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Abstract 

Simultaneous Localisation and Mapping 
(SLAM) is a popular map building approach in 
autonomous mobile robotics. Because users 
demand faster and more effective algorithms, 
SLAM remains an active area of research. 
However, the increasing complexity of 
applications, such as the environments the 
algorithm is applied to, makes it difficult to 
debug, evaluate and optimise such algorithms. 
Our preliminary research indicates that the 
algorithm development can be improved by 
using Augmented Reality (AR) systems, which 
visualise the robot’s internal program state and 
related information specifically in the context of 
testing and debugging SLAM algorithms. Using 
inherent SLAM uncertainties and error-sources 
identified in literature, we developed 
requirements which an AR system must fulfil in 
order to optimise the testing, debugging and 
design of SLAM algorithms. 

1 Introduction 
Current research in the field of Simultaneous Localisation 
and Mapping (SLAM) is bringing us ever closer to using 
autonomous mobile robot assistants [Bailey and Durrant-
Whyte, 2006]. SLAM research will allow a mobile robot 
to be deployed in an unknown environment where it will 
autonomously map the vicinity. Having acquired a robust 
map through exploration the robot will be well capable of 
performing autonomous navigation tasks.  

While core problems of SLAM have been 
intensively researched in terms of computational 
complexity, map representation and data association 
[Bailey and Durrant-Whyte, 2006], many challenges still 
remain. The most important remaining challenge is the 

development of algorithms for increasingly larger and 
more unstructured environments [Andreasson et al., 
2007;Blanco et al., 2007;Miettinen et al., 2007], e.g. for 
undersea applications. Concerns here include linearization 
errors and sensing difficulties due to unstructured 
environments. 

Another current research area is Multi-robot 
SLAM [Neira et al., 2003;Bryson and Sukkarieh, 2007b]. 
Using several robots to map different regions of a large 
environment simultaneously can save considerable time. 
The recent Marginal-SLAM algorithm [Martinez-Cantin et 
al., 2007] aims to address the filter divergence problems 
associated with the popular Extended Kalman Filter 
(EKF) and Rao-Blackwellized Particle Filter (RBPF) 
SLAM solutions. Robo-centric Map Joining [Neira et al., 
2007] similarly aims to address inconsistency issues due 
to linearization of EKF SLAM. MonoSLAM [Davison et 
al., 2007] is a real-time SLAM approach using 3D vision, 
designed to handle large, ambiguous environments and 
highly dynamic camera motion. A similar 3D vision 
SLAM system in [Tomono, 2007] aims to address large 
numbers of landmarks and robustly handle noise and 
outliers. The work in [Bryson and Sukkarieh, 2007a] 
concentrates on the issues of consistency and real-time 
execution for vision-based bearing-only SLAM. The 
graphical (trajectory-based) SLAM system in [Polkesson 
and Christensen, 2007] is currently being developed to 
work with sparse environments and topological map 
representations. Certain other newer systems, such as 
Divide-and-Conquer SLAM [Paz et al., 2007], although 
offering improved consistency and complexity, still need 
to be further evaluated experimentally. Finally, new 
features are being proposed to enhance the conventional 
SLAM formula. P-SLAM [Chang et al., 2007] aims to 
predict the mappings of unexplored regions based on 
knowledge already acquired, thereby saving exploration 
time. In [Ekvall et al., 2007] while performing SLAM, the 



robot recognises task related objects and catalogues them 
in the map for future reference. 

The previous paragraphs demonstrate the 
increasing complexity of research on SLAM algorithms. 
Consequently, support for SLAM development is 
essential, both for researchers to tackle the remaining 
SLAM challenges and for programmers to implement 
SLAM for commercial and industrial applications. A 
certain degree of support for SLAM implementation is 
offered by the popular RDEs (Robot Development 
Environments). Player [Gerkey et al., 2001;Gerkey et al., 
2007] offers support for Monte-Carlo localisation and has 
been used to implement SLAM [Wolf and Sukhatme, 
2005]. CARMEN (Carnegie Mellon robot navigation 
toolkit) [Montemerlo et al., 2003a;Montemerlo et al., 
2007] and Miro (Middleware for robots) [Utz et al., 
2002;Utz, 2007] both offer high level support for 
localisation and map building.  

What is missing is the support for testing and 
debugging that uses visualisation of the program state 
imbedded in the real world. An entirely virtual 
visualisation of SLAM state has been implemented in 
[Newman et al., 2002]. As is shown in Figure 1, the 
vehicle pose and the obstacles are rendered to allow 
teleoperation when the operator can not physically see the 
robot.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 1: SLAM environment visualisation (with permission 

from [Newman et al., 2002]) 
       
Vision-based SLAM systems from [Davison et 

al., 2004;Davison et al., 2007] also construct virtual 
models of the tracked point features for testing purposes. 
The main drawback with these types of SLAM 
visualisations is that they are solely virtual. This leaves a 
cognitive gap between the virtual space and the real world 
that must be bridged if developers are to understand the 
relationship between their software and the real world. To 
improve the perceptual and cognitive overlap between the 
robot and the human, a form of interaction imbedded in 
the real world is needed [Breazeal et al., 2001]. 
Augmented Reality (AR) is an appropriate tool for such a 
system [Chong et al., 2007]. 
 AR is the environment view resulting from 
generating virtual objects spatially registered in real time 
within a view of a real scene [Azuma, 1997;Azuma et al., 
2001;Bimber and Raskar, 2005]. AR has seen limited use 

in mobile robotics. ARDev [Collett and MacDonald, 2006] 
assists robot programming by visualising range sensor 
data using AR (Figure 2), which improves the perceptual 
overlap between the human and the robot. A recent AR 
system in [Nunez et al., 2006] visualises the nodes of a 
topological map used by a mobile robot (Figure 3). The 
user could interact with the robot by creating nodes and 
assigning them as destination points. Another interesting 
AR system in [Daily et al., 2003] allowed supervision of a 
robotic swarm (Figure 4). In a search and rescue 
application the arrows shown in the figure indicate 
individual swarm members and lead the rescue team to a 
survivor. 
 Research in human-computer interaction 
indicates that AR would be an ideal candidate for 
improving SLAM development tools because it provides a 
perceptual overlap between real and virtual worlds 
[Edward Swan II and Gabbard, 2005], which allows the 
user to better understand how the robot perceives and 
reacts to the sensed environment. In this paper we discuss 
the requirements for such an AR system, one that 
visualises the robot’s internal program state and related 
information specifically in the context of testing and 
debugging SLAM algorithms. To the best of our 
knowledge no such system currently exists in the 
literature. The intent is that a tool such as this will ease, 
for researchers and implementers, the task of testing and 
debugging SLAM algorithms, and therefore indirectly 
assist in addressing the remaining SLAM challenges. The 
remainder of the paper details the functional visualisation 
requirements of such an AR system. In Section 2 we 
analyse the classic SLAM approach to deduct the 
fundamental requirements for visualising a SLAM 
system. In Section 3 we survey more recent SLAM 
procedures, which are then used to formulate further, 
more specialised SLAM visualisation requirements. 
Section 4 outlines the implementation and hardware 
arrangements of the proposed system. The paper is 
concluded in Section 5, summarising all of the 
requirements and giving directions for future work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2: Sonar data visualisation with ARDev (with permission 
from [Collett and MacDonald, 2006]) 

 



 
Figure 3:Topological map visualised with AR (with permission 

from [Nunez et al., 2006]) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5:Robot swarm supervision (with permission from [Daily 

et al., 2003]) 

2 Fundamental Requirements 
Figure 5 gives an overview of the SLAM process. Firstly, 
the state of a SLAM program may be visualised; however 
the state can be defined differently depending on the 
actual algorithm. For basic requirements, unless otherwise 
stated, we will consider the state of the popular and wide-
spread EKF SLAM. The state of an EKF SLAM 
algorithm consists of the stochastic map M: 
 
 ),( PxM =
 
where x is the system state vector and P is the system 
covariance matrix (see Sections 2.1 and 2.2). Also 
fundamental to SLAM execution are data association and 
map maintenance (see Sections 2.3 and 2.4).  

Note that this paper compiles a comprehensive 
list of requirements and not all of them should be 
visualised at the same time. This would overwhelm the 
user and lead to visual cluttering which makes it difficult 
to perceive and discern important information. Instead the 
user should be able to visualise only those aspects of a 
SLAM algorithm currently being analysed, with the 
irrelevant aspects being turned off.  
 When detailing the requirements, our aim is to 
list the various information the user will need, for the user 
to be able to clearly interpret the algorithm. The possible 
ways in which this information could be visualised will 
not be discussed here. As long as the information for a 
particular requirement is clearly perceived, the 
requirement can be considered satisfied. Methods of 
visualisation are important [Collett, 2007] but are not 
addressed here. The following subsections list 
fundamental requirements and give reasons for them 
based on previous research and our own observations. 

2.1 System State Vector 
The system state vector x forms the core part of the 

Figure 4: SLAM overview (with permission from [Siegwart and Nourbakhsh, 2004]) 



system state. It is defined as follows: 
 
 
 
 
 
 
 
 
 
where xR is the robot pose vector and xFn is a position 
vector for every obstacle on the map Fn. Essentially the 
idea here is to visualise the SLAM robot pose and map for 
comparison with the ground truth seen in the real image. 
The specifics of how the pose or the map is presented 
depend on the type of environment representation the 
robot is using.  

Robot Pose  
For a metric map representation it is necessary to clearly 
communicate the (x, y, θ) parameters of the robot pose. 
There is often a discrepancy between the estimated and 
the true robot pose, as the true pose is never known 
[Durrant-Whyte and Bailey, 2006]. This discrepancy 
needs to be visualised.  AR appears to be the most 
appropriate method because it is not possible to see the 
true pose with completely virtual or textual visualisations. 
This does not mean the user must necessarily know the 
actual values of x, y and θ, but needs to be able to clearly 
perceive the position and orientation of the SLAM robot 
pose in relation to the real image of the robot. For any sort 
of tessellated map representation the current cell in which 
the robot resides must be shown. Similarly for a 
topological map, the node representing the current 
location must be rendered. For an EKF style algorithm the 
probabilistic mean of the pose should be shown. For a 
SLAM approach based on RBPFs, such as the popular 
FastSLAM [Montemerlo et al., 2002;2003b], the mean 
pose or the mean robot trajectory of all particles should 
be visualised.   
 An implementation requirement is that a SLAM 
pose or map must be registered with the real world, 
before it can be virtually rendered in the scene. The AR 
system must track one or more real world objects that are 
also present in the SLAM model to enable this 
registration. A likely registration point is the robot pose. 
Although explicitly visualising the robot pose would be 
redundant, since the virtual pose would always be 
correctly superimposed over the real robot image, an 
important reason for rendering the pose is to visualise the 
uncertainty (i.e. the covariance) in the estimated robot 
location and orientation (see Section 2.2). 
 It may also be useful to visualise the latest time-
update pose, i.e. the pose predicted by the robot motion 
model, but uncorrected by external sensors from the latest 
time-update cycle (Figure 5). This will assist in 
determining the correctness of the motion model, and the 
odometry hardware. A large discrepancy between the 
time-update pose and the observation-update pose may be 
a concern for the reliability of the motion model and 
associated hardware. 

Map/Obstacles 
The purpose of visualising the SLAM obstacle map is to 
test the mapping accuracy by comparison with the real 
obstacles seen in the AR image. The discrepancies 
between true and estimated obstacle positions, resulting 

from the fact that the true positions are not known 
[Durrant-Whyte and Bailey, 2006], need to be perceived. 

Textual and fully virtual visualisations are not 
suitable here because they are not able to show the true 
obstacle positions. The specifics here again depend upon 
the style of environment representation used. For a metric 
map, point (x, y) and line (r, ά) features need to be 
visualised as they are present in the SLAM model. For a 
tessellated map, the occupied cells need to be visualised, 
along with the degree of occupancy. In a topological map, 
virtual markers should exemplify topological nodes, and 
the spatial boundaries between nodes may need to be 
conveyed. Alternatively, if nodes are strongly associated 
with prominent landmarks and spatial divisions are not of 
high importance, it may be adequate to only highlight 
each feature that constitutes a node. Secondly, the edges 
linking nodes must be depicted for topological maps. For 
recent hybrid approaches, such as metric-topological 
maps [Blanco et al., 2007], characteristics of both 
representations will need to be visualised together as 
appropriate for the application. As for the pose, gaussian 
mean locations will be shown for the EKF, and particle 
means for RBPF methods. 
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 Visualising the pose and the map is fundamental 
to subsequent visualisation requirements for state 
covariance, data association and map maintenance, which 
are associated with the pose and map visualisations. The 
aim of the following requirements is to graphically view 
some behavioural characteristic of the algorithm. 

2.2 System Covariance Matrix 
In EKF SLAM the system covariance matrix P is defined 
as follows: 
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It represents two types of information. Firstly, the main-
diagonal elements PR...PFn represent the absolute 
uncertainty of the robot pose and the landmark locations. 
Landmark uncertainties converge to a lower-bound 
dependent on the initial uncertainties [Durrant-Whyte and 
Bailey, 2006]. Therefore, these elements need to be 
graphically portrayed if the human programmer is to 
observe and test for correct behaviour. Similarly, for 
RBPF approaches, the uncertainty approximated by 
particles can be graphicaly displayed in some association 
with the pose and the landmarks.   
 Secondly, the off-diagonal elements PRFn...PFnR 
represent the cross-correlations among the pose and 
various landmarks. As SLAM progresses successive 
observations should cause relative correlations between 
landmarks to monotonically increase [Durrant-Whyte and 
Bailey, 2006]. Consequently, these cross-correlations 
need to be visualised to confirm this behaviour and the 
algorithm’s correctness.  
 Note that it may be suitable to visualise this 
information without AR, as text or graphics on screen. 
But as we aim for an immersive testing environment, we 
hypothesise this information should be incorporated into 
the AR view using a consistent visualisation approach to 
improve usability, possibly as text-based AR [Starner et 



al., 1997].  

2.3 Data Association 
The aim of the data association stage is to formulate a 
hypothesis h: 
 
 
 
 
Each element of the hypothesis ji signifies which mapped 
feature Fj the observation z,i corresponds to, where m is 
the number of observations made. The first step is to 
make some predictions of the features Fj the system 
expects to observe, using the observation model. Then 
actual observations z,i are obtained with external sensors. 
The data association algorithm then matches predicted to 
actual observations to construct the hypothesis h (also see 
Figure 5). Classic SLAM formulates a single hypothesis 
during the observation-update step.   
 It is desirable to visualise the hypothesis h. In 
other words the AR system should graphically depict for 
each real observation which feature in the SLAM map the 
observation corresponds to. To achieve this is it necessary 
for the visualisation of every mapped feature to be 
uniquely identifiable. The purpose of this is to keep track 
of the consistency of the data association hypothesis 
throughout successive observation-updates. For example, 
say in time-step k, physical obstacle A is rendered in red, 
i.e. colour is used to uniquely identify mapped features. If 
in the subsequent time-step k+1, obstacle A is now blue, 
then there is obviously a problem as the hypothesis at k+1 
is inconsistent with the hypothesis at k. The system thinks 
the observation of the physical obstacle A now refers to a 
different mapped feature. Traditionally, data association 
has been an error-prone and problematic area of SLAM 
[Neira and Tardos, 2001]. Although recent research 
brought considerable improvements [Bailey and Durrant-
Whyte, 2006], specialised data association algorithms are 
currently being developed for certain applications, such as 
Divide-and-Conquer SLAM [Paz et al., 2007]. This 
ongoing research suggests that the visualisation of data 
association algorithm information is indeed a useful tool 
for SLAM development. 
 Data associations could be shown as text. Each 
real observation and each mapped feature would be 
uniquely labelled; then the associations would simply be 
printed on screen. Research has shown that immersive 
programming environments can be quite effective 
compared to conventional programming environments 
[Osawa et al., 2002]. We therefore suggest a purely AR 
mode or alternatively combining text and AR modes, 
resulting in a fully immersive environment. 
 As explained earlier, the hypothesis h is 
constructed from predicted and actual observations. We 
suggest that both predicted and actual observations should 
be distinctly visualised. Then the programmer can 
explicitly see the discrepancies between predicted and 
actual observations (i.e. the innovation). This makes it 
easier to identify any erratic behaviour, and easier to 
assess the degree of robustness of the data association 
method. Moreover, if the actual observation visualisation 
does not precisely align with the real view obstacle, it 
may be an indication of a sensor malfunction1.  
                                                 

1 Work in [Collett and MacDonald, 2006] deals with 
visualising sensor data with AR.  

 Multi-Hypothesis Tracking (MHT) [Davey, 
2007] is a recent data association technique where 
multiple hypotheses are tracked to produce multiple 
localisation and mapping possibilities. It may be desirable 
to visualise multiple hypotheses, but care must be taken 
not to overwhelm the user with information. Each 
hypothesis represents its own map, and so the AR view 
may become cluttered and overloaded in rendering more 
than a handful of hypotheses. 

[ ]mjjjh ,,, 21 K=

2.4 Observation-Update and Map Maintenance 
There are three elemental outcomes of the data association 
step: matched predictions, unmatched predictions and 
unexpected observations (see Figure 5). Each case has 
slightly different visualisation requirements. Since this 
data is closely related to the data association step, it 
should be visualised in the same way, that is with AR as 
opposed to purely graphical or textual methods. 
 Matched predictions are elements ji of the 
hypothesis h, i.e. those predictions successfully matched 
to real observations. SLAM subsequently uses the 
hypothesis and the real observations to update the 
parameters of the state vector and the covariance matrix. 
Earlier we stated that it is necessary to virtually render 
predicted and actual observations. In addition, it is also 
important to visualise the updated features, i.e. the new 
feature positions updated using the real observations. 
Visualising all three (predicted, actual, updated) feature 
locations will provide the programmer with near complete 
knowledge of the observation-update process, thus 
bridging the cognitive gap between the programmer and 
the robot. In particular, the programmer will be able to see 
how the updated location was produced from the 
predicted and actual feature locations, easily noting any 
inconsistencies. 
 The second possible outcome for a mapped 
feature is that its prediction is not matched to any real 
observation. This could be due to the predicted feature 
being created by spurious measurements or being 
removed from the map (however, often it is assumed that 
the latter can not happen). The usual response in this 
situation is to remove the feature from the SLAM map. 
The AR system needs to ensure the user in fact observed 
the change. In other words it needs to make clear that a 
previously existing feature, if any, was removed from the 
map a moment ago. The reason for this is to communicate 
to the programmer whether the SLAM system 
appropriately handles unmatched predictions. 
 The final possible outcome is the presence of 
observations that do not match any predictions. These 
could be spurious measurements or, more importantly, 
new features that should be added to the map. If the 
SLAM algorithm decides an observation is in fact a new 
feature, this addition needs to be visualised with the AR 
tool. In order to allow the programmer to ensure the 
SLAM algorithm correctly adds new features to the map, 
the AR tool must ensure the user observes any changes.
 There may be an additional credibility indicator 
attached to each map feature. These denote how likely a 
given obstacle is to exist in the environment. Hence 
unmatched predictions may reduce the credibility value 
instead of removing the obstacle. On the other hand 
matched predictions would increase credibility values. If 
credibility values are implemented in the algorithm, it 
would be helpful to visualise them with AR, to verify 
their correct operation. 



3 Application-specific Requirements 
Many recently presented SLAM methods have been 
developed for specialised applications and hence require 
individually tailored visualisations which we outline in 
this section. Visualisation requirements for these systems 
are typically variations of the fundamental requirements 
for SLAM described in Section 2. These are broadly 
divided into algorithms using different map 
representations and addressing computational complexity. 

3.1 Map Representation 
A number of recent SLAM procedures use map 
representations somewhat different from conventional 
ones. Although the representations are different, the aim 
of visualising them with AR remains the same: 
comparison with the ground truth in the real image, in 
order to reveal the discrepancy between true and 
estimated parameters [Durrant-Whyte and Bailey, 2006]. 
Textual or fully graphical methods are generally not 
appropriate here as the real environment is not directly 
perceived. Certain pieces of information may sufficiently 
be represented with text, i.e. differentiating between 
predicted, temporary, permanent obstacles and generally 
labelling them with auxiliary information (see below). 
However, we instead propose to incorporate them into the 
AR view for an immersive and consistent environment. 

In [Ekvall et al., 2007] SLAM has been 
combined with an object detection/recognition system. 
This allows the system to detect predefined objects and 
integrate them into the map for future reference, usually 
for household service tasks. When testing such a system 
with an AR tool it is desirable to appropriately label the 
predefined task-related objects so the programmer can see 
the reliability of the system in operation.  
 ScanSLAM [Nieto et al., 2005] uses dense raw 
scan data to generate features of arbitrary shapes in the 
SLAM map (Figure 6). Systems in [Gutmann and 
Konolige, 1999] and [Newman et al., 2006] use similar 
ideas of map representations generated by arbitrary sensor 
scan patterns. The AR visualisation tool should reflect 
these representations and render the scan patterns as 
obstacles. Trajectory-based SLAM, where the whole 
history of robot poses is maintained, normally associates 
sensor scan patterns to robot poses [Eustice et al., 
2005b;Dellaert and Kaess, 2006]. In this instance the AR 
tool should visualise the trajectory together with the scan 
patterns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Figure 7: Undersea mapping of RMS Titanic in 3D (with 
permission from [Eustice et al., 2005a]) 
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Figure 8: Predicting unexplored areas in P-SLAM. (a) shows the 
explored region. (b) shows the explored region combined with 
the prediction hypothesis. (with permisson from [Chang et al., 

2007])  

3D environment models have become prominent 
as SLAM applications move towards unstructured, 
outdoor environments [Kim and Sukkarieh, 2004;Eustice 
et al., 2005a;Zhang et al., 2007]. As SLAM becomes 
implemented for airborne and underwater vehicles, the 
ability to move in 3D entails a 3D environment model 
(Figure 7). Vision based SLAM typically uses some kind 
of a 3D environment model of salient feature points [Chen 
et al., 2007]. Evidently, an AR visualisation system must 
address these models by visualising the obstacles and the 
robot pose in 3D. However, this could be complex to 
implement, and registration may be more difficult because 
of the unstructured environment. 
 The real world is dynamic in the sense of having 
transient and moving obstacles. SLAM algorithms need to 
be able to deal with that. This could be achieved by 
discriminating between temporary and permanent 
obstacles [Bailey, 2002;Hahnel et al., 2003]. In this case 
the AR visualisation must also depict permanent and 
temporary obstacles differently. An alternative way of 
addressing dynamic environments is by tracking moving 
obstacles [Chieh-Chih et al., 2003]. In this case the AR 
system must track obstacles as they move; moving 
obstacles can not be sufficiently represented with text or 
solely virtual graphics.  
 Finally, the approach in [Chang et al., 2007] 
attempts to predict unexplored areas with the knowledge 
of what has already been explored (Figure 8). If a 
repeating pattern in a region is detected, the system 
hypothesises that an unexplored region has the same 
shape. When testing such a system with an AR tool it will 
be necessary to distinguish between explored and 
hypothesised regions.  
 
 Figure 6: Range-laser data for mapping with ScanSLAM (with 

permission from [Nieto et al., 2005])  



 

 

 

 

 

 

 

3.2 Computational Complexity and Sub-
mapping 

Much work has been done to improve the computational 
complexity of the classic SLAM problem. In this section 
we discuss which concepts of algorithm efficiency would 
benefit visualisation within an AR environment. 
 State-augmentation [Williams, 2001] has been 
proposed to improve the computational complexity of the 
time-update step. Instead of updating the whole 
covariance matrix during the time-update step, only the 
elements that directly involve the robot pose are updated, 
i.e. the covariance and cross-covariance matrices of 
landmarks only, are unchanged. This method suggests the 
AR tool clearly show which covariance elements are 
updated during the time-update step, in order to ensure the 
algorithm is operating correctly.    
 Submapping has become highly popular as a way 
of tackling large-environment SLAM. The idea is to 
divide the global environment map into submaps of fixed 
or varying sizes, with the aim being to reduce the 
complexity by operating within a smaller submap. The 
submaps could possibly be merged into the global map 
after a period of time [Guivant and Nebot, 2001;Knight et 
al., 2001;Paz et al., 2007] (Figure 9), or alternatively the 
submaps could remain separated [Guivant and Nebot, 
2002;Frese, 2006]. For these sorts of approaches, an AR 
tool will need to visualise the submap region boundaries, 
and clarify which features belong to which region, to 
communicate the SLAM map to the programmer. The 
reason is that linearization errors can be significant in 
large environments for some approaches, such as global 
submapping [Bailey and Durrant-Whyte, 2006]; AR 
visualisations will help detect such cases. The argument 
for using AR here instead of text/graphics is the same as 
for other map representations. Multi-robot SLAM [Neira 
et al., 2003;Bryson and Sukkarieh, 2007b] utilises 
submapping; different robots explore different regions to 
build independent submaps which are then joined 
together. The AR requirement here is slightly different. 
Different robots’ poses will need to be rendered uniquely; 
furthermore each robot’s submap and its boundaries will 
need to be distinguishable.  

4 AR system for SLAM visualisation 
In this section the proposed implementation of the AR 
system for SLAM visualisation is briefly outlined. 
Additionally, the AR hardware arrangement to be used for 
testing the system is described. 

 

User SLAM application 

AR-SLAM library 

AR-Dev library 

Figure 10: Implementation outline of the proposed AR 
system 

SLAM data to visualise e.g. pose, 
map, covariance 

Custom visualisation data
Figure 9: Map hierarchy in Divide-and-Conquer SLAM. The 

leaf nodes are local maps and the parent nodes are joined maps 
(with permission from [Paz et al., 2007]) 

4.1 Implementation 
It is intended to implement the AR system for SLAM 
using the functionality provided by an existing AR 
system, ARDev [Collett and MacDonald, 2006;Collett, 
2007]. ARDev is primarily used for visualising robot 
sensor data in mobile robot applications. However it 
provides additional functionality for custom visualisations 
in the context of mobile robotics. Figure 10 shows the 
implementation outline and intended usage. A user’s 
SLAM application will pass the data to be visualised to 
the AR-SLAM library;  for example SLAM pose and map 
information. The AR-SLAM system, using the custom 
visualisation functionality of AR-Dev, will pass the 
required information to AR-Dev to generate the AR 
images. This approach reuses existing functionality of 
AR-Dev, avoiding the need to reimplement it. 

4.2 Hardware 
The system will be tested in a laboratory setup which uses 
a wall-mounted camera, providing video-based see-
through AR. This can be seen in Figure 11. The AR 
system will use a fiducial attached to the robot to track it. 
The camera image with virtual augmentations will then be 
displayed on a wall-mounted screen. An important 
consideration will be registration of the virtual SLAM 
imagery with the real camera image. This will be done by 
aligning the SLAM pose with the robot’s fiducial. This 
will ensure the SLAM map and other data are correctly 
aligned with the real world when rendered. The system 
may be extended to wearable AR displays in the future. 

Figure 11: Hardware arrangement intended for testing

Camera 

Robot Screen



5 Conclusions 
Our research in SLAM development and AR applications 
showed that an AR system that visualises the robot’s 
internal program state and related information can 
improve the testing and debugging of SLAM algorithms. 
In this paper the requirements for such a system have 
been detailed, and these are summarised in Figure 12. 
Fundamental requirements include visualising the system 
state vector, system covariance matrix, plus related 
information on data association and map maintenance. 
Newer SLAM approaches elicit their own particular 
requirements. Non-conventional map representations will 
necessitate visualisations of 3D environments, sensor 
scan-patterns, path trajectories and dynamic obstacles. 
New methods of addressing computational complexity, 
such as submapping, require visualisations of submaps 
and their boundaries. 
 The next step is to implement a prototype of such 
an AR system for SLAM development. Initially we will 
concentrate on satisfying fundamental requirements, and 
eventually expand to add more system specific functions. 
An important consideration will be the choice of 
visualisations for each different type of information. 
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