
Game/Music Interaction - An Aural Interface for Immersive I nteractive
Environments

Chris Nelson1 and Burkhard C. W ünsche2

1Boston University, Dept. of Computer Science, 111 Cummington St, Boston, MA
2University of Auckland, Dept. of Computer Science, PrivateBag 92019, Auckland, New Zealand

Email:chrisn1@bu.edu, burkhard@cs.auckland.ac.nz

Abstract

Game music has the potential to be much more than a passive element
of the background. The music can and should affect the game play. The
game play can and should affect the music. The player’s actions can
and should influence the direction and evolution of the music. By tightly
linking game play and music, the player becomes much more immersed
in the experience, and new creative possibilities abound for the devel-
oper. This paper presents a framework for linking game play to music
by analysing music on a perceptual and a physical level. Real-time pro-
cessing is achieved by using the GPU as an APU. The usefulnessof the
framework is demonstrated by two examples of game play synchronised
with auditory perceptions. It is our hope that this paper will enable and
stimulate the reader to create musically interactive games, and discover-
ing entirely new ideas in this field.

Keywords: game technology, music synthesis, audio anal-
ysis, multi-sensory interfaces, perceptual rendering

1 Introduction

Music has always been a major entertainment medium and
sound is used in computer games in the form of back-
ground music, speech, sound effects (e.g., gunshots), and
game event signals (e.g., “Ka-ching!” sound after a suc-
cessful player move). It has been shown that audio im-
proves the narrative experience and can be used to guide
the player through the game (Salen & Zimmerman 2004).
In most cases the sound is controlled by the game play
and consists of replaying pre-recorded sound files. Popu-
lar tools in game development on PCs are DirectMusic in
combination with the MIDI music format which uses the
Microsoft Software Synthesiser and Roland sound fonts
(Holland 2002). In this paper we explore the symbiosis of
music and game play, i.e., the game play should be able to
influence the music (e.g., faster music for high action se-
quences) and vice versa the music should be able to influ-
ence the game play (e.g., if the music becomes louder en-
emy attacks become more violent). We present and eval-
uate a framework which enables a deeper integration of
music and game play.

2 A Short Overview of the History of Game Music

One of the oldest examples of this symbiosis is in the 8-
bit Nintendo game, Super Mario Brothers (SMBHQ.com
n.d.). When the player is low on time to complete a level,
the game doubles the speed of the music. This innovation

Copyright c©2007, Australian Computer Society, Inc. This paper appeared
at the Eighth Australasian User Interface Conference (AUIC2007), Bal-
larat, Australia. Conferences in Research and Practice in Information Tech-
nology (CRPIT), Vol. 64. Wayne Piekarski and Beryl Plimmer,Eds. Re-
production for academic, not-for profit purposes permittedprovided this
text is included.

was as effective as it was simple. By making the music
sound rushed, the developers instill a great sense of ur-
gency in the player, as they hurry to beat the clock. From
the perspective of the audio library, merely adding a bit
of code to allow for the doubling of a song’s speed gives
each and every song in the game that much more added
depth and variance. As an audio library allows for more
and more modifications to the music, the music becomes
much more than just an element of the background.

Another example comes from a more recent game,
.Hack (Bandai Inc. n.d.), which was first released in 2002.
When exploring a dungeon, the music is ambient and at-
mospheric. If an enemy is encountered, a percussive track
is layered on top of the first track, since combat is about
to take place. Both tracks are from the same logical song,
and thus in sync with one another, but the percussive track
fades in and out as the current mood of the player, or per-
haps the character they’re controlling, goes from relaxed
to intense, depending on whether combat is occurring.
The important aspect of this example is that music isn’t
simply a single waveform. It’s a combination of wave-
forms, which can be divided into categories of varying
granularity, from broad categories like percussion, all the
way down to specific instruments. Since the audio library
for .Hack respected this fact, the designers were able to
eliminate the auditory discontinuity of switching between
one song for exploration, and another for combat. Instead,
continuity was preserved, and the music flows and morphs
itself to fit the scenario of the moment, without interrup-
tion.

A third example is a game called Rez (SonicTeam/Sega
n.d.), which is the prime inspiration for this paper. As the
player flies through each level, the music loop evolves as
each way-point is reached. The real magic, however, is
that every last sound effect is quantised to the beat of the
music. A new sound effect set is loaded for each song
/ level, and each sound effect set is designed to be the
building blocks that fit on top of the foundation that is the
current level’s music. Furthermore, as the player fires mis-
siles at enemies, they explode in sync with the beat. The
game instills an amount of synaesthesia in the player, as
they learn to associate the visual aspect of an enemy with
the audio element it produces when destroyed. Everything
in this game happens in sync with the beat, and a great deal
of the music is generated by the player’s and the enemies’
actions. The final musical output is a collaboration be-
tween professional musicians, game designers, the player,
and enemy AI. And each gaming session generates a new
version of the music.

In all of the above instances the game play influences
the music. A very different example is Konami’s Dance
Dance Revolution series (KONAMI n.d.). Players stand
on a specially constructed dance pad, and then must step
on specific parts of it, in sync with the music, to perform
a unique dance for each song. In contrast to Rez, where
the game maps the player’s input to the beat, the major
game play element is the player mapping their own input

to the beat of the game. The more one is in sync with
the rhythm, the higher one’s score. Konami has released
countless other rhythm games, varying the input device
to instruments, such as guitars or drums. The game play,
however, remains fairly constant. The success and pop-
ularity of this franchise is definitive evidence that players
find the creative linking of music and game play to be very
compelling.

3 Music Synthesis in DJing and Sonification

An important source of inspiration providing us with many
key features for a musically interactive audio library is the
art of DJing (Frederiks & Slowly 2003, Andersen 2005).
DJs have developed techniques for modifying sound and
influencing the audience’ mood which are imminently ap-
plicable to video games. To solve the problem of the dis-
continuity that arises between two songs, DJs use beat-
matching and frequency equalisation to create hours of
music which sounds completely continuous, as songs are
carefully weaved together.

Beatmatching is the process of modifying the play-
back speed of the next song (via pitchbending), so that
each measure of the next song is as long as a measure
in the song that’s currently playing. Once two songs are
beatmatched and synchronised, the DJ will crossfade from
the current song to the next song, not just by varying the
volume, but also by varying the amplitude of coarse fre-
quency bands, usually 3 or 4. The goal, during a transition
from one song to the next, is often to keep the combined
volume and the amplitude of each frequency band more
or less constant, to give the perception of continuity. A
skillful DJ can preserve continuity to the point where the
audience doesn’t know when distinct songs are beginning
and ending. Equalisation can also be used to emphasise or
remove certain elements of a song, such as the bass line.

Another electronic music technique is granular synthe-
sis, which is the process of creating sound or modifying
music by repeating the most recent 1-100ms of audio
many times per second. Pick up a CD by Venetian Snares
(Venetian Snares 2004) if you desire to hear examples of
this effect. Less exotic modifiers such as reverb (echo) and
resonance (spiking the amplitude of specific frequencies)
are also valid targets for inclusion in an audio library.

DJs techniques to control and modify audio have been
maturing for well over 20 years, and game designers
should approach their game’s music with the mind set and
tools of a DJ.

Another source of inspiration comes from the field of
scientific visualisation. Various researchers have tried to
employ other sensory organs than the eye to perceptualise
data in order to avoid visual overload. Grinstein et al. ex-
perimented with the sonification of scientific data employ-
ing the loudness, pitch and orchestration of sound as addi-
tional output dimension (Grinstein & Smith 1990, Grin-
stein & Levkowitz 1995). Sonification has also been
employed to perceptualise uncertainty (Lodha, Wilson &
Sheehan 1996) and volume images (Rossiter & Ng 1996).
The techniques utilised to visualise data can be translated
into the game environment (Kot, Wünsche, Grundy &
Hosking 2005) and be used the synthesise sound in cor-
respondence with the game play.

4 A Musically Interactive Audio Library

The examples given in the previous sections constitute
merely a slice of the history of game/music interaction.
This slice, however, gives us motivation. In each exam-
ple, a game has been improved by a unique set of features
made available in its dependent audio library. Popular au-
dio libraries, such as SDLmixer (Lantinga, Peter & Gor-
don n.d.) and OpenAL (OpenAL - homepage n.d.), pro-

vide only basic capabilities, and thus atrophy the musical
creativity of the developers who use them.

The lack of suitable tools for game-music synchronisa-
tion motivated this research and resulted in the novel mu-
sically interactive audio library discussed in the following
sections.

4.1 High Level Design

Our musically interactive audio library was implemented
in C/C++ because of it’s ability to abstract away com-
plexity into objects with comparatively simple interfaces.
Graphics applications can be linked to the audio library via
SoundObjs and MusicObjs objects, which are used
for sound effects and music, respectively. SoundObjs are
loaded entirely to memory in the constructor (possibly in a
forked thread), but MusicObjs are streamed from the disk
as chunks are needed. The reason for this is that sounds
tend to be small, and played back several times, so we only
want to load them once. Music is usually only played back
once, so by distributing the decoding over the length of a
song, we minimise the amount of work and memory re-
quired per frame, to deal with a song. At the moment, mu-
sic is streamed from disk. Loading an mp3 or otherwise
compressed song entirely into memory would decrease the
delay associated with accessing the data, at the cost of in-
creased memory use.

Both SoundObjs and MusicObjs share sev-
eral methods. Basic functionality, such asPlay() ,
Stop() , Pause() , Resume() , Fade[In|Out]() ,
[Get|Set]Volume() , and [Get|Set]Position
() , is provided for both types of audio objects. More
advanced methods includeSetSpeed() , SetGlitch
Attributes() , SetSpeedInterpolationFac
tor() , and a plethora ofMetaSync *() functions
explained below.

The SetSpeed*() methods deal with pitchbend,
playing the audio back at a different rate, and smoothly
interpolating between two different playback rates. These
methods are essential in providing DJ-style control of au-
dio. SetGlitchAttributes() deals with granular
synthesis, and allows for varying the number of samples
repeated, the speed at which they’re played back, and
whether the granular synthesis replaces or augments the
audio currently being played. Frequency equalisation is
implemented, but not yet exposed through the API.

TheMetaSync *() functions are for use with music
and allow the designer of a game to get answers about
every aspect of a piece of music such as “Was a bass drum
hit since the last frame?”, “Have we reached a new half-
beat since the last frame?”, “What is the current BPM?”
etc. This music meta data is stored with a song’sMetaSync
file and is loaded when aMusicObj is initialised. Each
frame, the audio library updates the song’sMetaSync state,
as music is pushed to the soundscard. Exposing the song’s
musical structure to the programmer allows for game play
elements to be linked to the beat, the percussion’s rhythm,
or even specific instruments. Furthermore, players could
drop in different music with differentMetaSync data to
affect the game play in unexpected and unplanned ways.
Each song would make the game play differently, and as a
result add value to both the music and the game.

4.2 Generation ofMetaSync Data

GeneratingMetaSync data can be difficult and ideally
should be performed automatically. We have developed a
tool which enables human users to quickly describe a song
in detail, i.e., what qualifies as a “snare drum” or how to
differentiate a bassline from a bass drum. The program
is a modified version of the first author’s DJing software.
A five minute track was described completely in approxi-
mately five hours.

Figure 1: MetaSync data generation software that uses a
Playstation2 controller as the input device.

The process of using the tool is quite simple and is il-
lustrated in figure 1. A song is loaded into a waveform
(the middle row in the above image), which can be played
back at various speeds. As the song plays back, it is the
user’s job to press buttons which will indicate the pres-
ence of a certain piece of metadata as they audibly and
visibly pass under the metaphorical record needle (the ver-
tical bar in the middle of the waveform). The timestamp
of these button presses is quantised to a user-definable de-
gree. One useful mode of playback allows a measure to be
looped until the user decides they’ve completely described
it. Specific instrument groups can be copied and pasted
into and from multiple clipboards, which capitalises on
the repetitive nature of many types of music. The result-
ing MetaSync file format is a series of plain text directives,
each directive describing a musical element at a specific
timestamp.

Currently the generation ofMetaSync data is per-
formed by hand as described above. However, we plan to
use the Fast Fourier Transform to convert small chunks of
music, tagged by the hand-generatedMetaSync data, into
the spatial domain. We could then use Neural Networks
in order to identify such chunks of music in the untagged
part of a music file and as such completeMetaSync files
semi-automatically. Once enoughMetaSync data exists
for different types of music such an algorithm might even
be able to process an entirely new piece of music.

4.3 Frequency Querying / Modification / Reaction

The audio library also allows a game to query and modify
the amplitude of a range of frequencies, via Fast Fourier
Transforms and equalisation. This gives designers another
set of information about the structure of the music. As-
pects of the game can react to aspects of the music. As
bass frequencies become increasingly prominent, the en-
vironment’s lighting could become darker. The absence of
midrange frequencies could make certain enemies change
behaviour. High frequencies, when present, could make a
helpful platform appear, only to slowly fade away if the
frequencies don’t remain. The audio library gives devel-
opers opportunities to use the music’s structure creatively,
and to make their world’s behaviour dependent on the mu-
sic, which in turn could be player-modifiable, allowing
for increasingly varied game play. The player’s actions
could also affect the music, via equalisation. If you de-
stroy a crystal, perhaps the high frequencies of the music
are muted for 20 seconds, which, in turn, affects another
element of the world.

4.4 Low Level Implementation

The heart of the audio library is the audio callback func-
tion. This function is called in a separate thread every
time the sound card’s output buffer needs refilling. Linux
allows for smaller output buffer, typically 1024 samples,
providing lower audio latency. Windows typically re-
quires a buffer size of at least 2048 samples. Each iter-
ation of the audio callback function loops through every
SoundObj andMusicObj that’s currently playing. A
nested loop then proceeds to mix data from each object’s
audio buffer into the sound card’s output buffer, process-
ing the effects on a per-sample basis.

Harware acceleration is achieved by treating audio sig-
nals as graphics primitives, i.e. audio signals are loaded,a
chunk at a time, onto a texture. Once there, we can draw
these textures to an off-screen buffer in specific ways to
obtain the results of operations such as multi-track mixing,
amplitude scaling, pitchbend, reverb, equalisation, gran-
ular synthesis, and more. This allows the vast majority
of work to be offloaded to the graphics hardware, sav-
ing valuable CPU time, performing the calculations in a
shorter amount of actual time, and potentially allowing for
increased audio responsiveness and decreased latency.

5 Results

A motivation for writing the audio library was the desire
to be able to write musically interactive games. One of
the first author’s works-in-progress was chosen to be ex-
tended to use this new audio library. The game in question
is a 2d spaceship shooter, similar in game play to Space
Invaders. The game was modified such that enemies fire
bullets when the bass drum kicks, making certain sections
of the song safe, and others exceedingly dangerous. Dif-
ferent weapons that the player uses are triggered by dif-
ferent instruments, so if the player uses the right weapon
during a snare roll, more damage is output. Only a small
fraction of the audio library has been used thus far, but
already the game has a definite link to the music.

Figure 2: Red enemy bullets pulsate with the beat of the
music, as a homing laser fires in sync with the music’s
bass line.

Another application developed for use with the au-
dio library isDJing software. The audio library provides
all the functionality necessary to simulate a DJ setup,
with equalisation, beatmatching via pitchbend, crossfad-
ing, and scratching (via theSetSpeed*() functions).
By combining the DJ capabilities with theMetaSync data,
it’s theoretically possible for a game to beatmatch two
tracks, and crossfade between them, as the player pro-
gresses from one level to the next, preserving the music’s

continuity. This feature will prove useful for the afore-
mentioned spaceship shooter.

An example of beatmatching is illustrated in figure 3.
The high-amplitude sections of the lower two waveforms
are bass drums, which are lined up with one another, so the
user knows everything is in sync. The bottom waveform
has a pitchbend of -1.37%, so it plays back at the same
speed as the top track.

Figure 3: Two remixes of an Underworld track are visibly
beatmatched.

This audio library is still in development, but it cur-
rently provides all the major features of SDLmixer, as
well as some important music / game interaction technol-
ogy. Future improvements will include multi-track music,
as found in .Hack, enhanced GPU acceleration, and a re-
vamped API. Once this is complete, it will be released to
the public, under the GNU LGPL license, and hopefully
give rise to some creative games, as a result.

6 Conclusions

Gaming history shows us the important effects that mu-
sic can have on the game play experience, when it is ac-
tively linked to the world, rather than a passive element of
the background. Super Mario Brothers, .Hack, Rez, and
Dance Dance Revolution all illustrate different ways mu-
sic can interact with a game.

Game designers and programmers are bound by the
tools they use. The most popular publicly available audio
libraries don’t give designers the tools they need to exer-
cise their creativity in the field of game / music symbiosis.
We have presented a musically interactive audio library
which gives game designers read/write access to the un-
derlying structure of the music used in a game. The library
provides a framework for linking game play to music by
analysing music on a perceptual and a physical level. The
usefulness of the framework was demonstrated with two
examples of game play synchronised with auditory per-
ceptions.

7 Acknowledgements

Thanks are due to all game developers whose creative
risks advance the state of gaming as a whole. Specifically,
thanks is owed to the designers and programmers whose
methods are referenced in this paper. Sam Lantinga’s SDL
library deserves credit as well. By releasing such a power-
ful tool under an open source license, countless program-
mers are empowered to become game developers. Every-
one who has contributed to Simple Direct Media Layer
(SDL) deserve thanks.

References

Andersen, T. H. (2005), In the mixxx: novel digital DJ
interfaces,in ‘CHI ’05: extended abstracts on Hu-
man factors in computing systems’, ACM Press,
pp. 1136–1137.

Bandai Inc. (n.d.), ‘.Hack - homepage’. URL:htpp://
dothack.com .

Frederiks, T. & Slowly, D. (2003),Dj Techniques, Sanctu-
ary Publishing.

Grinstein, G. G. & Levkowitz, H., eds (1995),Perceptual
Issues in Visualization, Springer Verlag, Berlin.

Grinstein, G. G. & Smith, S. (1990), Perceptualization
of scientific data,in E. Farrell, ed., ‘Proceedings of
the 1990 SPIE/SPSE Conference #1259: Extracting
Meaning form Complex Data’, The Society for Im-
age Science and Technology, pp. 190–199.

Holland, H. (2002),Game Programming - Tricks of the
Trade, Premier Press Inc., chapter 8 - Sound and Mu-
sic. (Lorenzo D. Phillips Jr., ed.).

KONAMI (n.d.), ‘Dance dance revolution gateway’.
URL: http://www.konami.jp/gs/game/
ddrgateway/ .

Kot, B., Wünsche, B. C., Grundy, J. & Hosking, J.
(2005), Information visualisation utilising 3d com-
puter game engines - case study: A source code
comprehension tool,in ‘Proceedings of the 6th
Annual Conference of the ACM Special Interest
Group on Computer-Human Interaction (CHINZ
2005)’, pp. 53–60. Auckland, New Zealand, 7-8
July 2005, URL:http://www.cs.auckland.
ac.nz/˜burkhard/Publications/CHINZ0
5 KotWuenscheGrundyHosking.pdf .

Lantinga, S., Peter, S. & Gordon, R. (n.d.), ‘SDLmixer
1.2’. URL: http://www.libsdl.org/
projects/SDL_mixer/ .

Lodha, S. K., Wilson, C. M. & Sheehan, R. E. (1996),
LISTEN: Sounding uncertainty visualization,in
R. Yagel & G. M. Nielson, eds, ‘Proceedings of Vi-
sualization ’96’, IEEE, pp. 189 – 195.

OpenAL - homepage (n.d.), URL: http://www.
openal.org/ .

Rossiter, D. & Ng, W.-Y. (1996), A system for the com-
plementary visualization of 3D volume images using
2D and 3D binaurally processed sonification repre-
sentations,in R. Yagel & G. M. Nielson, eds, ‘Pro-
ceedings of Visualization ’96’, IEEE, pp. 351 – 354.

Salen, K. & Zimmerman, E. (2004),Rules of Play, MIT
Press, Cambridge, Massachusetts.

SMBHQ.com (n.d.), ‘Super mario bros headquarters
homepage’. URL:htpp://smbhq.com/smb.
htm .

SonicTeam/Sega (n.d.), ‘Rez - homepage’. URL:http:
//www.sonicteam.com/rez .

Venetian Snares (2004), ‘Huge chrome cylinder box un-
folding’. Planet Mu.

