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ABSTRACT

Second-order tensors are a fundamental entity in engineering, physical sciences and biomechanics.
Examples are stresses and strains in solids and velocity gradients in fluid flows. The visualiza-
tion of tensor fields improves the understanding and interpretation of tensor data and is therefore of
paramount importance for the scientist. This paper gives an introduction to the definition and visu-
alization of stress and strain tensor fields suitable for the Computer Scientist. Several visualization
methods for tensor fields are introduced with a simple example.

1 Introduction

During the past few years, physically based modelling has emerged as an important
new approach to computer animation and computer graphics. An important subfield
is the modelling of elastic bodies, which among others are used in computer anima-
tion [5] and surgical simulation [6]. A mathematical description of elastic bodies
is given by the theory ofelasticity, which is the study of the deformation of a solid
body under loading together with the resulting stresses and strains.

Stresses and strains are important since they are related to material deformation
and material failure. Unfortunately stresses and strains are tensors having the same
complexity as matrices. Large amounts of tensor data are hence difficult to interpret.
The visualization of tensor fields improves the understanding and interpretation of
tensor data and is therefore of paramount importance in the fields of engineering,
medicine, and biomechanics.

In this paper we give an introduction to the definition and visualization of stresses
and strains suitable for the Computer Scientist without an engineering background.

2 Notations and Definitions

For simplicity we use a rectangular Cartesian coordinate system with the base vec-
torse1, e2, ande3. Vectors are written in small bold Latin letters and tensors in cap-
ital bold Latin letters or small bold Greek letters. We only deal with second-order
tensors which are linear transformations between vectors and can be represented by
matrices.

An important property of ann-dimensional symmetric tensorT is that there are



alwaysn eigenvalues�i andn mutually perpendiculareigenvectorsvi such that

Tvi = �ivi i = 1; : : : ; n (1)

3 Displacement and Strain

An elastic body under an applied load deforms into a new shape. We want to find
a mathematical description for the displacement the body undergoes. For a one-
dimensional example consider a thin rubberband as pictured in figure 1. Two ar-
bitrary pointsP andQ are marked at positionx andx + �x, respectively. After
deformation these points move to positionx+ u andx+ u+ �x+ �u, respectively,
whereu is called thedisplacement. The total length increase between these points is
�u. Thestrain is now defined as the increase per unit length, i.e., the displacement
gradient, which in one dimension is defined as

�x = lim
�x!0

�u

�x
=

du

dx

In higher dimensions the situation is more complicated. Figure 2 shows a body
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Figure 1:A rubberband before (a) and
after (b) stretching
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Figure 2:A body before and after
deformation.

before and after deformation. The pointsP andQ undergo deformation such that
they arrive in positionx0 = x+u(x) andx0+dx0 = x+dx+u(x+dx), respectively,
whereu is called thedisplacement field.

In order to understand the deformation we consider how two neighbouring pointsP
andQ change in relation to each other. We have

dx0 = dx+ u(x+ dx)� u(x)

which can be written as [4]

dx0 = dx+ (ru)dx

where the second-order tensor

ru =

0
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is known as thedisplacement gradient.

It can be seen that ifru = 0 thendx0 = dx and the motion in the neighbourhood
of pointP is that of a rigid body translation. The information about the material de-
formation aroundP is contained inru. In order to define an entity which contains
information about deformation without rigid body rotation consider two material
vectorsdx1 anddx2 issuing from pointP . Their dot product can be shown to be
([4])

dx01:dx
0

2 = dx1:dx2 + 2dx1:E
�dx2

where the symmetric second-order tensor

E
� =

1

2

�
(ru) + (ru)T + (ru)T (ru)

�

is theLagrangian strain tensor. Note that ifE� = 0 the lengths and angles be-
tween the material vectorsdx1 anddx2 remain unchanged, i.e., the deformation
ru around pointP is an infinitesimal rigid body rotation. The components ofE

�

are

E�

ij =
1
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For small deformations the displacement gradients@ui=@xj are small and the quadratic
term ofE� can be neglected giving thestrain tensor

�ij =
1

2
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!
(2)

Lai et al. show [4] that for small values�ii can be interpreted as the unit elongation
of a material element in thexi direction and2�ij, i 6= j can be interpreted as the
decrease in angle between two material vectors initially in thexi andxj directions.

Note that by definition the strain tensor� is symmetric. The eigenvectorsv1, v2,
andv3 of � are theprincipal directionsof the strain, i.e., the directions where there
is no shear strain. The eigenvalues�1, �2, and�3 are theprincipal strainsand give
the unit elongations in the principal directions. The maximum, medium, and min-
imum eigenvalue are called themaximum, medium, and minimum principal strain,
respectively.

The meaning of the principal directions is illustrate in figure 3 which shows a body
before (solid lines) and after (dashed lines) a deformation calledpure shear. The
eigenvectors of the corresponding strain tensor at any point are given byv1 andv2.
It can be seen that the small square region axis-aligned withv1 andv2 is deformed
into a rectangle, i.e., it does not experience a shear strain.

The importance of the shear strain is illustrated in figure 4 which shows two blocks
of woods under a uniaxial load. The block in (a) has the wood fibers axis aligned
with the direction of the load, whereas in (b) the wood fibers are aligned with the
direction of the maximum shear strain given by the diagonal lines separating the
blocks. It is intuitively clear that the block in (b) is more likely to fail under the
applied load.
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Figure 3: Principal stretch axes
of a deformed body.
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Figure 4:Shear strain in a block of wood.

4 Stress

The previous section gave a purely kinematical description of the motion and de-
formation of an elastic body without considering the internal and external forces
causing it. Internal forces are body forces acting throughout the body (e.g., gravity)
and external forces are surface forces acting on a real or imagined surface within
the body. The surface force at a point of the surface is described by astress vector.

Consider a planeS with normaln at a pointP of the elastic body as shown in
figure 5. Let�f be the force acting on a small area�A containingP . The stress
vectortn atP is defined as

tn = lim
�A!0

�f

�A

In classical continuum theory the resulting stress vector is the same for all surfaces

A∆P S

n
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Figure 5: Definition of a stress
vector.
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Figure 6:Stress components of a tensor.

through pointP with a tangent planeS in P , i.e., it is independent of the surface
curvature. It can be shown ([4]) that the stress vector acting on any plane with
normaln throughP can be expressed as

tn = �n

where the linear operator� defines thestress tensorin P .

To interpret the components of the stress tensor� consider an infinitesimal small
axis-aligned cube as shown in figure 6. The stress tensor components�11, �12, and
�13 are the components of the stress vectorte1 . The other components of� are



interpreted similarly. We call the diagonal elements�11, �22, and�33 the normal
stressesand the off-diagonal elements�12, �13, �23, �21, �31, and�32 the shear
stresses. By using the conservation of momentum equation it can be shown that�

is symmetric for most materials [4].

As for the strain tensor the three eigenvectors of the symmetric stress tensor�

give theprincipal directionsof the stress. The eigenvalues of� give theprincipal
stresses. Each principal direction gives the normal direction of a plane on which the
shear stresses are zero and the normal stress is theprincipal stress.

5 Visualization of Tensor Fields

The major sources of material failure in structural mechanics are stresses and strains.
For an idealized isotropic and homogeneous material failure will occur if the max-
imum principal stress reaches a material dependent critical value. In practice com-
plete knowledge of both the stress and the strain tensor fields is necessary to predict
the material behaviour. For example, Aspden and Hukins [7, chapter 8] relate shear
strains to fatigue syndromes in bone material whereas Rappitch et al. [3] compare
wall shear patterns of the arterial wall with clinically observed disease patterns.

The difficulty of interpreting tensor data arises not only from the usually large size
of the data sets but also from the fact that each tensor is represented by a matrix.
The aim of tensor field visualization is therefore to transform these large amount of
data into a single image which can be easily understood and interpreted by the user.

Two useful tools in visualizing data aredata transformationanddata reduction.
Data transformation retains all the information in the data but presents it in a differ-
ent form. As an example we have already presented the transformation of a tensor
into its eigenvectors and eigenvalues. Data reduction on the other hand extracts only
partial information from the original tensor data and so gives an incomplete repre-
sentation. Examples of vector data obtained by reducing tensor data are principal
stresses or strains together with the corresponding principal direction. Other useful
vector data are thesurface traction vectorand the maximum shearing stress. Scalar
data obtained by reducing tensor data includes: any principal stress or strain, the
maximum shearing stress or strain, and the strain energy per unit volume [2].

6 Examples

In this section we explain several methods for tensor field visualization with the help
of a standard problem in structural mechanics. We implemented aFinite Element
Methodmodeller and various visualization algorithms to solve and visualize two
and three-dimensional problems in linear elasticity. An an example we consider a
plate with a hole under uniaxial load iny direction as shown in figure 7 (a). To make
the resulting fields more interesting the plate is thickened around the hole. Because
of symmetry we model only one quarter of the original plate (b).

A snapshot of our modelling and visualization toolkit is shown in figure 8. The
model from figure 7 is shown in white solid lines and consists of 10 finite elements.
For better results an automatic refinement algorithm can be applied before solving
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Figure 7:Plate with a hole. Figure 8:Snapshot of the tensor field visualiza-
tion toolkit.

the FEM problem. Figure 8 visualizes the maximum principal stress on the surface
bisecting the model inz-direction. The colour spectrum used interpolates piecewise
linearly between white-yellow, saturated yellow, saturated red, saturated blue and
blue-black. It is clearly visible that the maximum principal tensile stress on that
surface occurs at the back of the hole. Note that the linear colour map used makes
it very difficult to differentiate stress values and stress contours on the surface. An
improvement is achieved in figure 9 by defining a cyclical colour map and mapping
the scalar data over eight colour cycles.

Figure 9:Maximum principal stress visualized
with a cyclical colour map.

Figure 10:Tensor ellipsoids.

In order to evaluate the impact of an applied load knowledge of the stress direc-
tion is important. The full tensor information at discrete points is given bytensor
ellipsoidsshown in figure 10. The directions and lengths of the principal axes of
a tensor ellipsoid are given by the eigenvectors and eigenvalues of the tensor, re-
spectively. We additionally visualize the sign of each eigenvalue by using blue for
a negative value (compressive stress) and red for a positive value (tensile stress).
Figure 10 shows that the tensile stress at the back of the hole is tangential to the



hole surface. Together with the information obtained by the colour mapped surface
we can therefore conclude that the plate will most likely fail at the back of the hole.

Using many tensor ellipsoids close together leads to visual cluttering. This problem
can be prevented by usinghyperstreamlines[1] which contain the full tensor infor-
mation along a continuous line. The trajectory of a hyperstreamline is an integral
curvex(s) satisfying

dx

ds
= v(x) (3)

wherev is one of the eigenvector fields of the tensor field. The other two eigen-
vectors and corresponding eigenvalues define the axes and length of the ellipsoidal
cross section of the hyperstreamline. The eigenvalue corresponding to the eigenvec-
tor defining the trajectory is colour mapped onto the surface of the hyperstreamline.
An example is given in figure 11. The narrowing in the hyperstreamline indicates
the area where the medium principal stress switches sign.

Figure 11:Stress field visual-
ized by two hyperstreamlines.

Figure 12: Tensor particles visualizing the maximum
principal stress.

As a new visualization method we present tensor particles. Distributing the particles
randomly over the domain gives a good impression of the stress field. Particles
can be colour coded by any of the principal stresses or any other derived entity.
Using tensor particles figure 12 reveals that the maximum tensile stress occurs at
the bottom of the back of the hole. The plate will therefore most likely crack in
that area. Moving the particles along the gradient of a principal stress field and
constraining them to user defined isovalues defines isosurfaces. An example is given
in figure 13. At the moment we are implementing interactive methods to expand
selected particles into tensor ellipsoids or, by tracing, into tensor streamlines and
hyperstreamline.

7 Conclusion

We have presented a simple introduction to stress and strain fields as they occur
in elastic bodies. An understanding of the stresses and strains in a body is impor-
tant in engineering, medicine, and biomechanics since they are the major source of
material failure and are necessary for the understanding of organ function [2].

Interpreting large amounts of tensor data is difficult, though, since a tensor is equiv-



Figure 13:Systems of illuminated and oriented par-
ticles visualizing isosurfaces.

Figure 14:The heart model.

alent to a matrix. As a solution we have presented several old visualization methods
for tensor fields, and one new one.

Our work was motivated by the Bioengineering Research Group of the University
of Auckland which uses a combination of mathematical modeling and experimental
results to construct a model of a canine heart (fig 14). We are currently extending
our FEM modeller and visualization toolkit to deal with the tricubic elements used
in the model. Visualizing the stress and strain fields in the heart can be used for
diagnosis, surgical planning, and the evaluation of the success of surgery.
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