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Abstract

Augmented Reality (AR) can assist humans in
understanding complex robot information, and
improve Human and Robot Interaction (HRI).
However, many restrictions are imposed by the
underlying technology used and thus have lim-
ited current AR systems to operate in con-
trolled or modified robot environments. This
hinders the wide spread use of AR for differ-
ent robot applications. This paper presents
a markerless AR system that combines recent
tracking and detection techniques for AR vi-
sualisation of robot task relevant information.
We employ natural feature tracking techniques
to compute the camera pose for accurate reg-
istration of virtual objects. Automatic relocal-
isation of the camera pose is achieved using a
planar object detection algorithm which recov-
ers from tracking failures. Experiments using
a camera mounted on a mobile ground robot
demonstrated accurate tracking and successful
recovery of planar features in an unprepared
indoor environment.

1 Introduction

Technological advancement has made it possible to in-
stall a variety of sensors onto a robot platform. Data
produced by these sensors typically come in large quan-
tities and high dimensions which are difficult for humans
to digest in a short period of time. A separate display of
robot information is commonly presented to the users,
however, it places cognitive load on the users as they
are required to mentally relate large disparate sets of
information. AR presents an alternative approach to
the visualisation of complex information in real time.
Real and virtual data can be visualised in a single, co-
herent display. Many researchers have seen the bene-
fits AR visualisation and brought such techniques into
various fields of robotics. AR assists humans to under-
stand robot behaviour and interpret robot data in an

intuitive manner. Robot information, such as sensor,
map, and task relevant data, can be overlaid in context
with the real world environment. This effectively max-
imises the shared perceptual space between the user and
the robot [Collett and MacDonald, 2006]. Application
of AR in robotics has been shown to increase situation
awareness in robot teleoperation, assist robot develop-
ment, and improve Human-Robot Interaction (HRI), as
will be reviewed in Section 2.

Typically marker based tracking methods are used to
track objects to be augmented in an AR scene. Although
these methods are a fast and low cost solution for cre-
ating AR, partial occlusion of the markers or direct ex-
posure to strong lighting conditions may cause track-
ing to fail [Azuma, 1999]. Modifying the environment
to provide markers is particularly challenging in mobile
outdoor environments. Tracking of natural features can
overcome these limitations and scale AR to operate in
unprepared environments. This paper describes a mark-
erless AR system based on tracking of planar features
in the environment. We combine feature tracking and
object detection algorithms to create AR that is able to
recover from erratic motions and occlusions of the cam-
era. Real time performance is achieved through a multi-
threaded system implementation. We apply our marker-
less AR system to assist robot development by enabling
users to arbitrarily introduce virtual objects into the
robot environment for creating test scenarios. A cam-
era mounted on the robot is used to provide real world
images on which virtual objects are overlaid. The visual
feedback describes the world as seen from the robot’s
perspective where virtual objects are accurately regis-
tered in their corresponding geometric locations.

The remainder of the paper is organised as follows:
Section 2 describes related work, Section 3 explains the
problem to be solved, Section 4 details our markerless
AR implementation, Section 5 describes the system de-
sign, and Section 6 presents results and discusses the
limitations.



2 Related Work

This section presents recent markerless AR tracking
techniques and gives an overview of AR applications in
robotics and the underlying technologies.

2.1 Markerless AR Tracking Techniques
Many markerless tracking techniques have emerged re-
cently to facilitate AR in unprepared environments. A
number of these AR systems rely on point feature track-
ing algorithms. In particular, points extracted from
planes in the environment are commonly used for com-
puting the camera pose [Lourakis and Argyros, 2004;
Simon and Berger, 2002]. They have been demonstrated
to operate in various environments, including outdoors.
However, the drawback inherent in point feature track-
ing is that points are easily lost due to sudden camera
motions and occlusions.

Line or edge tracking can be used to overcome the lim-
itations in point tracking systems as lines are less sus-
ceptible to partial occlusions. Line tracking has been ap-
plied in model-based AR systems to achieve robust and
accurate AR registration results [Comport et al., 2004;
Klein and Murray, 2006], but it places a burden on users
to build models of existing objects in the environment
prior to tracking.

An alternative approach for improving the reliabil-
ity of feature tracking is to use highly distinctive fea-
ture descriptors, such as in [Skrypnyk and Lowe, 2004;
Mikolajczyk et al., 2005]. These region based descriptors
enable wide-baseline matching of features that is invari-
ant to scale and rotation. This technique also allows
recognition of 3D objects as well as previously visited
scenes. The downfall normally lies in expensive compu-
tational requirements during feature extraction, which
presents a barrier for these AR systems to perform at
interactive frame rates.

Another solution for localising a free moving cam-
era is to apply visual SLAM [Davison et al., 2007;
Klein and Murray, 2007]. The camera is tracked while a
map of the environment is constructed. Features, such as
points, edges, or descriptors are continuously extracted
as the camera moves around the environment, and the
features’ world positions are iteratively refined. As the
map size grows, the time needed for SLAM updates in-
creases. Thus, the scalability of visual SLAM AR sys-
tems is dependent on the processing power of the host
computer.

2.2 AR in Robotics
AR has long been used to increase the robot operator’s
situation awareness by providing a global view of the
robot environment. Recently, Sugimoto et al. [2005] use
AR to assist remote users in robot teleoperation by syn-
thesizing a virtual robot onto the centre of real world

images captured from the robot’s onboard camera. This
helps the operators to understand the spatial relation-
ship between the robot and the environment. The cap-
tured images are continuously stored in a database and
a selection algorithm picks the most suitable image on
which the virtual robot is overlaid.

Young et al. [2006] use AR to improve HRI by com-
municating robot information through the use of bub-
blegrams, which contain robot status to be visualised to
users wearing Head Mounted Displays (HMD). Haar-like
features [Lienhart and Maydt, 2002] are used to detect
the target robot in the input video image and 2D virtual
bubblegrams are superimposed at a location near the
target robot. No 3D virtual information is introduced,
therefore, the pose of the user’s viewing direction is not
tracked in this case. Dragone et al. [2007] also use AR to
improve HRI by placing virtual characters on top of real
robots to help express robot states through natural in-
teraction modalities such as emotions and gestures. The
user interacts with the robot by wearing a HMD and
the user’s viewpoint is obtained by tracking ARToolkit
[Kato and Billinghurst, 1999] markers attached to the
robots.

Collett and MacDonald [2006] apply AR for debug-
ging robot applications. They overlay virtual informa-
tion such as robot sensory and internal algorithm state
data onto real world images of the robot environment
to provide robot developers better understanding of the
robot’s world view. A fixed overhead camera is used
to track ARToolkitPlus [Wagner and Schmalstieg, 2007]
markers attached to the ground robots in the test envi-
ronment. The pose of each robot can then be computed
and the virtual information is accurately overlaid. A
similar technique is used by Kozlov et al. [2007] to help
robot developers debug Simultaneous Mapping and Lo-
calisation (SLAM) algorithms. Stilman et al. [2005] also
create an AR environment for decoupled testing of robot
subsystems. Results from motion planning and vision al-
gorithms are visualised over real world images provided
by both external cameras and a camera mounted on the
robot. A set of markers is associated to each physical
object in the environment and the markers are tracked
by multiple external cameras to compute the pose of the
objects.

The literature reveals that most of the above AR ap-
plications in robotics rely on markers for recovering the
camera position and orientation. In comparison, we re-
cently propose a markerless AR system [Chen et al.,
2008] that tracks the pose of a camera mounted on a
robotic helicopter using natural features. Under a known
initial configuration between the camera and the ground
plane, a virtual marker is inserted into the scene. The
position of the virtual marker on the image plane can
be continuously updated by tracking natural features in



the environment. The four virtual marker vertices are
used to compute the camera pose in the same manner as
marker-based AR systems. The technique is highly de-
pendent on the number and quality of natural features
being tracked, and AR visualisation can no longer pro-
ceed when an insufficient number of features is tracked.
Accurate tracking of translational camera motions is
achieved but performs poorly under certain camera ro-
tational motions in presence of noisy features.

This paper improves our previous method for marker-
less AR tracking, by applying a combination of state-of-
art tracking and detection algorithms to achieve AR that
allows tracking failures to be automatically recovered for
improved system robustness. The method for initialisa-
tion of tracking is modified, enabling a user to select the
initial tracking points on a plane. We focus the tracking
on the user specified planar region for determining the
camera pose. Another major improvement presented is
the integration of an online learning and detection algo-
rithm for recovering from tracking failures.

3 Problem Description

As we aim to apply AR for robots in unprepared environ-
ments, it is assumed that an external camera overlooking
the robot environment is not available. This commonly
occurs when executing robot tasks in outdoor environ-
ments. An example is the development of aerial robot
applications where a global camera view of the exper-
imental environment can not be obtained, and HMD’s
may not be appropriate since the aerial robot would not
always be in the view of the human user. In this re-
search, we investigate AR visualisation using a single
camera mounted on a moving robot. This can also help
robot development in a number of ways: realistic virtual
objects can be overlaid to test image processing algo-
rithms, obstacles can be introduced to evaluate naviga-
tion tasks, and waypoints can be added to guide robot
teleoperation.

We assume that the target environment contains some
planar structures. This is a reasonable simplification of
the problem, since many applications of robots are in
urban or rural environments and man-made structures
tend to have planar surfaces. The intrinsic camera pa-
rameters are assumed to be known and accurately cali-
brated beforehand.

The problem to tackle is the tracking of the camera
pose as the robot moves around the environment. With
accurate estimates of the physical camera position and
orientation, the pose of the virtual camera can be up-
dated correspondingly. Any virtual objects introduced
should be accurately registered and remain aligned with
the live background video images, appearing as if they
are part of the physical environment.

Natural features in the environment are to be tracked

instead of markers to compute the camera pose. In an
ideal situation, all features to be tracked should remain
within the camera view throughout the whole video se-
quence. However, this does not always happen in prac-
tice. During tracking, features are easily lost due to
sudden rapid camera motions, occlusions, motion blur,
or changes in illumination in the environment. When
tracking fails, virtual objects would become incorrectly
registered or completely lost. Therefore, there is a need
to relocalise the camera whenever tracking failure occurs.
The process should be automatic and avoid any manual
user interventions.

4 Methodology

We combine tracking and detection in the design of our
AR system for improved robustness and camera relocal-
isation capability. We first explain how the camera pose
can be obtained by tracking natural features in the scene.
In particular, points that lie on a plane are tracked. Re-
covery of tracking failure using a planar object detection
algorithm is then presented.

4.1 Feature Tracking for Camera Pose
Estimation

Four co-planar points from the scene are required for
tracking in our markerless AR system. These are se-
lected by the users as they manually choose four 2D
points on the input image that corresponds to a pla-
nar region in the 3D world. Interest points are ex-
tracted from the input positions and tracked using the
Kanade-Lucas-Tomasi (KLT) feature tracker [Tomasi
and Kanade, 1991; Shi and Tomasi, 1994]. We will re-
fer to the tracked co-planar points as KLT points. The
point selection process is performed by the user online
and the camera does not need to be stationary. Tracking
of each feature point will immediately start as soon as it
is selected.

The four points selected on the 2D image plane are
mapped to a rectangle on a planar surface in the 3D
world to obtain their 3D world coordinates using a
method presented in [Simon et al., 2000]. Given that
the 3D world coordinates of the KLT points are now
known and intrinsic camera calibration information is
also available, the camera translation and rotation pa-
rameters can be computed using the pose estimation al-
gorithm given by [Dementhon and Davis, 1995]. AR can
now commence with virtual objects projected onto the
view of the camera, however, it operates in a space with
ambiguous scale. Most often when performing AR in
robotics, it is necessary to upgrade the results to a Eu-
clidean space that corresponds to the scale of the real
world in order to overlay virtual objects, such as range
sensor readings, onto the scene with correct real world
dimensions. To do this, we choose to pre-measure the



length of an edge of the planar target to be tracked for
determining the real world scale.

For more robust computation of the camera pose, Vir-
tual Visual Servoing (VVS) [Marchand and Spindler,
2005] is used to minimise the error in the pose estimates,
which helps to reduce jitter.

4.2 Planar Object Detection
To recover from tracking failure, a fast, scale and
perspective invariant planar object detection algorithm
named “Ferns” [Özuysal et al., 2007], is integrated to en-
able real time recognition of previously selected (trained)
objects. The Ferns detector treats object detection as a
classification task. Ferns takes a Semi-Naive Bayesian
classification approach for recognising features from in-
put images, and the goal is to classify a given image
patch during the detection phase into the most likely
class using simple image tests.

A training phase is required before the online detection
process and is typically performed offline. Keypoints
are first extracted from the target planar object and im-
age patches around the keypoints are warped based on
random affine deformations to generate many possible
appearances of the planar object as seen from different
viewpoints for training. The set of all different views of
an image patch around a keypoint results in a class. A
large number of binary features are required during the
training phase to construct the posterior distributions
needed for classification. Each binary feature simply de-
scribes the difference between the intensities of two ran-
domly selected pixel locations within an image patch.
These binary features are divided into groups, known as
ferns, and during the detection phase, their outputs are
combined to calculate the probability of a given image
patch belonging to one of previously trained classes.

Not all input keypoints need to be matched to those
extracted during the training phase for a successful clas-
sification. Given a sufficient number of matches with
high confidence, the planar object can be detected. This
strengthens the system against partial occlusions.

In our implementation, we deploy the training of the
classifier online in a background thread while KLT track-
ing takes place. Immediately after the four KLT points
are specified, the input image of the scene is stored. The
rectangle formed by the KLT points defines the region
of interest for training using Ferns. Once the training is
complete, planar object detection begins and is used to
correct and recover any KLT points that are lost during
tracking.

4.3 Algorithm Overview
To put the algorithm into perspective, the flow of op-
erations is now described. To initialise the AR system,
the four co-planar points selected by the user are tracked

Figure 1: Decision flow of the markerless tracking and
detection algorithm

using KLT. The region formed by the four KLT points is
stored and used to train a planar object classifier in the
second thread using Ferns. While training takes places,
the augmentation of virtual objects also begins using the
camera pose computed from the KLT points. As soon
as the training is complete, the Ferns detector executes
periodically to correct the positions of the tracked KLT
points.

At any time a KLT point is lost, the algorithm checks
to see whether the corresponding vertex of the planar
region detected by the Ferns detector is still within the
view of the camera. The KLT point is automatically re-
selected if the vertex is visible; otherwise, the vertices of
the detected planar region are used as substitutes for the
computation of the camera pose to allow AR visualisa-
tion to continue. Fig. 1 gives a flow chart of the overall
process.

5 System Design

In our implementation, we separate tracking and detec-
tion in two threads that execute in parallel. This allows



Figure 2: Multi-threaded system design and dataflow

augmentation of virtual objects to proceed over smooth
live video sequences while expensive training and detec-
tion operations take place in the background. Real time
AR is therefore achieved. Fig. 2 illustrates our multi-
threaded system design.

Player Server [Player/Stage, 2008] is a robot develop-
ment software tool that provides an interface to under-
lying hardware on the robot platform. Compressed im-
age data from the camera sensor is transmitted through
Player to the local machine over wireless LAN. The im-
age data is then decompressed and used for tracking and
planar object detection. Once the camera pose is com-
puted, visual augmentation can take place by rendering
the scene from the estimated camera viewpoint using a
3D graphics rendering engine OGRE [2008].

6 Results and Discussions

An experiment investigated the computation times re-
quired by the tracking and the detection components of
the proposed algorithm. A handheld camera was used
to detect and track a target planar object for a period
of 30 seconds. The mean and standard deviation of the
computation times are presented in Table 1. The system
was deployed in Linux on a 2.4GHz Intel(R) Core(TM)2
Quad CPU with 1GB of RAM and a NVIDIA Quadro
FX 3450/4000 SDI graphics card. A Logitech Quickcam
Fusion camera was used to capture live video images in
resolution of 640x480.

KLT Tracking 5 ± 1ms
Ferns Detection 28 ± 4ms

Table 1: Computation time of each algorithm component

It is important to note that the planar object training
process is expensive and can take a considerable amount
of time (up to 1 minute) depending on the size of the
image region being trained. However, this is a one-off
overhead and the process is transparent to the user since
it has no influence on the quality of AR visualisation. A
problem is that if KLT points are lost during this time,
visual augmentation of virtual objects is temporarily lost
until the training is complete. The user can also choose
to save the trained classifier data to skip the training
phase in later experiments with the same planar object.

We also present results corresponding to a video se-
quence of AR which took place in an unprepared indoor
environment. The same camera was used and mounted
on a Pioneer 3DX robot for video capture, see Fig. 3.
The robot was manually controlled to move within a
radius of 2 metres of the tracked target object. We aug-
mented various virtual objects over the planar target and
moved both the camera and the robot around to ob-
serve the target environment from different viewpoints,
see Fig. 4. The frame rate of this experiment was limited
to 9-10 Hz, due to video capture over wireless LAN.

Visual results indicate successful tracking of the planar
target within the specified working area and the virtual
objects remained accurately registered, with an error be-
tween the real and the estimated camera positions mea-
sured to be approximately 0.0118 metres. As the robot
moved around the target environment, the planar target
constantly exited the camera view. The Ferns detector
was able to detect the planar target when it reappeared
and automatically resumed KLT tracking, e.g. Fig. 4(c),

Figure 3: Pioneer 3DX robot with a camera mounted on
the robot arm



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: A barrel, an animated character, and a wood pallet are introduced into the scene. (a) Four points (in
blue) on a planar surface of a box are manually selected and AR begins while training takes place, (b) robot turning
away from the planar target, (c) planar target exits the camera view and augmentation is lost, (d) Planar target
immediately detected when reappeared and KLT points are recovered, (e) & (f) Planar target partially occluded
and AR continues using the estimated positions of the planar region corners, (g) KLT points are again recovered
and tracking is resumed, (h) camera viewing the planar target from a distance, (i) camera viewing the planar target
under different rotations.



4(d). Partial occlusion of the planar target was also ac-
ceptable with small jitters in the visual augmentation.

The results show significant improvements over the
method presented in [Chen et al., 2008]. The new ap-
proach allows AR to commence from any starting camera
position by letting the user to choose the target plane to
be tracked. Tracking is then limited to the selected pla-
nar region, which reduces the likelihood of tracking noisy
features. Accurate and reliable camera pose estimates
are obtained for more effective AR. A static environ-
ment is no longer assumed, since automatic detection of
the target plane will allow AR to resume after tracking
failures from occlusions due to moving objects.

There are a couple of situations that our AR system
can fail. This happens when both tracking and detec-
tion of the planar region are unsuccessful. The first sit-
uation occurs during the training phase of the detection
algorithm as mentioned before. The second is when the
camera observes the target environment from long dis-
tances or at small acute angles between the viewpoint
and the planar surface. Erroneous classification results
are produced by the Ferns detector, and in some cases,
the target object can not be detected. Visual augmenta-
tion is lost if KLT tracking also fails during this period.

7 Conclusions and Future work

We have presented a markerless AR system that tracks
an onboard robot camera using a combination of tracking
and detection algorithms. The user selects four co-planar
points to be tracked which are used for the computation
of the camera pose. During tracking failures, a planar
detection algorithm is applied to recover the lost feature
points and resume AR visualisation.

An experiment was performed using a mobile ground
robot moving in an unprepared indoor environment. Re-
sults show accurate tracking and successful recovery of
planar features. The target planar region is correctly
recognised when returned to the camera view and track-
ing can proceed as normal. Nevertheless, the AR visu-
alisation is temporarily lost when both the tracking and
detection fail. This normally occurs when the camera
exceeds certain viewing angles.

Future work aims to extend the working area of our
markerless AR system. Currently, the working area is
limited to scenes where the planar region is visible within
the camera view. This lowers the usability and scalabil-
ity of the system for robot development. The system
should have the ability to augment virtual objects any-
where the robot moves to. This limitation needs to be
addressed in the future in order to apply our system in
a wider range of robot applications.

References

[Azuma, 1999] Ronald T. Azuma. Mixed Reality: Merg-
ing Real and Virtual Worlds, chapter 21, pages 379–
390. Springer-Verlag, Berlin, 1999.

[Chen et al., 2008] Ian Yen-Hung Chen, Bruce MacDon-
ald, and Burkhard Wünsche. Markerless augmented
reality for robotic helicopter applications. In Proceed-
ings of the 2nd Workshop on Robot Vision, Auckland,
New Zealand, February 18-20 2008.

[Collett and MacDonald, 2006] T.H.J. Collett and B.A.
MacDonald. Augmented reality visualisation for
player. In Proceedings of the 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA
2006., pages 3954–3959, 2006.

[Comport et al., 2004] A.I. Comport, E. Marchand, and
F. Chaumette. Robust model-based tracking for robot
vision. In Intelligent Robots and Systems, 2004.
(IROS 2004). Proceedings. 2004 IEEE/RSJ Interna-
tional Conference on, volume 1, pages 692–697 vol.1,
2004.

[Davison et al., 2007] Andrew J. Davison, Ian D. Reid,
Nicholas D. Molton, and Olivier Stasse. MonoSLAM:
Real-time single camera SLAM. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
26(6):1052–1067, 2007.

[Dementhon and Davis, 1995] Daniel F. Dementhon
and Larry S. Davis. Model-based object pose in 25
lines of code. International Journal of Computer
Vision, 15(1):123–141, June 1995.

[Dragone et al., 2007] Mauro Dragone, Thomas Holz,
and G.M.P. O’Hare. Using mixed reality agents as so-
cial interfaces for robots. In Thomas Holz, editor, The
16th IEEE International Symposium on Robot and
Human interactive Communication, 2007. RO-MAN
2007., pages 1161–1166, 2007.

[Kato and Billinghurst, 1999] H. Kato and
M. Billinghurst. Marker tracking and hmd calibration
for a video-based augmented reality conferencing
system. In Proceedings of the 2nd IEEE and ACM
International Workshop on Augmented Reality, 1999.
(IWAR ’99), pages 85–94, 1999.

[Klein and Murray, 2006] Georg Klein and David Mur-
ray. Full-3d edge tracking with a particle filter. In
Proceedings of the British Machine Vision Conference
(BMVC’06), volume 3, pages 1119–1128, Edinburgh,
September 2006. BMVA.

[Klein and Murray, 2007] Georg Klein and David Mur-
ray. Parallel tracking and mapping for small AR
workspaces. In Proceedings of the Sixth IEEE and
ACM International Symposium on Mixed and Aug-



mented Reality (ISMAR’07), Nara, Japan, November
2007.

[Kozlov et al., 2007] Alex Kozlov, Bruce MacDonald,
and Burkhard Wünsche. Towards improving slam al-
gorithm development using augmented reality. In Pro-
ceedings of the Australian Conference on Robotics and
Automation, 2007.

[Lienhart and Maydt, 2002] R. Lienhart and J. Maydt.
An extended set of haar-like features for rapid object
detection. In Proceedings of the 2002 International
Conference on Image Processing., volume 1, pages
900–903, 2002.

[Lourakis and Argyros, 2004] M.I.A. Lourakis and A.A.
Argyros. Vision-based camera motion recovery for
augmented reality. In CGI ’04: Proceedings of the
Computer Graphics International (CGI’04), pages
569–576, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[Marchand and Spindler, 2005] E. Marchand and
F. Spindler. Visp for visual servoing: a generic
software platform with a wide class of robot control
skills. IEEE Robotics & Automation Magazine,
12(4):40–52, 2005.

[Mikolajczyk et al., 2005] K. Mikolajczyk, T. Tuyte-
laars, C. Schmid, A. Zisserman, J. Matas, F. Schaf-
falitzky, T. Kadir, and L. Van Gool. A comparison of
affine region detectors. International Journal of Com-
puter Vision, 65(1-2):43–72, 2005.

[OGRE, 2008] OGRE. Ogre 3d : Object-oriented graph-
ics rendering engine., 2008. http://www.ogre3d.org.
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