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Abstract

Simultaneous Localisation and Mapping
(SLAM) is a method of environment mapping
in mobile robotics. One of the most popular
classes of this algorithm is the Extended-
Kalman Filter (EKF) SLAM, which maps
the environment by estimating similarities
between currently registered scene objects
and newly perceived ones. More advanced
versions of this algorithm are necessary, e.g.
for multiple robots or outdoor environments.
However, development is difficult because of
the complex interaction between the internal
robot state, the perceived scene and the actual
scene. New visualisation methods are hence
required to enable developers to debug and
evaluate EKF-SLAM algorithms. We present
novel Augmented Reality based visualisation
techniques which display the algorithm’s
progress by visualising feature and robot pose
estimates, as well as correlations between fea-
tures and clusters of features. The techniques
allow a qualitative estimate of the algorithm’s
mapping compared with the ground truth
and indicate the correctness and convergence
properties of the SLAM system.

1 Introduction

Simultaneous Localisation and Mapping (SLAM) is a
method of environment mapping in mobile robotics. The
robot explores and maps an unknown environment us-
ing onboard sensors, while localising itself within its
current map. The purpose is that, having acquired
a robust map through exploration, the robot will be
well capable of performing autonomous navigation tasks
within the mapped environment. While core problems
of SLAM have been intensively researched in terms of
computational complexity, map representation and data
association [Durrant-Whyte and Bailey, 2006], many

challenges still remain. The most important current
challenges are the development of systems for increas-
ingly larger and more unstructured environments [An-
dreasson et al., 2007; Blanco et al., 2007; Miettinen
et al., 2007], and achieving robustness and reliabil-
ity necessary for real world SLAM applications [Bailey
and Durrant-Whyte, 2006; Martinez-Cantin et al., 2007;
Polkesson and Christensen, 2007].

The most well established underlying algorithm for
SLAM systems is the Extended-Kalman Filter (EKF)
SLAM [Durrant-Whyte and Bailey, 2006; Maybeck,
1979], which uses a multivariate Gaussian distribution
to model the state estimation. Despite the emergence
of other algorithms, such as the application of Rao-
Blackwellized Particle Filters to SLAM [Montemerlo et
al., 2002; 2003], EKF SLAM is still widely applied [Ni-
eto et al., 2005; Paz et al., 2007; Neira et al., 2007].
A number of important theorems for the behaviour of
the map covariance in EKF SLAM have been proven in
[Dissanayake et al., 2001; Huang and Dissanayake, 2007].
These deal with increasing correlations between features
and decreasing feature uncertainties over time. In gen-
eral, regardless of the application, an EKF SLAM system
must follow these behaviours for correct convergence of
the SLAM solution (some exceptions do exist, such as
systems with moving features [Wang et al., 2003]). That
is why, from the SLAM developer’s point of view, it is
necessary to visualise these behaviours to confirm the
system’s adherence. Only then can the developer com-
pare the detailed behaviour of the SLAM software with
the expected behaviour as the SLAM estimation unfolds.
This will enable related algorithm errors to be identified
and corrected.

Augmented Reality (AR) is a visualisation approach
that involves rendering virtual objects spatially regis-
tered within the view of a real world scene [Bimber and
Raskar, 2005; Azuma, 1997; Azuma et al., 2001]. It
is especially suited for applications where information
must be rendered directly within the context of the real
world. AR has been applied to a limited extent in mobile
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Figure 1: The SLAM problem (with permission from
[Durrant-Whyte and Bailey, 2006]).

robotics; this includes range sensor visualisations [Col-
lett and MacDonald, 2006], swarm control [Daily et al.,
2003] and way point designation [Nunez et al., 2006].
The goals of these applications are to improve human
robot interaction and to communicate the robot’s per-
ception of the world to the developer. One useful exten-
sion to visualising robot perceptive data in these works
is to use AR to also visualise the internal workings of a
robot’s algorithms.

This paper presents an AR visualisation system for
EKF SLAM algorithms. In particular, the contributions
are: the development of novel visualisation methods of
EKF SLAM covariance behaviours for feature correla-
tions, and the implementation of these visualisations in
AR. The developed visualisations are directly based on
the established covariance behaviour theorems. At the
basic level, presented AR visualisations of SLAM states
provide a qualitative assessment of the estimates com-
pared with the ground truth from the real image cap-
ture. More importantly however, visualising established
covariance behaviours gives an indication of the correct-
ness and convergence properties of the SLAM system.
Moreover by using an AR environment, if the correct
behaviours are not followed, bugs or potential real world
causes may become apparent since AR shows the real
world context.

The layout of the paper is as follows. Section 2 gives
mathematical background on EKF SLAM and explains
the covariance behaviours on which the visualisations are
based. Section 3 outlines the developed AR system along
with the specific SLAM visualisations presented. Exper-
imental results for visualisation of EKF SLAM data are
given in Section 4.

2 SLAM

Figure 1 shows the essential SLAM problem. The robot
explores and maps an unknown environment, while local-
ising itself within its current map. Because the ground
truth of the environment is never known, there will al-
ways be a discrepancy between the true and the esti-
mated robot path and environment features, as shown
in Figure 1. In this work we deal with two dimensional
point-feature based EKF SLAM. A brief mathematical
background is given below.

2.1 EKF SLAM

The EKF SLAM state is represented by a state vector
and a state covariance matrix, comprising a multivariate
Gaussian distribution [Dissanayake et al., 2001]. The
estimated state vector x̂(k|k) at time k is

x̂(k|k) =
[

x̂v(k|k)
x̂m(k|k)

]
where x̂v is the vehicle pose estimate, and x̂m is

the estimated map vector composed of n point features
f1 . . . fn. The state covariance P (k|k) is

P (k|k) =
[

Pvv(k|k) Pvm(k|k)
PT

vm(k|k) Pmm(k|k)

]
where Pvv is the vehicle covariance matrix, Pmm is the

map covariance matrix, and Pvm is the cross-covariance
between the vehicle and the map. The state covariance
represents the overall uncertainty associated with the
state vector estimate. An EKF SLAM iteration involves
three stages: prediction, observation and update.

Motion Prediction
The motion of the vehicle is modelled in the following
way:

xv(k + 1) = fv(xv(k), uv(k + 1)) + vv(k + 1) (1)

xm(k + 1) = xm(k) (2)

where fv() is the kinematic prediction function, uv is the
vehicle control input and vv is Gaussian motion noise. As
features are assumed static, they are unaffected by the
prediction step (as seen in (2)). Using the motion model
in (1) and (2), the state at k + 1 is predicted as follows:

x̂(k + 1|k) = f(x̂(k|k), u(k)) (3)

P (k + 1|k) = F (k)P (k|k)FT (k) + Q(k) (4)

where F (k) is the Jacobian linearization of f() at the
estimate x̂(k|k). Q(k) is the process noise covariance.
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Observation
The observation model for features is:

zi(k) = hi(x(k)) + wi(k) (5)

where zi(k) is the sensor observation of landmark i.
hi() is the observation function and wi(k) is observation
noise. Using (5), the observations at k +1 are predicted:

ẑi(k + 1|k) = hi(x̂(k + 1|k)) (6)

Following this prediction, an actual feature observation
zi(k + 1) is made. This enables the calculation of the
innovation vi(k+1) and the innovation covariance Si(k+
1) for every feature i:

vi(k + 1) = zi(k + 1)− ẑi(k + 1|k) (7)

Si(k+1) = Hi(k+1)P (k+1|k)HT
i (k+1)+Ri(k+1) (8)

where Hi(k + 1) is the Jacobian linearization of hi() at
the estimate x̂(k + 1|k). Ri(k + 1) is the observation
noise covariance.

Update
Finally, the innovations and their covariances are used to
update the EKF state with the information gained from
the sensor observations:

x̂(k + 1|k + 1) = x̂(k + 1|k) + Wi(k + 1)vi(k + 1) (9)

P (k+1|k+1) = P (k+1|k)−Wi(k+1)Si(k+1)WT
i (k+1)

(10)
where Wi(k + 1) is the Kalman Filter Gain:

Wi(k + 1) = P (k + 1|k)HT
i (k + 1)S−1

i (k + 1) (11)

2.2 Covariance Behaviour
In order to debug and improve an EKF SLAM algo-
rithm the user must be able to detect unusual behaviour
and must be able to verify that expected behaviour does
occur. Our visualisations utilise properties of the EKF
SLAM map covariance Pmm(k|k) proven in [Dissanayake
et al., 2001; Huang and Dissanayake, 2007]. In partic-
ular, we will display feature correlations. This section
outlines the mathematical properties of these variables
during execution of the algorithm. The visualisations
themselves are explained later in Section 3.2. The full
proofs are found in the original papers.

Feature Correlations
The relevant theorem states: In the limit the landmark
estimates become strongly correlated. Let dij be the rel-
ative position between any two feature estimates fi and
fj . Let Pd be the covariance of dij :

dij = fi − fj (12)

Figure 2: System Overview.

Pd = Pii + Pjj − Pij − PT
ij (13)

Pd is the relative covariance between the two features. It
is an indication of how they vary relative to each other
as the algorithm progresses. In [Huang and Dissanayake,
2007] it was shown that Pd will decrease to a certain
lower bound as observations are made. As Pd decreases,
the correlation between the features strengthens. In this
work we visualise Pd between a pair of features to give
an indication of their correlation, and to observe the de-
crease of Pd and thus the strengthening of the correlation
between the features over time.

3 AR Visualisation System

3.1 System Overview
Figure 2 presents an overview of the AR visualisa-
tion system. The system has been implemented with
two different hardware arrangements: a fixed overhead
(OH) camera and a head-mounted-display (HMD) with
a vision-based tracker. The necessary modules within
a video-see-through AR system are: image capture (in-
put), camera tracking (when the camera is mobile), pro-
cessing and image augmentation, and visualisation dis-
play (output). The HMD setup used a Trivisio ARvision-
3D HMD for image capture and visualisation display,
together with a Matrox DualHead2Go device to ob-
tain stereo output. For the OH system, a fixed, ceil-
ing mounted Prosilica Digital Camera captures images,
with the visualisation showing on a wide screen monitor.
Camera (user) tracking for the HMD was done with an
InterSense IS1200 vision tracker. As the IS1200 driver
for user tracking is only available for Windows, VMWare
Server 2 was running guest Windows XP and the IS1200
driver. No camera tracking is required for the OH setup
because the camera is fixed, and this is the main differ-
ence between the two setups.

Australasian Conference on Robotics and Automation (ACRA), December 2-4, 2009, Sydney, Australia



With both setups of the presented AR system, it is
necessary to correctly align the virtual SLAM visualisa-
tions with the real world in the captured images. This
is known as the registration problem. Here, registration
is achieved by using ARToolKitPlus (ARTKP) [Wagner
and Schmalstieg, 2007] to visually track the robot within
the captured images. A Pioneer 3-DX mobile robot is
used with an ARTKP marker mounted on top. When
the robot starts SLAM, its initial position is assumed to
be the origin of the SLAM map. This position is com-
puted in world coordinates with ARTKP, stored in mem-
ory and subsequently used for registration of all SLAM
visualisations. Once the initial position is obtained, the
robot is no longer tracked with ARTKP. The initial po-
sition is all that is required for registration. It should be
emphasized that this is purely a testing environment for
SLAM systems. Obviously in real SLAM applications,
no camera would be available to localise the robot. The
ARTKP localisation is used purely for registration of AR
images to visualise the SLAM estimates computed by the
robot.

There are two stages in the operation of the AR sys-
tem: initialisation and execution. During initialisation,
the robot’s initial position is computed with ARTKP
for registration as outlined above. Execution visualises
time-varying SLAM data as SLAM runs. An execution
render cycle involves the following three steps:

1. Update the user’s pose using the tracker software
(only for the HMD setup)

2. Query the SLAM system for the latest data to be
visualised

3. Update AR visualisations accordingly

The system was implemented in C++ using the Ob-
server software pattern [Gamma et al., 1995]. The Ob-
server pattern is well suited for this application; it is
designed for an observer entity to monitor a subject en-
tity while keeping the two as loosely coupled as possi-
ble. In the present application the SLAM system is the
subject and the AR visualisation system is the observer
monitoring the subject. The SLAM subject notifies the
observer every SLAM update; this triggers the AR ob-
server’s render cycle, querying the subject for the new
data and visualising it.

3.2 SLAM Visualisations
The work in this paper centers on using AR to visualise
certain behaviours of the EKF SLAM map covariance
Pmm(k|k) as explained earlier in Section 2.2. Adherence
to these behaviours is a good indicator that the SLAM
system has been implemented correctly and is likely to
lead to a convergent solution. The visualisations show
the developer whether these established behaviours are
being followed.

State Estimate Visualisation
This is the fundamental visualisation of the SLAM state
vector. It is the conventional way to visualise SLAM un-
certainty, and is necessary for subsequent visualisations
of the correlations. The visualisation consists of the fol-
lowing:

• Robot path: The robot position is shown as a green
conical marker and the orientation is shown as a flat
yellow arrow. A green line indicates the path of the
robot. The conical shape was chosen as it tapers
to a point, which denotes the 2D SLAM position
estimate.

• Feature locations: Feature locations are shown as
cyan conical markers. Similarly to the robot pose,
their points denote the estimated 2D SLAM feature
positions.

Using AR with non-simulation SLAM systems, the
user can see the estimated SLAM features and robot pose
(virtual objects) in direct comparison with the actual
robot pose and environment features (within the cap-
tured image). This allows a good qualitative assesment
of the SLAM error and performance. A problem can
be present if the registration error of the AR system is
high. In that situation it is unclear whether the visual
discrepancy between virtual and actual objects is due to
SLAM or AR registration error. This is slighty prob-
lematic for the HMD AR setup, but not for the fixed
overhead camera AR setup where the registration error
is negligible.

Correlation Visualisations
The purpose here is to visualise the relative covariance
Pd between a pair of features, as explained in Section
2.2. By doing so we are visualising the strength of the
correlation between the pair, and likewise the change of
this correlation over time. To do this we apply the tensor
ellipsoid technique from scientific visualisation. For each
pair of features Fi and Fj the visualisation contains:

• A yellow line linking the features Fi and Fj in ques-
tion

• A red tensor “correlation” ellipsoid for Pd(i, j) ren-
dered in the center of the line

Tensor ellipsoids are a standard visualisation technique
for second-order tensor-valued scientific data [Chen et
al., 2009; Cisternas et al., 2008; Slavin et al., 2004].
Firstly, eigendecomposition is performed on the tensor in
question, to represent it in its canonical form. Then the
tensor is visualised as an n-dimensional ellipsoid, where:
the directions of the principal axes are given by the eigen-
vectors, the lengths of the axes are given by the corre-
sponding eigenvalues and n is the dimension of the ten-
sor. In our application, Pd is treated as a 2-dimensional
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second-order tensor, thus resulting in a 2-dimensional
ellipsoid glyph.

The expected correlation behaviour discussed in Sec-
tion 2.2 dictates that Pd will decrease thus indicating
a strengthening correlation between the pair of features.
In the visualisation this behaviour is embodied as the re-
duction of the area of the tensor ellipsoid for Pd (termed
“correlation ellipsoid”). Hence, the correct behaviour
can be confirmed from the visualisation if the correla-
tion ellipsoids become visibly smaller over time. This
is intended as a testing tool for SLAM systems. If the
ellipsoids instead become larger, this indicates divergent
behaviour and a problem with the SLAM implementa-
tion. The orientation of the ellipsoid shows the correla-
tion between the two elements of the di,j vector.

The problem of visual cluttering may arise when too
many ellipsoids are rendered close together on the screen,
making it difficult to discern individual ellipsoids. Sev-
eral steps have been taken to address this problem in the
visualisation. Firstly, the 2D ellipsoid glyph is expanded
into 3D, using the minor eigenvalue as the length of the
axis into the third dimension. This method gives better
distinction to overlapping ellipsoids. Secondly, the fea-
tures are divided into spatial clusters, and only the corre-
lations between features in different clusters are shown.
This reduces cluttering by reducing the total number of
correlations in view. The clustering was performed using
the basic single-linkage hierarchical clustering method
[Legendre and Legendre, 1998], where the metric used is
the Euclidean distance between the features.

To further reduce the number of ellipsoids in view,
an extension to the clustering method was implemented.
Instead of visualising all of the inter-cluster correlations,
only the minimum, mean, and maximum correlations
are shown for every pair of clusters. The visualisation
consists of a line joining the centroids of the clusters,
the mean correlation in the center of the line, with the
minimum underneath and the maximum above it. The
drawback of this approach is the information loss from
removal of individual correlations.

4 Experimental Results

The experiments were performed on an Intel Pentium
D Dual Core 3.0 GHz processor with 2.0 GB of mem-
ory running Ubuntu 8.10, using the overhead fixed cam-
era setup only. Three types of experiments were per-
formed: simulation with correct data, simulation with
faulty data, and real SLAM data. All data was from
point-feature based EKF SLAM systems. The state vec-
tor and covariance data at each time step of the experi-
ment were sent to the AR system. The AR system then
visualised in real time the feature correlations, along
with the mean estimates of the features and the robot
path.

For the simulation experiments, a map of 15 features
was used, with the features arranged in three spatial
clusters. The features were enclosed in a 3 by 3 me-
ter area, and the robot travelled in a 1 by 1 meter loop
within that area. The feature area was kept small to
ensure it would fit within the field of view of the camera
used for image capture. Figure 3 shows the correlations
between all of the features for correct simulated data.
Observing the time progression of the experiment (Fig.
3 (a) to (b)), the correlation ellipsoids between the fea-
tures initialised in (a) visibly decrease. This follows the
established behaviour shown in [Dissanayake et al., 2001;
Huang and Dissanayake, 2007], stating that relative co-
variances Pd decrease, which in turn means that the cor-
relations between the features increase as observations
are made. Although the overall behaviour can be ob-
served, one difficulty is seeing individual ellipsoids be-
tween pairs of features. This is true when ellipsoids are
bunched close together in the view, such as ones posi-
tioned between the clusters of features.

Figure 4 shows the correlations between the features in
different spatial clusters for correct simulated data. This
method removes from view the correlations inside clus-
ters, in order to remedy the visual cluttering problem.
As above, it can be observed that the correlations be-
tween clusters increase, as the ellipsoids decrease during
the time progression from Fig. 4 (a) to (b). However, the
visual cluttering problem is still present to a lesser ex-
tent, as individual ellipses between clusters can be hard
to see.

Figure 5 shows the min/mean/max correlations be-
tween the different spatial clusters for correct simulated
data. This addresses the visual cluttering problem quite
well. Now the number of visualised correlations between
clusters is reduced to three, representing the given met-
rics of inter-cluster correlations. However, a consequence
of this is a small degree of information loss, as it is not
possible to see the correlation between a specific pair of
features. The expected behaviour is seen as the min,
mean and max ellipsoids between the first two clusters
decrease in the transition from Fig. 5 (a) to (b). The
minimum ellipsoid must be non-increasing, as was the
case in the experiment. The maximum ellipsoid was
found to increase when a new feature is initialised in
a cluster, as that feature is initially poorly correlated to
the existing SLAM map. The mean ellipsoid showed a
general decreasing trend over time.

For the next set of experiments, a programming fault
was introduced into the simulation. The fault caused
incorrect update of the covariance of certain mapped
features, causing the feature correlations to worsen over
time and violate the established behaviour. The map
used was identical to the previous experiment. Figure
6 shows the correlations between all of the features for

Australasian Conference on Robotics and Automation (ACRA), December 2-4, 2009, Sydney, Australia



(a) Start of simulation (b) End of simulation

Figure 3: Simulation with correct data, visualising all of the correlations. The ellipses decrease in size during the
progression from (a) to (b), which shows the expected behaviour of strengthening correlations between features.

(a) Start of simulation (b) End of simulation

Figure 4: Simulation with correct data, visualising only the correlations between spatial clusters. The ellipses decrease
in size during the progression from (a) to (b), which shows the expected behaviour of strengthening correlations
between clusters.

(a) Start of simulation (b) End of simulation

Figure 5: Simulation with correct data, visualising the min/mean/max values of the inter-cluster correlations. The
ellipses decrease in size during the progression from (a) to (b), which shows the expected behaviour of strengthening
correlations between clusters.
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(a) Start of simulation (b) End of simulation

Figure 6: Simulation with faulty data, visualising all of the correlations. The ellipses increase from (a) to (b) and
compared to Fig. 3, which shows the violation of the expected behaviour of strengthening correlations.

the faulty simulated data. The visualisation makes the
problem immediately clear, as the ellipses grow from Fig.
6 (a) to (b), showing worsening correlations. However,
the biggest problem is that it is difficult to pin point the
fault. From the visualisation it appears that all of the
correlations are affected, which is not the case.

Figure 7 shows the correlations between the features
in different spatial clusters for faulty simulated data. As
above, the error is obvious as the ellipses become larger
from Fig. 7 (a) to (b). Visual clutter is problematic
here; as the ellipses grow they become more difficult to
distinguish individually. As in the previous case, it is
hard to specify exactly which correlations are affected
by the fault.

In the final simulation experiment, Figure 8 shows the
min/mean/max correlations between the spatial clusters
for faulty simulated data. The error can be observed
although it is less apparent. The best indicator is that
the maximum ellipse increases even during update steps
when no new features are found. However, the minimum
diminishes as per correct behaviour, likely due to the
correlations not affected by the fault. The fault is also
easily seen when Fig. 8 is compared to the case when
the correct simulation data is used in Fig. 5.

For the experiments with the real SLAM data, a Pio-
neer robot performed SLAM in a 1 by 1 meter loop using
laser-rangefinder sensors. Five features were positioned
within the 3 by 3 meter field of view of the camera. No
more features could be placed within that area due to a
minimum separating distance between features required
for data association. For the simulated data this was
not a concern. For this reason, it is difficult to com-
pose visible clusters for the real data experiment, and
cluster visualisations were not used. Instead all of the
correlations were visualised. Registration was achieved
with an ARTKP marker mounted on top of the robot.

The robot’s initial position is taken as the origin of the
SLAM map.

Figure 9 shows the early stage in the experiment with
real SLAM data. The robot has only observed the first
three features. As the experiment continues in Fig. 10,
all of the features have been found. Also note the pres-
ence of a spurious feature to the far right in Fig. 10 (b).
This is a result of the laser readings reflected by walls and
the surrounding environment. The expected behaviour
can be seen in Fig. 11 after several loops. Comparing
Fig. 10 (b) and Fig. 11 (b), the ellipsoids have shrunk
thus indicating that the correlations between the fea-
tures have strengthened. In addition, Figures 9 - 11 give
a qualitative assessment of the overall performance of the
system. The user can see the ground truth (the robot
and the physical features) compared with the SLAM es-
timates (the conical markers).

5 Conclusions and Future Work

This paper presented novel AR visualisation methods
for EKF SLAM state and covariance behaviour pertain-
ing to feature correlations. Visualising this behaviour
helps the developer assess the correctness and conver-
gence properties of their SLAM system. The results ex-
hibit that the correct behaviour can be confirmed from
the visualisation, as well as incorrect behaviour result-
ing from programmer error. To address visual cluttering,
features are divided into spatial clusters and inter-cluster
correlations are visualised; alternatively only the mini-
mum, mean and maximum inter-cluster correlations can
be shown. Future work will look at dynamically manipu-
lating the visualisation, and explicitly flagging behaviour
violations to the user.
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(a) Start of simulation (b) End of simulation

Figure 7: Simulation with faulty data, visualising only the correlations between spatial clusters. The ellipses increase
from (a) to (b) and compared to Fig. 4, which shows the violation of the expected behaviour of strengthening
correlations.

(a) Start of simulation (b) End of simulation

Figure 8: Simulation with faulty data, visualising the min/mean/max values of the inter-cluster correlations. The
ellipses increase from (a) to (b) and compared to Fig. 5, which shows the violation of the expected behaviour of
strengthening correlations.

(a) (b)

Figure 9: Early stage in the experiment with real SLAM data. The robot has only observed the first three features.
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(a) (b)

Figure 10: Middle stage in the experiment with real SLAM data. In (b) all of the features have been found, including
one erroneous feature to the far right.

(a) (b)

Figure 11: Late stage in the experiment with real SLAM data. The ellipses decrease in size during the experiment,
(compare Fig. 10 (b) and Fig. 11 (b)), which shows the expected behaviour of strengthening correlations between
features.
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