
A Framework for Interactive Web-Based Visualization

Nathan Holmberg†, Burkhard W ünsche‡, Ewan Tempero‡

Department of Computer Science
University of Auckland,

Private Bag 92019, Auckland, New Zealand
Email: nhol021@ec.auckland.ac.nz†,{burkhard,e.tempero}@cs.auckland.ac.nz‡

Abstract

As the power of end user web browsers increases, the deliveryof so-
phisticated visualizations of information via the web becomes possible.
However no technology exists that offers the kind of interactions that
a stand-alone application can deliver. Technologies such as Java3D,
VRML, X3D and SVG incorporate powerful rendering capabilities but
make it difficult to interact with the underlying source data. Other tech-
nologies such as SMIL can also offer synchronization but then lack this
rendering context. We present a framework within which these technolo-
gies can be evaluated.

We also address the question of how to integrate these technologies
with existing and well-understood web technologies such asJavascript,
CSS, Web Services, and PHP, to provide interactive web-based visual-
ization applications. We then describe a generalized framework for de-
termining how to choose the right set of technologies for a web-based
visualization application.

Keywords:Visualization, Web3D, web-application, inter-
active

1 Introduction

A web applicationuses a standard web browser as its user
interface and obtains its functionality (potentially) from a
remote host. As the power and ubiquity of the Internet
continues to grow, the use of web applications more ad-
vanced than simple conveyance of static textual informa-
tion is inevitable. One of the most obvious applications is
one that harks back to the original intention of the Internet,
that of sharing scientific information.

We are particularly interested in providingvisualiza-
tions of scientific and other information. A number of
technologies have been developed that provide limited
support for sophisticated visualizations, such as SMIL,
SVG, Java3D, VRML, and X3D. These technologies can
be used to create traditional visualizations and mapping
of data onto graphical icons, but are, by themselves, un-
able to provide the kinds of interactions and user interfaces
common in stand-alone applications. The question we ad-
dress in this paper is, can these technologies be effectively
used forinteractive visualizationsin a web environment.

There are a number of issues that differentiate web-
based interactive visualization from conventional applica-
tions. One is the nature of the visualizations themselves.
Some visualizations can only be expressed using modern
computer graphics techniques that may not be possible in
the web technologies that are available (e.g., 2 dimensions
vs. 3 dimensions). Another issue is interaction. The stan-
dard web browser and the standards it supports provide a

Copyright c©2006, Australian Computer Society, Inc. This paper appeared
at the Seventh Australasian User Interface Conference (AUIC2006), Ho-
bart, Australia. Conferences in Research and Practice in Information Tech-
nology (CRPIT), Vol. 50. Wayne Piekarski, Ed. Reproductionfor aca-
demic, not-for profit purposes permitted provided.

very limited form of control and a very simple form of in-
teraction. A number of technologies have been introduced
to provide client-side interaction, such as Javascript, Java
Applets, and various plug-in support, but whether these
can be effectively married with the visualization technolo-
gies needs to be addressed. A third issue is the networked
nature of web applications. This raises questions about
performance, both throughput and latency, that may affect
the effectiveness of the application. Finally, there is the
issue of the maturity and accessibility of the technologies.
Most require some form of third-party plug-in to the web
browser. Whether there is a mature-enough product for a
user’s preferred browser will also impact an application’s
effectiveness.

In this paper, we address the issues raised above and
describe a generalized framework for determining how to
choose the right set of technologies for a web-based inter-
active visualization. We begin by providing an overview
of visualization, with a view to determining the require-
ments of applications. We then present an evaluation
model that captures the issues discussed above and allows
the different choices to be evaluated. In section 4, we dis-
cuss a number of available technologies in the context of
the evaluation model. Section 5 presents our proposed vi-
sualization framework, and then section 6 shows an appli-
cation we have developed using the framework. We then
evaluate our results in section 7, and present our conclu-
sions.

2 What is Visualization

Tufte defines visualization as ascienceinstead of simply
the art of creating comprehensible pictures (Tufte 1983).
He describes the necessity of not only creating graphical
representations that best display the information in ques-
tion but that also maintain ‘graphical integrity’.

2.1 The Types of Visualization

There are three primary types of visualization; informa-
tion, scientific and software. Information visualization is
defined as ‘the use of computer-supported, interactive, and
visual representations of abstract data to amplify cogni-
tion’ (Wakita & Matsumoto 2003). This can be used in
almost any field to help users deal with the problems spe-
cific to their field, whether this be anything from chemistry
to organizational development. More recently these tech-
niques are moving from the lab into real applications used
by the general populous (Plaisant 2004) and so the impor-
tance of the field is ever growing. Informational visualiza-
tion appears to be the first to be suitable for publishing on
the web, perhaps because of its wider potential audience.

The other two forms of visualization, scientific and
software follow similar principles. Scientific visualization
is described by (Aref, Charles & Elvins 1994) as ‘when
computer graphics is applied to scientific data for purposes



of gaining insight, testing hypothesis, and general educa-
tion’ while software visualization is used to understand
complex software systems and their lifecycles.

The original intention of this work is to focus on infor-
mational visualization and the publication of such on the
web however the principles can easily be applied to the
other forms discussed here.

2.2 The Visualization Process

Figure 1, adapted from (Wuensche & Lobb 2001) shows
the basic process of visualization including the creation
and subsequent dissemination by humans. We can only
control the visualization stage with the hope that the users
interpretation will be as successful as possible and thus
we concern ourselves with the method of mapping data to
certain structures and then displaying these structures in
the best way possible.

Figure 1: The visualization process

We now must also take into account issues resulting
from using the web as a medium. For example, we are
now dealing with both a client and a server and as such
our discussion must take this into account. Later we use a
specific system architecture for this but for the purposes of
discussion this simple distinction is sufficient. A second
issue is that whatever structure is chosen for the mapping
must be sent to the user’s computer and so both size and
overhead have to be taken into account. An example is
that if terrain data is represented as a series of polygons, it
will have more overhead than representing the data just as
a set of height values, however sending only height values
is only an option of the technology supports its use (such
as an ‘elevationgrid’ structure being used to display said
data). While the choice of data representation can impact
the effectiveness of the application’s implementation, itis
the choice of technology that is the main focus of this pa-
per.

3 The Evaluation Framework

In an attempt to objectively compare the different tech-
nologies under review we have developed an evaluation
framework. It consists of 15 different measures in 4 cate-
gories. While some of these measures are subjective they
cover a wide variety of important aspects for the creation
of web-based visualization and facilitate our discussion.
A general approach is taken wherever possible although a
section on the application specific features of each tech-
nology is included to ensure that these are accounted for.

In the following discussion an ‘element’ is a particular
object within the overall visualization user interface. An
example is a particular instance of a plug-in object that
itself shows an X3D file. Thus inter-element communi-
cation deals with that between such stand alone objects
and likewise intra-element events deal with how events are
handled within the particular object or technology.

3.1 Technical Capabilities

The first section in this evaluation framework involves
testing the technical capabilities of the various technolo-

gies and allows for an objective view of what the technol-
ogy can do. We use 7 measures to describe this.

Network and Communicationsis the first measure and
revolves around whether the technology natively supports
communication with other servers, specifically for the
downloading of new content or dynamic updating of the
visualization. This feature makes it possible to split com-
putational work between the client and the server.

The second measure is2D/3D and indicates whether
the technology contains 2D or 3D graphical primitives to
render natively. In this case the term ‘natively rendered’
refers to how viewers are intended to treat or store objects
during the rendering process and what objects are made
available. An example of this would be that mapping 3D
volume data onto a 2D graphical icon is inappropriate.

Compression and Encryptionasks if there is support
for either compressed or encrypted communication, both
with respect to the original content download and for any
dynamic updates that may occur later in the visualization.
As some scenes involve a lot of data, this is important
as otherwise network latency becomes a limiting factor.
While initially the concern for security was extended to
enquiring if particular technologies supported the creation
of user profiles it was felt that this was more aptly served
by other web technologies as will be discussed later.

Native support foranimationand/or tweening is also
important as if these are included then processes or tem-
poral changes can also be visualized. More important is
the question of how easy it is to incorporate these anima-
tions

Finally in this section we attempt to measure how easy
it is to create visualizations or models. This is really a
subjective measure that indicates if programming and/or
3D modeling experience are needed to use the technology.
Related to this is also the prevalence and quality of editing
tools and the subjective measure is based on our experi-
ence using these tools.

3.2 Interactivity

The second section of our evaluation framework contains
metrics for describing how visualizations can respond to
user input. We have also included measures regarding the
ability of a technology to integrate new content ‘on the fly’
and to communicate with markup languages to coordinate
any other media that may be involved in the visualization.

The first measure is theevent modeland level of in-
teractivity that is possible. This measures what can be
received as input and what types of events can be used
between parts of the scene contained within the visualiza-
tion.

Script support, or what languages can be used for client
side interaction, is also important. Related to this is also
the script’s security model and any reliance on third-party
conformance. This is important as, for example, a script’s
ability to manipulate files on the local file system may dis-
suade many from using the technology as it represents a
possible threat.

Dynamic integration of new contentinto the active
scene is the third measure in this section. This involves
the creation of models on the fly and the ability to insert
them in whatever scene graph is used by the technology.

The last measure in this section is whethercommuni-
cation with the containing markup languageor other ele-
ments is possible, such as DHTML or SMIL, and the level
of control that this provides in both directions. This is
important as it allows various elements on the page to be
coordinated, allows supplementary information to be in-
corporated and increases the level of interaction possible.
It is also important to note whether this capability is re-
stricted to a particular browser such as Internet Explorer
(IE) or whether it is cross compatible.



3.3 Community Support

This group of measures includes everything from how
easy it is to find viewers for the technology and whether
it requires special software installed to the likelihood that
it will become or remain a dominant player in the online
visualization field. The first measure is theubiquity and
standardization of plugins or viewers. This measure quan-
tifies the availability and quality of these programs and
indicates the maturity of the technology. Wherever possi-
ble mention is made of any special features that specific
viewers have and the level of congruence between differ-
ent plugins. As will be discussed later, this measure is
extremely important when evaluating the suitability of a
technology. The maturity and future prospects of the tech-
nology are also discussed.

The next measure considers whether the technology is
standards based, whether this is from a respected organi-
zation such as ISO or if there is a particular group or com-
pany driving it. (Polys 2003) discusses the importance of
this, especially in regards to the likely uptake of a particu-
lar visualization technique or technology if it adheres to a
standard.

Thecost and availability of development toolsis also
important and is related to the above measure. A dis-
cussion on the tools found and used during the evalua-
tion process is included to ensure that an accurate rep-
resentation of the process is made. Translation support
and any tools that are available are also discussed as
these can overcome the limitations of native development
tools. (Plaisant 2004) explains that easy-to-use tools are
extremely important as many users struggle already with
simple business graphics.Browser or operating system
specificityis the third measure as developing for the web
should be open to as many possible end-users as possible.

Finally we review theextensibility and ability to tailor
the technology to a specific application. This includes how
flexible the rendering environment is and what degree of
control we have over creating new objects and structures
onto which the data can be mapped when creating a visual-
ization. This dimension enables us to measure the power
of the reviewed technologies and to balance the ‘ease of
creation’ that often is opposed to this.

3.4 Application Specific

The final category is designed to capture any features of
the technology that have been designed to make it appro-
priate for a specific type of visualization. There are only
two measures in this section. The first is whether there are
native structuresfor specific visualization icons or graph-
ical entities such as height fields or volume visualizations.
The second is if there have beenexamples of the technol-
ogy’s usein published visualizations. This measure was
motivated by the fact that if the technology choice has
been made by others already then there is likely to be a
rational basis for using that technology. Also, existing ap-
plications often form a suitable starting point for develop-
ing new applications.

4 The Technologies

This section evaluates and categorizes web-based visu-
alization technologies using the framework introduced
above, the conclusions of which are summarized in Ta-
ble 1. We found that the primary categories are 2D and
3D visualizations and we will use this distinction in this
section. Later we also discuss different technologies for
the presentation and integration of other media types and
to the overall interface and interactivity.

The 3D technologies under review included the stan-
dard VRML97, its newer XML based successor X3D and
the Java3D API. If a two-dimensional visualization is

more appropriate, we have looked at SVG and Dynamic
HTML as two possible options.

This is by no means an exhaustive list of the tech-
nologies that could be used to create online visualizations.
These were originally chosen for review based on the ap-
parent level of support that each has enjoyed and the ex-
pected possibilities. A review of other technologies such
as Shockwave/Flash has been undertaken but has been
omitted here due to space constraints.

SVG and Dynamic HTML can also be used for the
basic user interface, including the placement of elements
within the page and for providing interactivity. As we will
discuss one could also use the more traditional Java inter-
face through the use of an applet if that would be better.
The final category for which technologies were reviewed
was the integration of other forms of media, whether that
be video, audio, or image based, that enhance the effec-
tiveness of the visualization.

Before continuing our analysis of visualization tech-
nologies we will introduce two important tools mentioned
in the subsequent discussion namely: Web Services and
scene graphs. A Web Service is a fully functional pro-
gram that can accept requests in a manner similar to a
standard HTTP GET request and returns its response in
standard XML using the SOAP protocol (Gerimenko &
Chen 2005). This means that it can, for example, query
a database based on user information, tailor the results
based on user permissions and return complex data struc-
tures as required by the querying application.

The second concept that needs to be discussed is that
of the scene graph. This can be thought of as a hierar-
chy of nodes describing transformations and objects that
will dictate how a particular scene, either in 2 or 3 dimen-
sions, will be rendered. It is normally a directed acyclic
graph. The reason many technologies use this is that it re-
sults in the lower level details of managing graphics to be
removed from the actual development of the scene. This
idea is common in XML based representations of scenes
and is held in contrast to a polygon based model whereby
vertices are simply pushed through a rendering pipeline in
the order they arrive and the graphics card then handles
their organization.

4.1 Technologies for 2D Visualization

SVG, or Scalable Vector Graphics, is a 2D XML based
vector graphics file type that was first formally made into
a W3C Recommendation in 2001. The initial standard
(1.0) incorporated basic 2D shapes, arbitrary polygons,
text, and images with the ability to generate events and
modify the document dynamically through ECMAScript.
Further iterations such as SVG 1.1 and SVG Tiny have
focused on providing further support for behaviours and
events through the use of Java and an emphasis on ensur-
ing that SVG can be rendered on almost any type of de-
vice. The next iteration of the SVG standard (1.2) will in-
clude support for animation, video and sound media, syn-
chronization of elements, and support for streaming media
(Jackson & Northway 2005).

Through the use of the Java.net package generic net-
work communication becomes possible and even within
ECMAScript some functions are provided that make this
possible. One specific example of these functions that is
worth mentioning is that through the Adobe SVGViewer
plugin, which as is described later, it is possible to make
asynchronous calls to Web Services (with getURL()) and
then parse the resulting document into a DOM document
fragment for easy inclusion in the SVG scene (using par-
seXML()). This means that SVG not only has communi-
cation support but also can include dynamically generated
content easily. While these scripting options are sufficient
for most calculations, our experience is that they are still
rather inefficient.



SVG DHTML VRML97 X3D Java3D
Technical Capabilities
Communications Limited Very Limited Limited Limited Yes
2D Yes Yes Yes Yes Yes
3D No No Yes Yes Yes
Compression Yes No Yes Yes - encrypt Yes
Animation Very Good Limited Interpolation Interpolation Programmable
Ease of Creation Easy Easy Moderate Moderate Difficult
Interactivity
Intra-element events Event Model Event Model Route Model Route Model Composite
Scripting Support Java/JavaScript JavaScript Java/JavaScript Java/JavaScript Java
Dynamic Update Yes (w/ Adobe) Yes-limits Plug-in dpndnt Plug-in dpndnt Yes
Inter-element
communication Limited Full IE Only IE Only Full
Support
Plug-in ubiquity Very Good n/a OK Poor OK
Standards Based Yes(2001) Yes Yes(1997) Yes(2003) Yes
Cross-Platform Yes Yes Yes Not Yet Yes
Application Specific
Native Structures Simple No Good Good Programmable
Previous Use Many Many Prevalent Emerging Emerging

Table 1: An analysis of web-based technologies using our evaluation framework

In terms of encryption and compression SVG does sup-
port a compressed format of itself for faster downloads
that is then decompressed into the normal DOM tree struc-
ture on the client. Encryption, however, is not considered
part of the standard. Likewise user based rights or profiles
could be included but are not supported natively.

SVG is a widely accepted format with a standard plu-
gin (Adobe SVGViewer) being used almost ubiquitously.
It should also be mentioned that the next generation of
web browsers such as Opera 8 and Konqueror natively
support SVG with other browsers soon following suit.
This means that there should soon be no need for any ad-
ditional downloads for users viewing visualizations made
using SVG.

The second technology that we discuss for the visual-
ization of 2D data is simple HTML with JavaScript sup-
port. This has recently gained popularity primarily due
to certain applications to mapping such as Google Maps
(Google 2005).

The advantage of this approach is that it requires no
extra plug-in downloads and is compatible with all ma-
jor browsers. Of course using the same language for
the visualization as the containing markup means that we
avoid the problems associated with inter-element commu-
nication but many of the features that are specifically in-
cluded for visualization technologies are lost. As such
compression, encryption and animation are not normally
supported.

Dynamic updating through the use of XMLHTTP re-
quest objects allow for web applications to communicate
and retrieve XML documents from Web Services or other
sources in most browsers. It should be noted, however,
that due to security restrictions communications are re-
stricted to the originating server. This feature is particu-
larly important for large datasets through which a user is
likely to navigate predictably or selectively.

Using JavaScript as the language for programmability
means that the level and type of interactivity obtained is
similar to other technologies although it may be harder
to obtain information on where in a particular element an
event has occurred.

Recently there have been several high profile appli-
cations that use this technology such as Google Maps
(Google 2005). This web-application allows users to view
map and satellite imagery data over the entire world at
varying resolutions. It also provides the ability to search

for particular locations and place ‘pins’ at relevant loca-
tions, in essence dynamically changing the visualization
to fit user requirements.

4.2 Technologies for 3D Visualization

Arguably the most commonly used technology for pre-
senting 3D models on the web is currently VRML and
more specifically the specification released in 1997 by
ISO/IEC (Walsh & Bourges-Sévenier 2001) known as
VRML97. This specification defines a file format using
blocks to represent a scene graph and describe 3D scenes.

While the acronym VRML stands for Virtual Reality
Modeling Language it is not confined to virtual reality. It
has the bare minimum of geometric primitives and need
not be immersive. Users can also define ‘prototypes’ to
combine other node or primitive types that can then be
used as if they were a built in type. These can both be
defined within the same file or be treated as external re-
sources, allowing for distributed scenes. It does provide a
level of interactivity however through the use of ‘sensors’,
and ‘routes’ through which messages and changes can be
passed to influence other elements in the scene. This mes-
sage passing model can also be enhanced through the use
of either ECMAScript or Java scripting. Likewise ani-
mation is possible through the use of ‘interpolators’ that
allow for an element’s attributes to change according to
time. Finally, this format also allows for data to be com-
pressed when sending the scene to a client program

The event model is not particularly flexible or intu-
itive and lacks the control that other technologies of-
fer. This view is reinforced by (Manoharan, Taylor &
Gardiner 2002) who decided not to use VRML with
JavaScript due to its lack of simplicity and control.

As this technology has been around for some time
there are many different plug-ins and viewers available
that adhere completely to the standard and can view any
correct scene. These viewers often support some form of
inter-element communication however this is largely de-
pendent on the browser used. Some browsers impose re-
strictions by adhering only to the JavaScript standard and
thus being unable to call methods on non-standard nodes
(such as plug-ins).

Another implication of the length of time VRML has
been around is that there are many examples of its use for
visualizations. The first example that will be discussed



here, presented by (Neo, Lin & Gay 2004),is the example
of using VRML to allow authors to publish 3D models in
conjunction with their paper for viewing online. The idea
being that small animations can reinforce and visualize the
concepts presented in a particular paper. This work found
that VRML was sufficient for providing interactive worlds
with animations. However the authors also say that it is
believed this idea has not been taken up due to the lack of
tools for parsing a scene definition and creating the VRML
file. As will be discussed this is not a limitation found in
other technologies.

The second example of VRML in active use for visual-
ization is that presented by (Gill, Caris & Smith 2004). In
this paper the authors use block models in VRML for iso-
surface extraction in the field of mining and the tracking
of ore. This visualization also uses dynamic updating by
only loading the initial controls and then including content
at runtime. This shows both the extensibility of visualiza-
tions using VRML and its novel application to a particu-
lar problem. The VRML scene also communicates with
a Java Applet for control and to provide a user interface.
The authors do, however, concede that it still requires ex-
perts to create the required visualizations. This paper also
specifies, however, that all future work on the application
will be done using X3D, the next technology under dis-
cussion here.

X3D is the successor to the aforementioned VRML97
standard. Introduced in 2003 it has now reached the level
of a Final Draft International Standard. The largest differ-
ence between X3D and its predecessors is that it is XML
based meaning that the whole range of associated tools can
be used to more powerfully and easily manipulate scenes
(Walsh & Bourges-Sévenier 2001).

Unfortunately it does not have the support base of
some of the other technologies since it is a relatively new
standard and there have not been many large scale uses of
this technology. This results in what one author referred
to as a ‘browser minefield’ (Niccolucci 2002) where there
is no one standard implementation and no implementation
that adheres completely to the standard. That said, more
comprehensive and stable plug-ins have become available
recently.

Some of the features supported by X3D include dif-
ferent formats allowing for the compression and encryp-
tion of scenes as they travel between the client and server,
dramatically reducing load while increasing security. Dif-
ferent profiles also allow for different levels of adherence
to the complete standard each of which support different
node sets and requirements of the browser.

The fact that X3D is actually a form of XML docu-
ment means that several advantages are obtained. The first
of these is that we can easily be assured that a particular
scene adheres to the specification by checking it against
the publicly available DTD. However, perhaps of more use
is the use of XSLT transformations which, as (Polys 2003)
states, means that external data can easily be incorporated
into an X3D scene. Likewise the scene can be traversed to
add nodes where necessary and the problems of parsing a
scene definition found in VRML are mitigated.

Examples of the use of X3D to provide visualiza-
tions on the web can be found in (McIntosh, Hamilton &
van Schyndel 2005), (Polys 2003) and (Niccolucci 2002)
where X3D is used for the visualization of UML diagrams,
chemistry curricula, and archaeological information re-
spectively.

The final option for 3D visualizations that will be dis-
cussed here is the use of Java3D. Java3D is quite differ-
ent to the previous two technologies. It is a 3D graph-
ics API originally introduced in 1997 that sits atop either
OpenGL or Direct3D (Walsh & Bourges-Sévenier 2001).
Unlike VRML and X3D, this means that, after program-
ming is complete, the scene must be compiled. This does
make it far harder to develop for and, while the emergence

of visual development tools is predicted, this has not yet
occurred to our knowledge. The Java3D addition to the
Java API allows for the rendering of scene graphs simi-
lar to VRML and X3D and in fact several examples exist
of Java3D being used to render VRML. The Web3D con-
sortium has a working group set up specifically for this
(Walsh & Bourges-Sévenier 2001) that makes the technol-
ogy particularly flexible and allows it to, in part, inherit the
advantages of VRML and X3D.

Because this technology is based on Java and can exist
as a subset of an applet it has all the power of a traditional
applet including user interface components and commu-
nications with the server. It is these communications that
make it appropriate for the distributed viewing of the same
dataset as it evolves over time.

An example of Java3D being used for an interac-
tive visualization can be found in (Salisbury, Farr &
Moore 1999) where distributed views of a military sim-
ulation environment were able to be formed where each
viewer has a synchronized view of the simulation. This
shows the considerably increased control and networking
support that this technology offers over other options.

One major disadvantage of all three of these technolo-
gies is the necessity to download additional software. In
the case of Java3D this involves not only the JRE but also
the implementation of the Java3D library. That said it is
the only one of the three that has support on some oper-
ating systems such as Mac OS X 10.4, which comes with
the Java3D library already installed.

4.3 Interactivity Technologies

There are several technologies important in the context of
this discussion that are not directly related to presenting
the visualization icons. As such we do not apply the eval-
uation framework but instead discuss them in an informal
manner with reference to their effect on the overall visual-
ization, or system as it will be referred to.

The user interface and basic interactivity of our system
is also of concern and is something for which we have
several options. The first of these is to use the traditional
web based tools such as CSS and HTML to create the in-
terface and organize the various components of our visu-
alization. The benefit of using these technologies is that
they are widely supported by newer browsers and are well
understood. Using certain tags it is possible to place ele-
ments absolutely within the page meaning that almost any
interface design can be accommodated.

The second option for providing a user interface is to
use SVG exclusively. This also allows the positioning
of elements in an absolute way while additionally giving
greater control over animation, repositioning etc. How-
ever the limitation of native support that has been dis-
cussed above is also a problem here meaning that this op-
tion is perhaps only viable if SVG was intended to be used
elsewhere in the visualization.

Finally, if already using Java technology there is no
reason that the interface types that can be created within
a normal applet should not be possible here also. This
allows for a more traditional stand alone application style
interface but does mean that one loses some flexibility in
the arrangement of elements.

4.4 Media Integration Technologies

In order to create a framework for developing powerful
web-based visualization applications it is necessary to re-
view two technologies that allow for the integration and
synchronization of more traditional forms of media. This
can be used to enhance the effectiveness of the visualiza-
tion in question by providing supplementary materials that
can, for example, demonstrate to users how they might use



the system or provide explanatory information regarding
the contents of the visualization.

The Synchronized Multimedia Integration Language,
or SMIL, is a markup standard organized by the W3 orga-
nization for creating synchronized presentations contain-
ing different multimedia content. Because of its XML ba-
sis it becomes possible to dynamically manipulate the pre-
sentation before presenting it as part of the visualization.
This means that extra information pertinent to what the
user appears to be doing can be incorporated. Likewise
SMIL can cater for a variety of user preferences, such as
language, by providing alternative content depending on
regional settings.

One of the largest drawbacks of SMIL, however, is that
many browsers do not yet natively support it. Instead stan-
dalone applications such as RealNetworks Real Player are
used.

The second form of media integration we considered
is the more traditional use of QuickTime or other com-
mon media players with the use of JavaScript to control
the operation of the player. This constitutes a tried and
true method that should work on most systems due to the
prevalence of media players already installed. Unfortu-
nately most browsers do not support the ability to call
methods on media objects normally. Hence the level of
control that can be afforded natively is quite limited.

5 The Visualization Framework

In this section we describe a framework of software and
logical system architecture that offers flexibility for cre-
ating web-based visualizations. The proposed system ar-
chitecture should meet the computational requirements of
most visualizations by allowing for the flexibility of either
immediate server side creation or an offline database of
pre-created views.

The system architecture described in Figure 2 is what
we believe delivers the most appropriate balance. Here
Web Services can be employed for the actual creation and
caching of visualizations while the actual interface is pro-
vided through a traditional web server. As such it is not
necessary that all of the server side elements reside on the
same machine allowing for a more flexible deployment.

Figure 2: The proposed system architecture

On the web server it is possible to use several tech-
nologies to enhance the visualization. The first of these
is server-side scripting and database support. Server-side
scripting means that some processing based on user input
can be done on the server. Likewise pages can be cus-
tomized to specific datasets or users at request time. While
we chose PHP, competing technologies could be used as
well.

The use of databases to restrict access based on user
profiles and customize experiences based on user prefer-

ences is also essential. This is done both to ensure a con-
sistent experience across different uses of the application
and enable only authorized users to view certain features
or parts of the dataset. The reason for this is two-fold as
there exists not only a need to restrict some users but also
to avoid unnecessary confusion the full feature set may
entail.

The technologies used for the actual page should re-
volve primarily around the flexibility and interactivity that
scripting languages such as JavaScript provide. This en-
ables inter-element communication and control, which is
especially important between the embedded visualization
and the rest of the interface. The creation of other win-
dows and changes to the DOM of the web page itself
are also possible. This is all done on the client with no
need for communication with the server, overcoming the
issue of latency and throughput that are inherent with web-
based applications. Obviously there are restrictions on
what can be achieved, however it is still preferable to only
using server-side computation.

JavaScript can, however, be used for communication
with a secondary web service as described below. This
means that content can be dynamically selected, down-
loaded and integrated into the visualization. This includes
the retrieval of supporting data that can reinforce or en-
hance the visualization.

Another common web technology that is important for
providing a consistent and visually appealing user inter-
face is CSS. The use of this enables greater control over
the absolute positioning of HTML elements along with the
ability to hide elements not in use. As a result, flexible
interfaces, far more like those common to stand alone ap-
plications, can be created.

The use of both CSS and to a large extent JavaScript
are dependent on using normal HTML as the encompass-
ing markup language. While this does not offer the syn-
chronization support of SMIL or the graphical interfaces
SVG applications may have, it is extremely common, well
understood, and easily developed. HTML does, however,
have the capacity for embedding media elements such as
audio and video through widely available plug-ins such as
QuickTime. Some simple control over their operation is
also possible.

Finally it must also be said that, as mentioned in sec-
tion 4, Web Services are of importance for our system.
In the context of our framework these are used to pro-
vide back-end computational services and create the ac-
tual visualizations themselves on the fly and ready for de-
livery to the client. A discussion on the applicability of
web services for visualizations using SVG can be found
in (Aulenback & Williamson 2002) although the concepts
extend easily to the other technologies under discussion.

6 A Sample Application

To demonstrate the applicability of our framework to a real
application we applied it to a commercial project that uses
height fields to visualize survey data. The data used for
these visualizations has several dimensions and as such a
‘cut’ based on chosen criteria can be used to view a partic-
ular dimension of the data. The requirements were that the
application be able to generate the required models on the
fly based on user selections, include not only the required
3D model but also the ability to query the underlying se-
lected data, generate statistics, and synchronize with var-
ious types of media. We were provided with an existing
Java program that generated VRML representations of the
data based on a hard coded subset of cuts.

The framework described in the previous section was
used as the basis for our final solution. PHP and an SQL
database were used to ensure that user profiles and settings
could be maintained, giving both added security and cus-



tomization. For our particular application further use of
server side scripting was not required.

Creating the actual user interface and environment for
the visualization involved the use of standard DHTML
with a heavy emphasis on JavaScript as described. This
was chosen as the greater control and animation support
of SVG was not needed while the ease of embedding other
plug-ins was. Likewise the advanced synchronization ca-
pabilities of SMIL and its derivatives were not necessary,
especially in light of the lack of native browser support.
As such Quicktime movies and audio were used to sup-
plement the visualization where appropriate.

The original program was also extended to include a
web service interface and to allow the selection of a par-
ticular visualization. This program was also modified to
create X3D files as these were far more easily manipu-
lated.

As such X3D constitutes the chosen technology for
displaying the 3D visualization and integrates with other
elements of the visualization. The reason this technology
was selected was that while the program given generated
VRML this is more difficult to manipulate. By converting
this to X3D it become possible to easily incorporate the
necessary level of interactivity and expected actions asso-
ciated with user input by manipulating the XML structure
of the document.

Figure 3: An example screenshot of our application at
work.

We now discuss some of the features that our actual
implementation offered and involved. An example of the
web application at work demonstrating the arrangement
of various elements and the overall design can be found
in Figure 3. The main visualization itself consisted of an
X3D visualization of a height field using the native ‘Ele-
vationGrid’ structure (Walsh & Bourges-Sévenier 2001).

For viewing the X3D models we chose to use Bit Man-
agement’s BS Contact (Bit Management GmbH 2005).
This plug-in still has some rendering issues, such as the
blending of semi-transparent surfaces, but seemed to sup-
port the greatest number of required features. Conse-
quently we currently are reviewing several newer options.
Apart from simply displaying the data in the form of a
height field, the scene also included interactivity that al-
lowed users to select either points or portions of the sur-
face and, through a second query to the web service, be
shown the underlying data that made up that section. This
was important for our specific application as the data came
from a variety of demographic sources and it was impor-
tant to be able to identify an underlying trend in an unex-
pected aberration.

The second instance in which this facility was impor-
tant was due to the fact that the visualization was designed
to be used and understood by a wide variety of users. The

ability to provide not only a visual representation but also
hard data means that both sensate and creative people are
catered for. Likewise the generation of information on the
statistical integrity of the visualization based on the cutof
the dataset shown was also important for this.

Different users were intended to have different levels
of access to the data and different abilities in selecting
which cuts of the dataset to create. By including different
panels that either show a generic set of cuts or an interface
for selecting any cut by any demographic or dataset this
was possible. Linked to this separation of user access was
the ability for a user to save a particular cut for later dis-
semination. This was also to be persistent across accesses.

Some of the features that were also included were the
ability to have supplementary information included in a
panel beside the main visualization. This was intended to
enhance understanding by explaining in a generic fashion
what the visualization was currently showing. However,
because we also included the ability to have generic ‘cuts’
of the dataset as decided by the creator of the data, extra
explanatory information including a detailed analysis and
audio/video media created specifically for the dissemina-
tion of each cut was also possible through this panel. As
has been mentioned QuickTime was chosen for this over
SMIL due to the lack of browser support and the fact the
visualization would not have been significantly enhanced
through synchronization.

7 Discussion and Related Work

The presented work consists of two major parts. The first
is the framework for comparison between different vi-
sualization technologies and the second is a generalized
framework for developing powerful web-based visualiza-
tion applications.

In reviewing previous works that have attempted to
compare different technologies we found that few seek to
compare technologies. Most related works seem to fall
into two categories. The first seek to extol the virtues of
a particular technology or set of technologies to the field
of visualization and the second to apply a technology to
a particular problem. An example of the first would be
(Gerimenko & Chen 2005). This recently published work
includes a series of articles on SVG and X3D and their
application to the field of Information Visualization. A
discussion of the use of these technologies for providing
user interfaces to Web Services is presented as is other re-
lated applications such as Interactive TV publishing. The
newness of this work illustrates how these are emerging
technologies that are only now gaining acceptance. A sec-
ond example of this form of work that was published less
recently is (Walsh & Bourges-Sévenier 2001). Here a dis-
cussion of the various technologies that are of interest to
the Web3D Consortium are reviewed and while visualiza-
tion is not the main emphasis of the work the concepts
discussed are directly relevant.

There are also those who have applied a technology
to a particular problem and discuss the merits of the cho-
sen technology. These have been mentioned where rele-
vant throughout the text but specific examples include the
use by (Gill et al. 2004) of VRML as discussed in section
4.2. (Polys 2003) discuss the use of Web3D and specifi-
cally X3D for a chemistry curricula. Stylesheet transfor-
mations are cited as the deciding factor illustrating that in
some cases alternatives are not relevant due to one par-
ticular feature. As a final example (Duignan, Biddle &
Tempero 2003) evaluate extensively the applicability of
SVG to the problem of software visualization.

The second part of this work is the framework pre-
sented for showing visualizations with the ideal being that
whichever technology best fits the needs of the creator can
be substituted as required. As this constitutes a user in-



terface for information visualization it can be evaluated as
such. However because we are attempting to evaluate a
framework we thought it more appropriate to evaluate a
particular implementation of the framework as discussed
in section 6. (Plaisant 2004) discusses the various types
and troubles that are associated with evaluating informa-
tion visualizations and defines four different evaluation
practices. One of the methods described is the use of case
studies of people using the tools in a realistic setting. At
present we are in the process of applying this technique
and will hopefully have data in the near future.

8 Conclusion

As the prevalence of web-applications continues to in-
crease it is inevitable that this form of application will be
extended to the process of visualization. Many works have
already been presented that seek to use a particular tech-
nology to visualize a particular type of data or discuss the
merits of a particular technology. We have developed and
successfully applied in practice an evaluation framework
to the most prevalent technologies available today and the
creation of a framework within which the chosen technol-
ogy might be employed.

This evaluation framework was used to categorize the
3D technologies of X3D, VRML and Java3D and the tech-
nologies for 2D visualization SVG and DHTML. While
many of the measures in this framework are somewhat
subjective we believe it provides a good basis for choos-
ing between the different options dependent on a user’s re-
quirements. This follows the general consensus that there
is no one tool or technology that is best suited for all visu-
alizations.

Of course the choice of technology or creation of a par-
ticular visualization is only half the problem when creat-
ing an interactive web-based application as those under
discussion here. As such we have created a framework
of elements and technologies within which a particular
choice can be placed with all the support needed for an
effective visualization. An example application was also
presented that uses this framework and solves a current
problem, illustrating the appropriateness of this frame-
work.

References

Aref, H., Charles, R. & Elvins, T. (1994), Scientific visual-
ization of fluid flow,in C. Pickover & S. Tewksbury,
eds, ‘Frontiers of Scientific Visualization’, Wiley In-
terscience.

Aulenback, S. & Williamson, R. (2002), ‘SVG as the vi-
sual interface layer to the emerging web services
market’,SVG Open / Carto.net Developers Confer-
ence.

Bit Management GmbH (2005), ‘BS Contact VRML/X3D
Release 6.2’, Last seen 18/08/2005. URL:http:
//www.bitmanagement.com/.

Duignan, M., Biddle, R. & Tempero, E. (2003), Eval-
uating scalable vector graphics for use in soft-
ware visualisation,in ‘CRPITS ’24: Proceedings
of the Australian symposium on Information visu-
alisation’, Australian Computer Society, Inc., Dar-
linghurst, Australia, Australia, pp. 127–136.

Gerimenko, V. & Chen, C. (2005),Visualizing Informa-
tion Using SVG and X3D: XML-based Technologies
for the XML-based Web, Springer, London, UK.

Gill, T., Caris, C. & Smith, G. L. (2004), Interactive web-
based visualisation of block model data,in ‘Web3D

’04: Proceedings of the ninth international confer-
ence on 3D Web technology’, ACM Press, New
York, NY, USA, pp. 23–28.

Google (2005), ‘Google Maps’, Last seen 18/08/2005.
URL: http://maps.google.com/.

Jackson, D. & Northway, C. (2005), ‘Scalable vector
graphics (SVG) full 1.2 specification’, W3C Recom-
mendation. URL:http://www.w3.org/TR/
SVG12/.

Manoharan, T., Taylor, H. & Gardiner, P. (2002), A collab-
orative analysis tool for visualisation and interaction
with spatial data,in ‘Web3D ’02: Proceeding of the
seventh international conference on 3D Web technol-
ogy’, ACM Press, New York, NY, USA, pp. 75–83.

McIntosh, P., Hamilton, M. & van Schyndel, R. (2005),
X3D-UML: enabling advanced UML visualisation
through X3D, in ‘Web3D ’05: Proceedings of the
tenth international conference on 3D Web technol-
ogy’, ACM Press, New York, NY, USA, pp. 135–
142.

Neo, K. S., Lin, Q. & Gay, R. K. L. (2004), A web-
based system for interactive visualization of scien-
tific concepts,in ‘VRCAI ’04: Proceedings of the
2004 ACM SIGGRAPH international conference on
Virtual Reality continuum and its applications in in-
dustry’, ACM Press, New York, NY, USA, pp. 155–
158.

Niccolucci, F. (2002), ‘XML and the future of humanities
computing’,SIGAPP Appl. Comput. Rev.10(1), 43–
47.

Plaisant, C. (2004), The challenge of information visual-
ization evaluation,in ‘AVI ’04: Proceedings of the
working conference on Advanced Visual Interfaces’,
ACM Press, New York, NY, USA, pp. 109–116.

Polys, N. F. (2003), Stylesheet transformations for in-
teractive visualization: towards a Web3D chemistry
curricula,in ‘Web3D ’03: Proceeding of the eighth
international conference on 3D Web technology’,
ACM Press, New York, NY, USA, pp. 85–ff.

Salisbury, C. F., Farr, S. D. & Moore, J. A. (1999),
Web-based simulation visualization using Java3D,
in ‘WSC ’99: Proceedings of the 31st conference
on Winter simulation’, ACM Press, New York, NY,
USA, pp. 1425–1429.

Tufte, E. R. (1983),The Visual Display of Quantitative
Information, Graphics Press, Cheshire, Connecticut,
U.S.A.

Wakita, A. & Matsumoto, F. (2003), ‘Information visual-
ization with Web3D: spatial visualization of human
activity area and its condition’,SIGGRAPH Comput.
Graph.37(3), 29–33.

Walsh, A. E. & Bourges-Sévenier, M. (2001),Core
Web3D, Prentice Hall PTR, Upper Saddle River, NJ,
USA.

Wuensche, B. & Lobb, R. (2001), A scientific visualiza-
tion schema incorporating perceptual concepts,in
‘Proceedings of ICVNZ’01’, pp. 31–36.


