing the participants in the
subsequent user study, none of them commented on
this. The algorithm produces some unexpected ex-
tra joints, e.g., the mouth and the left elbow of the
lobster, the teeth of the saw, and a joint below the
wrist of the hand model. The extra joint of the hand
demonstrates a problem with Teddy’s pruning algo-
rithm which we plan to fix together with the prob-
lem of having to many extra joints. The extra joints

could be avoided by enforcing a stricter size criteria
for branches of the spine tree. However, it is not
clear what size is most appropriate. We are plan-
ning to conduct an analysis of natural and man-made
“blobby” objects in order to optimize the automatic
joint selection. Note that some users might expect
the eyes of the lobster to be movable.

5.3 User Study Results

We conducted a user study with 11 participants (8
male, 3 female). Eight of them were Computer Sci-
ence students and six of them had previous experi-
ence with modelling tools. The users were asked to
perform the five tasks described in subsection 4.2. A
time limit of 5 minutes/task was set. The users were
observed and unusual actions were recorded. Users
were provided with a half page long summary of the
functionality of the tool, e.g., the keys for perform-
ing rotations as explained in subsection 3.5. How-
ever, users were not told what functionality to use
for a modeling task. The time for each task was mea-
sured. The user experience was evaluated by assessing
the modeling results and by asking the user’s level of
agreement with the following statements:

1. The resulting 3D shape looks like the shape I
wanted to model.

2. The resulting 3D shape looks like what I ex-
pected after sketching the 2D contour.

3. The rotation axes (joints) were at the positions
where I wanted them (This question was asked
only for task 4 and 5).

4. The tool is easy to use.

5. The tool is fun to use.

The response were recorded using a seven-level Likert
scale (“strongly disagree” (-3) to “strongly agree” (3))
and are shown in table 1.

5.3.1 Task 1

Five users (two non-computer science students) felt
that it is difficult to create a model by drawing a con-
tour using a single stroke. Two of them suggested
that the tool should have a function which can au-
tomatically connect multiple strokes. Two partici-
pants suggested that using a pen tablet as input de-
vice would be better. We agree that when drawing
long curves it is quite cumbersome to keep the mouse



1 2 3 4 5
Shape Shape Rotation Easy Fun

wanted expected wanted

Task 1 X̄ 1.55 1.73 n/a 1.73 2.18
(T̄ = 29s) σ 1.04 1.01 n/a 1.52 0.91
Task 2 X̄ 2.00 2.09 n/a 1.90 2.18
(T̄ = 36s) σ 0.63 0.54 n/a 0.70 0.60
Task 3 X̄ 0.63 1.45 n/a 1.73 2.09
(T̄ = 63s) σ 1.80 1.37 n/a 1.42 1.14
Task 4 X̄ 1.91 2.00 2.27 1.82 2.55
(T̄ = 94s) σ 0.70 0.45 0.65 0.87 0.63
Task 5 X̄ 1.18 1.45 0.91 1.18 2.00
(T̄ = 165s) σ 1.54 1.44 1.64 1.83 1.34

Table 1: Users’ level of agreement (from -3 to 3) with
the five statements about the five tasks in subsec-
tion 4.2. X̄ indicates the average response and σ the
standard deviation. Below each task the average time
for completion is given.

button pressed and keep it moving without creating
self intersections. One user in particular had prob-
lems with this and with the automatic closing of the
contour and had to try four times to create a valid
model. In future work we would like to perform the
same experiments using a tablet PC with pen-based
input.

The high level of agreement with statement 2 is
surprising since the Teddy algorithm generates a hand
model with a “blobby” palm and not a flat palm as
one might expect. One reason for the lack of criticism
is that most users didn’t try to rotate the hand and
hence didn’t even notice that the hand’s 3D shape
was not realistic.

5.3.2 Task 2

Feedback for the second task was in general even
better than for the first task. We suppose the rea-
son is that users are more familiar with the tool af-
ter the first task. Note that the standard derivation
is reduced and we noticed that especially the non-
Computer Science students gave better scores. This
indicates that the tool is very intuitive and easy to
learn. We could not find any support for our second
hypothesis that it is harder to draw a shape based on
rotated views of it.

5.3.3 Task 3

For task three users had to form a mental image of a
duck and then sketch an appropriate contour. Some
users forgot the commands to control the tool (e.g.,
restart), apparently because they were preoccupied
creating a mental model. We also found large differ-
ences in the level of complexity of the sketched mod-
els. We expected users to create a model resembling a
rubber duck as shown in figure 9 on the left. However,
almost half of the users tried to create a model with
wings and/or legs. This resulted in frustration and a
low level of satisfaction with the tool. Non-computer
science students were overrepresented in that group.

We believe that a more interactive approach, e.g.,
a user can draw initial shapes and then refine them,
would help the user to formulate a mental model and
represent it by a sketch.

5.3.4 Task 4

Task 4 was easily accomplished by both computer sci-
ence students and other users. We observed that users
had no problems to rotate 3D shapes when the rota-
tion axis is perpendicular to the image plane. Users

Figure 9: The mental model we expected users to em-
ploy when told to model a duck (left) and the actual
results of the modelling process (right).

found it easy to select appropriate joints and they had
no problem recognizing rotation axes and the associ-
ated behavior. Several users required assistance find-
ing the correct key combinations for cycling through
joints and performing the rotation - they did not want
to read the half page long documentation. Note that
this task resulted in the highest level of enjoyment.

5.3.5 Task 5

For the fifth task users had to draw a hand model
and rotate its fingers in order to create the shape in
figure 8 “Task 5”. Table 1 shows that this task had
the lowest level of satisfaction, especially among non-
computer science students, and the largest variation
in user responses. The subsequent interviews showed
that joint positions were perceived as intuitive but
six participants thought that the rotation of the mesh
around joints is not intuitive. Five people felt frus-
trated when they were rotating the fingers and one
participant could not finish the animation within the
time limit of 5 minutes.

The main problem was that users had difficulty
finding and recognizing the correct rotation axis. This
was partially due to their representation as unshaded
lines, but also due to that fact that none of the three
coordinate axis of the thumb joint corresponded to
the direction in which the thumb had to be rotated.
Users had to rotate around two different rotation axes
which seemed to create considerable confusion, es-
pecially for inexperienced users. Another surprising
observation was that many users did not rotate the
model with the trackball, which would have helped
with the perception of the three different rotations
possible (the users were made aware of this function-
ality in the beginning).

The results suggest that any implementation of
sketch-based animations should not use rotation axes
or at the very least allow arbitrary rotations. In the
subsequent interviews users suggested that a more
natural way to define rotations would be to indicate
a motion path and goal configuration with a curved
arrow. In this case the system must use the current
configuration and the context to map the arrow into
a feasible 3D motion (i.e., use inverse kinematics).
More user testing is necessary to verify this hypothe-
sis.

6 Conclusion and Future Work

Sketch-based modelling and animation is an exciting
technology with a wide range of applications. We
have reviewed the current state of the literature and
suggested a novel classification of sketch-based mod-
elling systems which we believe is useful for develop-
ing more general modelling frameworks.

We have presented a prototype of our own frame-
work, called LifeSketch. The system is based on the
“Teddy” modelling system, but uses novel algorithms
to automatically extract a skeleton for skeletal ani-
mation. This makes it possible to integrate physical-
based animation systems, map motion templates or
develop evolutionary algorithms in order to achieve



an automatic animation of sketched objects. We have
also presented some previously unpublished details for
generating a surface mesh for various configurations
resulting from pruning the skeleton.

Our user study demonstrated that the resulting
models and joint positions are perceived as natural
and intuitive. In general users enjoyed using the tool
and were able to complete simple modelling and ani-
mation tasks in a short time. The main disadvantage
is that the current user interface for specifying joint
rotations is clumsy and unintuitive.

We are currently working on a sketch-based inter-
face for animating sketched objects. Arrows drawn
by the user are associated with bones and the arrow
shape together with the orientation and position of
the corresponding bone and joint are used to esti-
mate a rotation axis and angle. We would also like
to implement some of the various extensions of the
Teddy algorithm in order to increase modelling power
and visual attractiveness of the resulting shapes. Fi-
nally we are interested in the automatic animation
of sketched objects. So far we have a prototype of
a physical animation system based on ODE (Smith
2007).
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