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Abstract

Terrains are an essential part of outdoor environ-
ments. Terrain models are important for computer
games and applications in architecture, urban design
and archaeology. A popular and intuitive way to rep-
resent terrains is by contour maps. In order to render
such representations in 3D the contours must be la-
belled with height values and converted to Digital Ele-
vation Maps (DEM), which are regular grids of height
values and are represented as gray scale images.

The labelling of contour lines is time intensive
for large maps and prone to errors. In this paper
we present an efficient and novel algorithm for semi-
automatically labelling contour maps and for convert-
ing them to DEMs. The algorithm first identifies
point extrema which must be labelled by the user. The
point extrema are connected by a graph and the con-
tour lines crossed by edges are labelled automatically.
We show that ambiguities can exist for so-called line
extrema. Our algorithms will resolve ambiguous re-
gions requiring a minimal number of additional user
inputs. We also present a more efficient graph rep-
resentation, which requires about 10-20% more user
inputs than the optimal case. After the contour lines
are labelled, the contour map is triangulated and the
height value at each point of the DEM is computed
using a bilinear interpolation.

The presented algorithm is efficient, requires min-
imal user inputs, and produces good quality DEMs.
We present several examples, discuss its suitability
for different applications, and provide a complexity
analysis.

Keywords: contour map, digital elevation map,
shortest-path spanning tree, Delaunay triangulation,
terrain visualization

1 Introduction

Terrain modelling is fundamental to a wide range of
computer applications, such as games, flight simu-
lators, urban design and planning, archaeology, and
geography and engineering visualizations. The two
most popular representations of terrains are contour
maps and Digital Elevation Maps (DEM).

Digital elevation maps consist of a regular grid
of height values and can be stored and represented
by gray scale images where the gray level of each
pixel represents the height value at that location.
White/black represent the highest/lowest altitude,
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respectively. DEMs are popular for rendering since
they can be compressed, are suitable for out-of-
core rendering, and can be converted to progressive
and multi-resolution representations, which are es-
sential for real-time rendering of massive data sets
(Duchaineau et al. 1997, de Boer 2000, Losasso &
Hoppe 2004). Human users often have difficulties to
perceive terrain details from DEMs since the human
visual system’s gray scale resolution is limited and
colour/gray scale perception is non-linear. The abil-
ity to compare colours (gray scales) at different loca-
tions is even more limited since the perceived colour
depends on the colour of surrounding regions (simul-
taneous contrast) (Schiffman 1996). Many of these
disadvantages can be resolved by rendering the DEM
in 3D. This however, requires complex rendering al-
gorithms, more screen space and animations to fully
perceive the 3D geometry.

A more effective and intuitive representation of
terrains for human viewers are contour maps, also
known as topographic maps. Contour maps con-
sist of a series of non-intersecting curves or lines, so-
called contour lines, which represent points of equal
height in the terrain. Contour lines are always one-
dimensional, i.e., they cannot represent planar regions
of constant height, and are either closed or have end-
points on the boundary of the image. Contour maps
are usually prepared using airborne and satellite al-
titude measurements, or photogrammetric interpre-
tation of aerial photography (Wikipedia n.d.), which
gives an accurate depiction of terrain features (U. S.
Army Corps of Engineers and American Society of
Civil Engineers 1996). In contrast to DEMs contour
maps allow height comparisons of spatially distinct
or neighbouring regions. Magnitude and direction of
gradients can be perceived from the contour line den-
sity and orientation. Figure 1 shows an example of a
contour map and the corresponding digital elevation
map.

Figure 1: Example of a contour map (left) and the
corresponding digital elevation map (right).

In order to display terrains represented by 2D con-
tour maps in 3D they must be converted to DEMs. A
precondition for this conversion is that height values



are given for all contour lines. This is usually the case
when using Geographic Information Systems (GIS),
but for many cases such height values must be input
by hand which is cumbersome and prone to errors.
Our research was motivated by two applications: one
application was an archaeological visualization sys-
tem where we were given hand drawn contour maps
of a terrain (Kymer 2009). The second application is
a sketched based terrain modelling tool, where users
create 3D terrains by sketching contour lines, moun-
tain peaks and rivers. Examples of both applications
are used in the result section.

Section 2 reviews previous work on generating and
converting contour maps. Section 3 and 4 present def-
initions, properties and theorems required for the de-
velopment of an efficient algorithm for labelling con-
tour lines. The resulting algorithm and implementa-
tion details are presented in section 5 and 6, respec-
tively. Results are given in section 7 and are followed
by our conclusions and suggestions for future work.

2 Literature Review

Contour maps are the most common representation
of terrains in maps and the 3D visualization of map
data improves realism and recognition of terrain fea-
tures. Consequently there have been many projects
concerned with the conversion of contour maps to
DEMs. The majority of research concentrates on the
image processing of map data and the interpolation
of contour line data.

Image processing research is concerned with the
recognition of contour lines from digitised map data,
especially in the presence of textured backgrounds
and noisy data. A typical procedure consists of the
following four steps (Arrighi & Soille 1999):

1. digitalization of the topographic map, e.g., by
using a scanner

2. thresholding
3. thinning of the black patterns by using some

skeletonization procedure and
4. raster-to-vector conversion of the resulting

thinned lines.

Arrighi and Soille extend this procedure based
on advances in morphological image processing (Ar-
righi & Soille 1999). The most attractive aspect of
their method is the reconnection of contour lines that
are disconnected by coordinate grid lines or inscrip-
tions. The authors extract the two ends of a line
before skeletonising them by generalizing the hit-to-
miss transform. Rivas and de La Fraga use a similar
method, but also discuss an improved way to gener-
ate sample points from contour lines in order to create
smoother terrain meshes (Rivas & de la Fraga 2005).
Lalonde and Li perform contour line extraction with
the use of colour information. They extract the basic
colours of an image by switching from RGB to L*a*b
colour spaces, projecting the image on its principal
axes and using modified histogram splitting (Lalonde
& Li 1997). A smoothness function assists with the
reconnection of broken contour lines.

Once contour lines have been identified they must
be labelled. When reading map data this can be
achieved using character recognition techniques and
by finding the corresponding contour lines, usually
by using a distance metric criteria. Surprisingly we
found only one previous research project concerned
with our research, the semiautomatic assignment of
height values to contour lines. Maia and Xavier (Maia
& Átila L. F. Xavier 1996) construct a nested tree by
representing each contour line by a tree node. The
tree reflects the relationship among all contours in the

domain. Each node is then given an ambiguity inter-
val which is initialised to [-∞, +∞] or a correct ele-
vation value where possible. If a true elevation value
is known the information is propagated through the
tree in order to reduce each node’s ambiguity inter-
val. The authors claim that this method can effec-
tively eliminate human interactions in the elevation
assignment process such that human errors remain at
the minimum.

The last step necessary for computing DEMs is
to compute height values at its regular grid points.
This requires interpolation of height values at irreg-
ular sample points, usually obtained by sampling the
contour lines. Dakowicz and Gold introduce three in-
terpolation methods based on a Delaunay triangulisa-
tion of the terrain (Dakowicz & Gold 2002): bilinear
(barycentric) interpolation of triangle vertex values,
and a so-called “Gravity interpolation” and “Sibson
interpolation”. The central idea of the “Gravity in-
terpolation” is that the weighting of each data point
used is inversely proportional to the square of the
distance from the data point to the grid node being
estimated, whereas the “Sibson interpolation” inserts
each grid point temporarily into the Voronoi diagram
of the data points and measures the area taken from
each of a well-defined set of neighbours. Rognant et
al. present a dual representation of contour lines and
DEMs based on a Constrained Delaunay Triangula-
tion (CDT) (Rognant et al. 2001). The data structure
might be useful in interactive modelling applications
using both contour and DEMs representations.

3 Definitions and Properties

3.1 Properties of Contour Lines

We did not find any precise definition of properties
of contour lines. In many cases the actual properties
depend on how the contour map was derived. We
developed a set of properties which conforms to (often
implicitly assumed!) properties used in the literature
and with the properties of contour lines in widely used
GIS software packages such as ArcInfo:

Equidistance: The height difference Δheight be-
tween two neighbouring lines is constant (or zero
if lines belong to the same iso-level).

Completeness: Contour lines contain no gaps and
they are either closed or end at the map bound-
aries.

Orthogonality: The contour lines are orthogonal to
the terrain gradient and the terrain gradient is
orthogonal to the contour line. This also means
that the contour lines must be smooth, i.e., con-
tain no corners.

Continuously differentiable: The contour lines do
not overlap, intersect or branch. The terrain
gradient can be extracted from the distance and
height difference between points on the contours.

Virtually all contour maps we examined fulfilled
these properties. Exceptions were digitised contour
maps where gaps could occur due to sampling er-
rors and mathematically defined contour maps where
branching can occur, e.g., for a function with a cross
shaped extrema at an iso-level. Such cases are virtu-
ally non-existence for real terrains and would not be
produced by software generating contour data.

3.2 Extrema in Contour Maps

A contour map can have four topographical types of
extrema:



1. Closed contours, which have no other contours
within it (e.g., mountain tops)

2. Contours connected to the boundary, which have
no other contours on one side (e.g., slopes inter-
secting the boundary)

3. Closed contours containing additional closed con-
tours and being higher/lower than the adjacent
contours (e.g., the rim of a volcanic crater)

4. Contours connected to the boundary, with the
contours on both sides being higher/lower (e.g.,
valleys/ridges)

For the purpose of our research we can differentiate
these four topographical types of extrema into two
topological types:

Definition 1 A Point Extremum is a contour line
which encloses, possibly together with part of the
boundary, a region containing either no contours or
all other contours.

This definition includes case (1) and (2) of the to-
pographical types of extrema. Note that all points
in the region enclosed by a point extremum are con-
sidered to have identical height values. A point ex-
tremum can therefore be reduced to a single point
without changing the topology of the terrain - hence
the choice of the name. Note that if a contour line
does not have neighbouring contour lines on both
sides, then it is a point extremum. Several examples
of point extrema are shown in red in the two images
on the left hand side of figure 2.

Point extrema can be visually identified as closed
contours or contours connected to the boundary,
which contain no other contours. Section 6 will
present an efficient algorithm for identifying point ex-
trema which uses a Delaunay triangulation required
for interpolating height values.

Figure 2: Left: Two images showing point extrema
(red). Right: Three images showing line extrema
(red).

Definition 2 A Line Extremum is a contour line
which is either not higher or not lower than the con-
tour lines on either side of it.

Several examples of line extrema are shown in red
in the three images on the right hand side of figure 2.
In contrast to point extrema, line extrema cannot be
detected from the contour information alone. As an
example consider a domain with three contours hav-
ing the elevations:

Case 1: 400m, 300m and 200m
Case 2: 400m, 300m and 400m

In either case the contour lines on the left and right
can be identified as point extrema. However, only in
the second case the contour line in the middle is a line
extrema.

Note that the line extremum in case (2) can be
identified by providing height values for the point ex-
trema on either side. However, even in this case the

height value of the contour line in the middle can-
not be determined since it could be lower (300m) or
higher (500m) than its neighbouring contour lines.
In contrast, in case (1) the height value of the centre
contour line can be immediately determined from the
heights of the neighbouring contours.

This observation suggests that an effective way to
label all contour lines is to first label the point ex-
trema and then deduce the height values in between
automatically wherever possible. The following sub-
section proves several theorems required for the devel-
opment of an efficient algorithm for labelling contour
lines.

4 Graph-Theoretical Foundations

As indicated in the previous section our proposed so-
lution will be based on labelling point extrema first.
These extrema can be easily identified and, as we
proof next, always exist:

Theorem 1 If a domain contains one or more con-
tour lines, then it has at least one point extremum.

Proof. Suppose that a domain or its subset contains
one or more contour lines and none of them are point
extrema.

Case 1 If the contour line is closed and has no other
contours inside, then by definition it is a point
extremum, which contradicts the assumption.

Case 2 If the contour line is closed but contains one
or more contours, then the contours must be
closed (i.e., not connected to the boundary) since
otherwise they would intersect the surrounding
contour. In this case the innermost one is a
point extremum (proof by induction), which con-
tradicts the assumption.

Case 3 If the contour line is connected to the bound-
ary and the region surrounded by it contains no
other contours, then by definition it is a point
extremum, which contradicts the assumption.

Case 4 If the contour line is connected to the bound-
ary and the region surrounded by it contains N
contours, then it either contains a closed con-
tour (case 1 or 2), or a contour connected to
the boundary forming a region with at most N-1
contours (case 3 or 4). By structural induction
this case can be reduced to case 1-3, i.e., the re-
gion contains a point extremum, which contra-
dicts the assumption.

Hence by proof of contradiction any domain con-
taining contour lines contains at least one point ex-
tremum. �

Theorem 2 The height value of a point extremum
cannot be inferred from the heights of its neighbouring
contour lines.

Proof. By definition a point extremum is a con-
tour line which encloses a region which contains no
other contour lines. Hence it has neighbouring con-
tour lines on at most one side. Even if the height
value for the neighbouring contour line is known, the
point extremum can be higher or lower than that con-
tour line. Hence the height value cannot be inferred.
�

Because of theorem 2 it is clear that any contour
line labelling algorithm requires user input of height
values for all point extrema. As mentioned previously



we will present in section 6 an algorithm for identify-
ing these extrema. We will show next that knowledge
of the point extrema is sufficient to identify all other
contour lines:

Theorem 3 If all point extrema in a domain are
connected by a spanning tree, then all contour lines
will be crossed by at least one edge of the tree.

Proof. Theorem 3 is equivalent to

If there is a contour line which is not crossed by any
edge of the spanning tree, then there must be a point
extremum which is not connected to the spanning tree.

Assume there is a contour line that is not crossed by
any edge of the spanning tree and all point extrema
are part of the spanning tree.

Case 1 The not-crossed contour line is closed and
contains no other or all other contours in the do-
main. In this case it is a point extremum by
definition. This contradicts the assumption that
all point extrema are part of the spanning tree.

Case 2 The not-crossed contour line is open, i.e., its
endpoints lie on the boundary of the domain and
the line divides the domain into two regions. If
one of these regions contains no contour lines,
then the contour line is a point extremum by def-
inition. This contradicts the assumption that all
point extrema are part of the spanning tree.
If both regions contain contour lines, then by the-
orem 1 both regions must contain at least one
point extremum. Since we assumed that all point
extrema are connected by a spanning tree this
means that the spanning tree must contain at
least one edge connecting one extremum from ei-
ther side. Hence this edge must cross the contour
line dividing the regions. This is a contradiction
to the assumption that the contour line is not-
crossed.

Hence by proof of contradiction all contour lines
in a domain are crossed by the edges of a spanning
tree connecting all point extrema in the domain. �

Theorem 4 If none of the contours between two
point extrema is an extremum then all of these
contours have either strictly monotonically increas-
ing height values or strictly monotonically decreasing
height values.

Proof. Assumed that not all of the contour lines
between the point extrema have either strictly mono-
tonically increasing height values or strictly monoton-
ically decreasing height values. In that case there is
at least one contour line which either has a neigh-
bouring contour line with equal height value or where
the neighbouring contour lines are either both higher
or both lower. By definition 2 this contour line is a
line extremum (or point extremum if closed), which
contradicts the requirement that there are no other
extrema in between these two point extrema. �

5 Algorithm Design

Our algorithm requires that the contour map fulfils
the properties listed in subsection 3.1. We also as-
sume that it contains no other information such as
text or geographic features. A significant amount of
research has been going into image processing tools
extracting contour lines from real map data, but is
outside the scope of this paper (Xin et al. 2006, TER-
RAINMAP.COM - Digital Elevation Modeling Jour-
nal n.d., Arrighi & Soille 1999).

Our algorithm is based on the theorems proven in
the previous section. In particular theorem 2 shows
that any algorithm for labelling contour lines requires
user inputs for all point extrema. Theorem 3 shows
that in order to label all contours it is sufficient
to consider contours crossed by the edges of a
spanning tree connecting all point extrema. Hence
our algorithm contains the following steps:

Algorithm 1: Contour Line Labelling

Step 1: Identify point extrema and request appro-
priate height values from the user

Step 2: Create a contour graph whose nodes are
point extrema and connect them by edges such
that every node is connected to any other node.
This means that the graph represents or contains
a spanning tree and hence, with theorem 3 every
contour line is intersected by at least one edge.

Step 3: Investigate the number of contour lines in-
tersected by each edge. Let A and B be two
nodes of the graph with heights hA and hB and
n the number of contour lines intersected by the
edge between those nodes and Δheight the height
step between two contour lines.
Step 3A: If

hB − hA = (n − 1) ∗ Δheight (1)

then there is no extremum in between the nodes
A and B and with theorem 4 we can label the
intersected contour lines with strictly monotoni-
cally decreasing or increasing height values.
Step 3B: Otherwise all contour lines between
the nodes are labelled as ambiguous and the user
has to choose one of them and label them appro-
priately. The labelled contour line will become a
new node of the graph. For all new edges it is
checked whether

hB − hA > (n − 1) ∗ Δheight (2)

If yes, then the user input was invalid since it
violates the equidistance condition of the contour
map. If no, apply step 3A to each section of the
edge subdivided by the new node.
Repeat step 3 until all edges of the contour graph
have been processed.

Step 4: If all edges of the graph have been inves-
tigated, but not all contours have been labelled
than the input contour map has an invalid topol-
ogy, e.g., gaps between contour lines.

The algorithm has three critical aspects:

• The choice of the edges of the contour graph in-
fluences the efficiency and effectiveness of the la-
belling process. A full graph grows quadratically
in size, but minimises user inputs in the sense
that contour lines can be automatically labelled
wherever possible. A spanning tree grows lin-
early, i.e., less contour lines must be investigated
by the algorithm, and it still guarantees that
all contour lines are labelled. However, in some
cases it might not be optimal, i.e., its edges do
not cover all cases where an automatic labelling
is theoretically possible.

• If a shortest spanning tree is used edge weights
must be defined. Possible choices are the Eu-
clidean distance or the number of contours be-
tween nodes (point extrema). Different weight-
ing functions result in different SSTs and hence
can result in different numbers of user inputs.



• If an automatic labelling in step 3 is not possible
the user must choose to label a line extrema in
order to minimise user inputs. As explained in
subsection 3.2 it is not possible to identify the
exact location of a line extrema or to deduce its
height value. The user must make this choice
from additional information not available in the
contour map. This could be a real map from
which the contour map was derived or it could
be design choices when modelling a contour map
from scratch.

These issues will be discussed in more detail in
section 7.

6 Implementation

6.1 Contour Line Indexation

We represent contour maps by gray scale images that
only contain contour curves and, as mentioned pre-
viously, exclude other geographic data such as back-
ground details and inscriptions. In order to label con-
tour lines they must be first identified and then in-
dexed. The indexing makes it possible to determine
whether two points belong to the same contour line.
The contour lines are first skeletonised such that they
form a simple 8-connected line, i.e., all pixels of the
line are connected via horizontal, vertical or diagonal
neighbouring pixels. We use an extension of a sim-
ple border tracing algorithm (Marita n.d.). A pixel is
set to zero if it does not belong to a contour line and
otherwise its gray scale value represents the index of
the contour line to which it belongs. Note that if a
map contains more than 256 contour lines other im-
age formats could be used. For example, 3 byte RGB
colours provide more than 16 million indices. More
details of our implementation of the border tracing
algorithm are given in (Xie 2008).

6.2 Sampling and Triangulation

In order to obtain a continuous height field for the
domain we sample the contour lines and triangulate
the sample points. We currently sample the contour
lines at regular intervals (e.g., 10 pixels). Very thin
triangles are avoided by adjusting sample points at
the boundaries accordingly (Xie 2008). An improved
solution would take into account contour density and
curvature in order to avoid very small triangles and
increase sample point density in regions of high cur-
vature.

In the next step the sample points are triangu-
lated. By interpolating height values at the triangle
vertices this results in a continuous representation of
the height field. Desirable conditions for a triangula-
tion are:

1. The solution should be unique for a given set of
points, regardless the sequence of points inserted.

2. The shapes of each resultant triangle should be
equilateral or close to equilateral, if no other con-
straints are specified.

3. The vertices of each triangle are the nearest
neighbour points, such that the perimeter of the
triangle is minimum.

These conditions reduce numerical errors and gra-
dient discontinuities in the resulting interpolation.
The above conditions define the well-known and pop-
ular Delaunay triangulation. We use an implemen-
tation of the Bowyer-Watson algorithm (Arens 2002)
which has a run-time of n log(n) where n is the num-
ber of sample points.

Figure 3: (a) Contour intersected by an edge of the
triangulation (b) Flat area in a triangulation.

The basic Delaunay triangulation has two disad-
vantages. The first one is that the semantic informa-
tion given by the contour lines is ignored. Figure 3
(a) shows an example: Assume the points A, B and
C are sample points and form a triangle in the De-
launay triangulation. If this triangle is then used to
reconstruct height values using a bilinear (barycen-
tric) interpolation, then for the line AB the height
value of 200m would be at the point Q, whereas ac-
cording to the contour lines it should be at the point
P . The problem can be avoided by ensuring that the
sample point distance is smaller than the contour line
distance. Another solution is to force triangle edges
to lie on the contour lines by using a Constraint De-
launay Triangulation (CDT) (Peterson 1998). If the
sample point density is low and contour line curva-
ture is high this can lead to triangles “cutting off”
part of the contour line. In our examples we found
that a standard Delaunay triangulation is sufficient.
We suggest that the best solution would be a hybrid
approach where constraint edges are only used in re-
gions of high contour line density.

The second disadvantage of the Delaunay Trian-
gulation is that it leads to unnatural flat regions as
illustrated in figure 3. Note that this effect also occurs
for a CDT and can even be stronger in that case. The
best ways to avoid this effect are to force the trian-
gulation to use sample points from different contours
where possible or to use a higher order interpolation
with a larger support (i.e., the weighting factors of the
base functions also take into account height values of
sample points outside the interpolated triangle).

6.3 Detection of Point Extrema

Subsection 3.2 showed that point extrema represent
regions of equal height value. We can therefore de-
termine point extrema from the triangulation as fol-
lows: During the triangulation give each triangle a
marker “Y” if all its vertices lie on the same contour
(i.e., same index) and otherwise “N”. In a second
step trace all contours. If for one contour all triangles
on (at least) one side have the marker “Y” then the
contour is a point extrema. An example is given in
figure 4. More details are found in (Xie 2008).

Figure 4: Examples of a point extremum (inner curve)
and a normal contour line (outer curve).



6.4 Contour Graph

As explained in section 5 different types of contour
graphs can be used for our algorithm. A full graph
is constructed by connecting all point extrema with
each other. If there are n point extrema the graph
has n(n − 1)/2 edges. Point extrema are represented
by using a random sample point on the contour. The
choice of a sample point does not influence the re-
sults of the labelling process and is only visible when
rendering the contour graph for illustration purposes.

The alternative is to use a spanning tree. We use
a shortest spanning tree constructed with Prim’s al-
gorithm (Xie 2008). A more efficient implementation
would be Kruskal’s algorithm which is O(n log n). As
weighting function we use the Euclidean distance be-
tween point extrema. The motivation for this is the
hypothesis that the shorter the distance between two
point extrema the fewer line extrema (ridges and val-
leys) are in-between. This would make it easier to
identify line extrema.

The crossings between graph edges and contour
lines are computed by drawing the graph edges as
lines into an off screen buffer and checking their pixel
values. If the value of a pixel is non-zero then it is
intersecting a contour line and the pixel value is the
contour line index. Since contour lines can have loops
multiple intersections are possible. Hence new inter-
sections are only counted if the index of the inter-
sected contour line changes.

6.5 Construction of DEM

A Digital Elevation Map with k × l pixels is con-
structed by computing the coordinates of each sample
point with respect to the contour map and by deter-
mining for each sample point the triangle in which it
lies. In order to obtain a smooth 3D rendering of the
terrain it is recommended to make the sample point
distance smaller than the average triangle size. Hence
we loop through the triangles and determine for each
triangle which sample point it contains. This can be
computed in constant time since the sample points
form a grid of lines parallel to the coordinate system:
From the axis-aligned bounding box (AABB) and the
sample distance we compute the sample points ly-
ing inside the AABB and then perform a 2D inside-
outside test with the triangle edges. For each sample
point we then compute a height value by performing
a bilinear (barycentric) interpolation of the triangle
vertex heights. Efficient formulas for this calculation
can be derived by solving a linear system of equa-
tions (Xie 2008).

In order to render the DEM with common graph-
ics and game engines we store it as a gray scale image
by scaling the height values to the range [0, 255]. A
smoother interpolation can be obtained by applying a
smoothing filter to the image. Note that in this case
the original contour height values would be lost and
extrema would be flattened. If both precision and
smoothness is important higher-order interpolation
functions such as thin-plate splines and Catmull-Rom
splines can be employed (Gousie & Franklin 1998).

7 Results

7.1 Examples

7.1.1 Simple Contour Map Sketched from a
Real Terrain

Figure 5 (a) shows a simple contour map represent-
ing a small section of a real terrain. The contour map
was sketched by architects to represent the terrain of
Selinus, an extinct city founded by the ancient Greek

civilisation in the southwest of Sicily. It has become
the subject of considerable archaeological attention
since the 19th century due to its remarkable archi-
tectural and artistic features, especially those of the
Doric temples on the site (De Angelis 2003). The
height labels have been added for illustration. The
map has 7 point extrema, no line extrema and 21
contour lines.

Part (b) of the figure shows the results after sam-
pling the contour lines and triangulating the sample
points. Part (c) and (d) of the figure show a full
graph and the shortest spanning tree connecting the
point extrema. When using the full graph all contour
lines can be labelled automatically after inputting the
heights of the point extrema. When using the short-
est spanning tree an ambiguity exist as illustrated in
part (e) of the figure - one additional user input is nec-
essary to resolve it. The ambiguity is caused because
the contours along the bottom left edge of the SST
form a “local valley”. The valley does not continue
over the entire map and hence the ambiguity can be
resolved when using the full contour graph, but can-
not be resolved when using the SST. The resulting
DEM is shown in part (f) and its 3D visualization us-
ing two different view points is displayed in part (g)
and (h) of figure 5.

7.1.2 Example 2 - Sketched Contour Map of
an Imaginary Terrain

Figure 6 (a) shows a sketched contour map which was
created using free hand drawings without any terrain
or map information as model. Finding appropriate
height values for such free hand drawings is not trivial
since they must fulfil the requirements listed in sub-
section 3.1. Part (b) of the figure shows the height
values of all point and line extrema in red colour. The
contour map has 15 point extrema, 6 line extrema,
and 59 contours. Note that in the centre of the con-
tour map there are three neighbouring contour lines
with a height of 300.

Figure 6 (c) and (d) show the full contour graph
(105 edges) and SST (14 edges), respectively. When
using the full graph the entire map is labelled using
21 user inputs (for the 15 point and 6 line extrema).
When using the SST two additional user inputs are
necessary which are indicated in part (a) by yellow
height values. Part (e) of the figure shows the al-
gorithm after most of the point extrema have been
labelled (shown in red). The blue lines indicate not
yet labelled contours. The resulting DEM is shown in
part (f) and its 3D visualization using two different
view points is displayed in part (g) and (h) of figure 6.

7.1.3 Example 3 - Topographic Map Data

Figure 7 (a) shows a section of a topographic map.
The map was scanned in and contour lines were ex-
tracted using various image processing operators pro-
vided by the program PaintShop. Because of noise
the resulting map had about 20 gaps in the contour
lines which had to be fixed by hand. More advanced
techniques for extracting contour lines are described
in the literature (see section 2). The contour height
values in part (a) of the figure were obtained by con-
verting the contour labels in the original map from
feet to meter and scaling them in order to simplify
labelling and user input. Since the DEM is scaled
for rendering these changes have no effect on the re-
sulting visualization. The contour map has 24 point
extrema, no line extrema, and 72 contours.

Figure 7 (c) and (d) show the full contour graph
(276 edges) and SST (23 edges), respectively. When
using the full graph the entire map is labelled using 24
user inputs. When using the SST six additional user



Figure 5: A sketched contour map of an archaeological site with height values (a) and the resulting Delaunay
triangulation (b), full contour graph (c) and SST (d). Part (e) demonstrates that labelling using the SST
results in ambiguous contours requiring an extra user input. A 3D visualization of the resulting DEM (f) using
two different view points is shown in (g) and (h).

Figure 6: A sketched contour map of an imaginary terrain with height values (a) and the resulting Delaunay
triangulation (b), full contour graph (c) and SST (d). Part (e) of the figure shows the algorithm after most of
the point extrema have been labelled (red). The blue lines indicate not yet labelled contours. A 3D visualization
of the resulting DEM (f) using two different view points is shown in (g) and (h).

inputs are necessary which are indicated in part (a) by
yellow height values. Part (e) of the figure shows the
algorithm after most of the point extrema have been
labelled (shown in red). The blue lines indicate not
yet labelled contours. The resulting DEM is shown in
part (f) and its 3D visualization using two different
view points is displayed in part (g) and (h) of figure 7.

7.2 Applications

The presented algorithm is useful for all applications
where a contour map must be converted into a DEM
and where the contour labels are not available in elec-
tronic form. We found three applications which are
common in practice.

7.2.1 Sketching a Real Terrain

The first application is sketching a real terrain using
contour lines as demonstrated in the first example
above. While in practice many real terrains are avail-
able as GIS data, there are cases where handmade
sketches are more practical and useful. Examples are
terrains which have changed over time, e.g., an ar-
chaeological site which is thousands of years old, or
applications where the user wants to simplify or mod-
ify the actual terrain, e.g., by adding new terrain fea-
tures such as excavations representing roads or open
pit mining.

Preliminary tests suggest that the interface is very
intuitive if consistent height values for the overall
terrain shape are available and the user only adds,
deletes and modifies contours in order to model the
desired landscape features. However, problems exist
if no height values are given. Many users find it diffi-



Figure 7: Section of a topographic map of a mountainous terrain. The height values have been converted from
feet to meter and scaled in order to simplify labelling and user input (a). The remaining images show resulting
Delaunay triangulation (b), full contour graph (c) and SST (d). Part (e) Performs the labelling using the SST
results in ambiguous contours requiring an extra user input. A 3D visualization of the resulting DEM (f) using
two different view points is shown in (g) and (h).

Figure 8: (a) Invalid contour labelling resulting from
considering only local features. (b) Valid labelling.

cult to determine consistent and correct height labels
when using a single view of a 3D terrain.

This observation resulted from a simple user study
with 6 male and 3 female participants with various
levels of computer graphics experience. We showed
the participants the 3D terrains from figure 5 and 6
and asked them to label the corresponding contour
map. All of the nine users managed to recreate the
peaks of the terrain, but often didn’t notice valleys
and had problems estimating relative height values
correctly. This was largely due to the lack of percep-
tion of terrain features rather than the inability to
understand the contour label process.

Several users created impossible sequences of
height labels. The main cause were consecutive con-
tours with the same height value. The users assigned
different height values which had the effect that in
other parts of the map two neighbouring contours had
double the allowed height difference between them.
The problem is illustrated in figure 8. The results con-
firm the importance of the consistency test in equa-
tion 2.

Another interesting observation was that most
users performed the labelling by proceeding from the
lowest to the highest contour (or vice versa). This
was rather surprising since the silhouettes provided a
much better indication of relative height values and
hence we would have expected users to first label the
contours intersecting the boundary of the map. The
results suggest that in applications where the point
extrema are unknown a more incremental approach

Figure 9: The labelling on the left represents an im-
possible configuration. The cross section on the right
demonstrates that a terrain rising from 100 to 300
must intersect the 200 contour an odd number of
times.

might be preferable.

7.2.2 Sketching an Imaginary Terrain

The second application is the sketching of an imagi-
nary terrain as demonstrated in figure 6. While the
interface is very easy to use, problems exist with the
labelling of contour lines. Without any guidelines
finding a consistent labelling as in part (a) of the fig-
ure is challenging. If the point extrema are labelled
first then frequently there are either too few or too
many contour lines between them. While in the lat-
ter case the user can create line extrema this can lead
to impossible configurations as described above. The
problem is illustrated in figure 9.

Similar to the previously discussed application our
experiments suggest that it is more intuitive to per-
form the labelling incremental. This means each
time the user inputs the height value of an extremum
the application performs the consistency check (equa-
tion 2) of algorithm 1 for all edges of the contour
graph. This, however, is not very efficient. We are
currently implementing an improved interface where
the user indicates the terrain gradient by sketching
arrows. Using this interface one single sketch can la-
bel all contour lines between two point extrema or line
extrema. The number of necessary sketches depends



on the number of gradient changes, i.e., is equivalent
to the number of edges of a subtree of the full graph
connecting the extrema in the terrain.

7.2.3 Converting Topographic Map Data

The third application is the labelling of contour lines
of a topographic map as demonstrated in figure 7.
If the original map is consistent then a consistent la-
belling is always achieved as long as the correct height
values for the extrema are input. Since the program
automatically identifies point extrema the user only
has to match their positions to the map and input the
corresponding height values. Labelling line extrema
is potentially more difficult since the program might
display several potential line extrema as indicated in
part (e) of the figure. If the user chooses a contour
which is not a line extrema then one additional in-
put will be necessary. The biggest problem is that
the user might read the wrong height value from the
topographic map in which case the resulting contour
map will be inconsistent.

7.3 Complexity Analysis

Let the input contour image be of size N × N . Each
individual contour line has O(N) pixels. Preliminary
studies performed by us suggest that most contour
images use screen space efficiently, i.e., the height
steps are defined such that the contour lines are nei-
ther too sparse nor too close. That means that the
number C of contour lines lies between O(1) (e.g.,
if using a constant height step independent of image
size) and O(N) (e.g., height step is adjusted such that
the distance between contour lines is constant inde-
pendent of the image size). In practice we hypothesize
that the dimension of a contour map is similar to a
fractal, i.e., O(Nk) with 1 ≤ k ≤ 2. More studies are
necessary to verify this hypothesis.

The contour tracing, sampling and number of
sample points is constant in the number of contour
pixels, i.e., O(Nk). The Delaunay triangulation is
O(m log m) in the number of sample points m, i.e.,
O(Nk log N).

Let n and e be the number of nodes (point ex-
trema) and number of edges of the contour graph.
For a full graph e = O(n2) and for a SST e = O(n)
where the computation of the SSP can be achieved
in O(n log n) (Kruskal’s algorithm). The number of
point extrema n is bounded by the number of contour
lines and the average number of pixels of an edge is
O(N) for a full graph, but might be smaller for a SST.
Consequently an upper bound for the labelling step is
O(N (k+1)) for a full contour graph and O(Nk log N)
if a SST created with Kruskal’s algorithm is used. In
the latter case the complexity of the total algorithm
is bounded by O(Nk log N) where 1 ≤ k ≤ 2 depends
on the number of contour lines.

8 Conclusion

We have presented an efficient algorithm based on a
graph-theoretical approach for contour line labelling
and for converting contour maps into digital eleva-
tion maps. The algorithm automatically determines
point extrema and uses them to create a contour
graph. When using a full graph the number of re-
quired user inputs is optimal, i.e., the user only has
to input height values for the extrema. All other con-
tour lines are labelled automatically. When using a
shortest spanning tree additional user inputs might be
required, which in our tests were always around 10%–
20% higher than the minimum number of user inputs.

The advantage of using an SST contour graph is that
the total algorithm complexity can be bounded by
O(Nk log N) where 1 ≤ k ≤ 2 depends on the num-
ber of contour lines, which can vary between O(1) and
O(N).

The labelling algorithm can be used for contour
maps obtained from digitized maps or for sketch-
based terrain modelling. In the latter case it is often
difficult to find consistent extrema height values and
an incremental approach might be more appropriate.
We have presented a simple test which the algorithm
uses to verify the consistency of the contour labelling.

In future work we want to get more insight into
the complexity of the algorithm, research alternative
representations for the contour graph, and adapt the
algorithm to make it more suitable for interactive
sketch-based terrain modelling. In particular we are
currently working on an application where relative
heights of contours are indicated by local gradients
(arrows) and classified contours have an immediate
effect on the 3D terrain rendering.
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