

 53

RCA: Experiences with an IDE Annotation Tool
Richard Priest and Beryl Plimmer

Department of Computer Science
University of Auckland, Private Bag 92019

Auckland, New Zealand
rpri032@ec.auckland.ac.nz, beryl@cs.auckland.ac.nz

ABSTRACT
Ink annotation is a common method for recording feedback
on a paper document. However, reviewing code on paper is
difficult due to its non-linear nature. This project extends
existing research ideas to develop a digital ink annotation
tool within an Integrated Development Environment (IDE).
The aim is to provide code reviewers with an effective tool
for directly commenting on code within the IDE. We
describe scenarios where ink annotation would provide
benefits, along with requirements and our implementation
of the Rich Code Annotation Tool (RCA).

Author Keywords
Ink Annotation, code review support, pen-base interaction

ACM Classification Keywords
H5.2. Information interfaces and presentation: User
Interfaces. - Graphical user interfaces

INTRODUCTION
Annotating documents with a pen is a natural way to record
comments and emphasize parts of the document. Digital ink
annotation is emerging as a way to support annotation over
digital documents. Existing research suggests people enjoy
the added functionality that a digital ink environment
provides [18, 19, 23]. We are interested in whether this
success extends to annotating program code within an
Integrated Development Environment (IDE). There are
major technical challenges to overcome when developing
annotation tools including re-flowing the digital ink when
the underlying document changes [5, 10, 16, 22] and the
tangibility factors associated with traditional annotation
[25].

To evaluate whether ink annotation is a useful tool when
used within an IDE, we developed the
‘RichCodeAnnotation’ tool (RCA) which makes it possible

to use digital ink annotation in the code editor of an IDE.
This approach to reviewing code offers the advantages that
are consistent with typical code review processes, as
explained by Fagan [8]. However this tool offers additional
advantages. As the tool is integrated into an IDE, we retain
all the benefits that the underlying code editor has to offer
such as object-definition searches, font properties,
debugging and execution of code and existing wizards.
Code is non-linear, it is arranged in logical classes and
procedures that are not intended to be read sequentially like
a book. Therefore simply printing out code and annotating
with a red pen makes the review process more difficult as
the IDE navigation support is not available. Text comments
can be added to code however digital ink stands out from
the underlying document making the annotations easy to
distinguish from the original code. As we want both inking
and IDE support, digital ink is an appropriate approach.

This tool provides benefits in five distinct code reviewing
scenarios. First, in a classroom the teacher can explain code
in an IDE and annotate it to emphasize particular points.
After the lecture, the teacher can make the annotated code
available to the students. Second, markers can add
comments to students’ assignments to indicate what code
works correctly, where they went wrong and give an overall
mark. Third, commercial software development teams can
use ink annotation during formal inspection meetings. For
example a group of developers and testers can discuss a
piece of code and use colored ink annotations to
distinctively indicate different types of coding errors e.g.
security, logic, efficiency and syntax errors. These issues
when marked directly on the code with digital ink can be
sent back to the developer for adjustment and also form part
of the software development artifact. Fourth, this tool can
be used by developers to comment their own code, much as
they would with keyboard text. Commenting using ink
annotation allows the developer to work in a relaxed setting
e.g. on a couch, a beach or a plane. Finally this tool can
support developers conducting self or peer-reviews of their
implementation. The code could be advertised on an online
forum where friends, mentors and coding fanatics illustrate
bugs with red digital ink much like traditional markup on
paper essays.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Chinz’06, July 6–7, 2006, Christchurch, New Zealand.

Copyright 2006 ACM 1-59593-473-1

 54

In the next section we present a summary of related work.
These, together with the scenarios above, are used to define
a set of requirements for a code review annotation tool. The
implementation section describes our realization of these
requirements as RCA and a brief evaluation is given. We
conclude with a discussion and the future plans for this
work.

RELATED WORK
One of the first tools developed to explore digital ink
annotation was Wang Freestyle [9]. It provides the user
with simple free-form ink annotation over a static page,
without computation. XLibris [25] was developed to offer
users an active reading experience, with a main goal of
overcoming the tangibility challenges of reading online
documents. It provides users with an interface and features
similar to that of paper. Again this system only deals with
static documents, though it has been extended [10] to
support reflowing and reshaping of digital ink when the
underlying layout changes. Margin bars, circles and
underlines stretch or shrink when the underlying layout
changes through font resizing, zooming or varying device
characteristics. Annotations also reshape when underlying
text splits over line breaks and page breaks.

With the experiences researchers gained from the reflowing
extension of XLibris and the reflowing support within
Microsoft Word [17], PREP editor [21] and DIANE [4],
methods were investigated to support robust positioning
that handles text changes in the underlying document [2, 5,
24]. One successful idea is based on grouping annotation
strokes according to the spatial and temporal relationships
between the strokes and then anchoring the annotation to a
portion of the text or a line.

A web annotation tool [24] successfully reflows digital ink
annotations on dynamic web pages. It uses W3C’s
document object model DOM [27] to map digital ink to text
and images. The tool also supports ink gestures which are
specific ink strokes used to invoke functions (such as copy).

Ink annotation of code has been used successfully in a
Computer Science course at the University of Alaska,
where code was prepared before class then annotated in
front of students during class time, thus replacing the
traditional blackboard [18]. These notes could then be
placed on the course web page for future reference.
However the annotations are not directly available in the
IDE. A similar system links a Tablet PC wirelessly to a data
projector, allowing the lecturer to walk around the room
while annotating [1]. There have also been several studies
where students use Tablet PCs to annotate the lecture
material collaboratively, sharing their annotations with
others in the class [12, 26]. This gives students several
different perspectives on the material from other students.
These annotations can then be stored and used for revision
in the future.

With the increase in online assignment submissions across
many universities, Penmarked [23] was designed to be used
by academic staff to mark digital documents. Once students
have submitted their assignments, the marking system
allows for digital ink annotations to be made directly on the
student’s submission. The system also handles multiple
files within an assignment, displaying each in a tabbed
window. This system also contains a marking schedule that
is attached to each student’s submission. The marking
schedule consists of marking criteria each with a maximum
and minimum value, and an input panel for the marker to
allocate marks. The Penmarked system only deals with
static documents, yet this is acceptable because assignments
are finished documents and won’t be modified. As the
system opens the files as text documents, it does not
provide the support offered within an IDE. Most
importantly it doesn’t allow the assignment to be directly
compiled and run, it also doesn’t include the coloring
scheme found in most IDEs for color coding of keywords.
Marktool [11] provides a similar approach but uses drag-
and-drop shapes and text boxes for the annotation. Gild
[20] provides similar marking functionality with in the
Eclipse IDE but does not support digital ink annotation.

In industry technical review procedures [13], developers
submit code to their project managers, and then a team of
reviewers is organized. Each team member first conducts
an individual private review of the code. Once all private
reviews are completed, all of the issues raised by all of the
participants are consolidated and made public. Participants
next review the issues raised by others. Once the issues
have been understood a group meeting is held where the
reviewers discuss all issues and decide on each issue’s
severity. After the group meeting a review report is created;
it lists all issues identified during the review process along
with their locations, severity and error type. Finally this
report is given to the developer to resolve the issues.
Research has shown this significantly reduces errors and
reduces the cost of resolving future errors. In fact in some
cases this procedure worked so well that traditional testing
was made obsolete [14]. However with most reviews of this
kind, the code is printed out and distributed, or a copy of
the program is distributed, and participants list issues on
paper or in a text editor. Consolidating individual private
issues into a distinct list of public issues is done manually
by the project manager. The creation of the review meeting
report is also done manually. Hence the process can be seen
as time consuming: this is one of the main reasons given for
not performing a formal review process.

The existing annotation tools and code review scenarios
above provide evidence that an ink annotation tool within
the IDE may prove useful for highlighting important points.
Annotating in the IDE preserves existing functionality that
helps the reviewer interpret the code. In particular the IDE
assists navigation through code in a non-linear manner and

 55

makes reading the code easier with the keyword coloring
schemes.

REQUIREMENTS
To develop an ink annotation tool within an IDE we
formulated a set of basic requirements. Our prototype will
need to incorporate these for the tool to be successful in
different code review settings. This section presents an
outline of the requirements and their associated benefits.
Principally: the IDE must be extensible; the ink must be
freeform, preserved and modifiable; each set of ink strokes
must be grouped such that the ink can be reflowed; ink
groups must also include an indicator representing the
severity of each issue; finally this tool must work
seamlessly with the IDE.

Extending the IDE
To incorporate ink annotations the chosen IDE needs a way
in which it can be extended. Some IDEs are open-source,
for example Eclipse [7], where the code can be downloaded
by anyone and edited to add the required functionality.
Other IDEs allow the developer to create ‘Add-ins’, for
example .NET [3] where the application allows the user to
write supplementary code that is incorporated when the
IDE starts up.

Free-form Ink Annotation
Ink annotation is free-form and may consist of words,
symbols and text selection marks. Such markings may be
made anywhere; without limitation on shape or content
[25]. This is usually achieved by attaching a transparent ink
overlay over a window. As the underlying window scrolls,
so to does the transparent window that holds the digital ink.
This gives the illusion that the digital ink is attached to the
underlying text.

Integrating into the IDE
The code annotator must integrate seamlessly into the IDE
so that it does not add an overhead to the review task.
Integrating the ink file directly into the project allows the
IDE to perform as normal while supporting code
annotation.

Persistence of the ink is an important function the tool
needs to handle. If a user selects a source file to ink over
and no ink file exists, then a new ink file needs to be
automatically created and stored as part of the development
project. Once a reviewer has finished annotating the code,
the ink needs to be saved, allowing the developer or others
to view the annotations at a later date. The tool must also
load ink files directly into the project. Whenever the IDE
loads a code file, a search for its corresponding ink file
would follow.

Modifying Digital Ink
With traditional pen and paper, once the user has marked
on the script with red ink, it is difficult to alter this ink.
Modifying existing ink involves concealing or crossing out
the ink then rewriting the annotation, which looks messy.

Digital ink offers a computerized approach allowing users
to efficiently and cleanly erase, select, move and recolor
ink.

Reflowing Digital Ink
Code within an IDE is not fixed; therefore when the code is
altered the existing digital ink must also be reflowed to
remain consistent with its underlying context. In order to
reflow digital ink, each set of strokes must be grouped to
form an annotation issue and each annotation linked to a
specific part of the document. When the underlying code
moves up/down because of insertions or deletions to the
code, then the corresponding annotations must also be
moved. Grouping strokes is most successful if both the
location properties and the time between strokes are
considered [2, 28].

When reflowing code we need only consider moving digital
ink up or down: it is rarely necessary to alter the ink
horizontally for two reasons. First, each code line involves
a strict structure; this means a code line can not be re-
arranged like a sentence. So once a code line is written, if it
is substantially re-written the line would probably look
rather different and the digital ink context is lost. Second,
minor amendments may result in the digital ink being a
little offset from its original code context. However
research has shown [2] slightly offset ink annotations are
not a significant problem. For these reasons, reflowing
efforts in this tool concentrate on vertical repositioning of
the digital ink.

Issue Severity
Assigning a severity rating to an issue during a technical
review meeting is a common practice [8, 13]. This is also a
convenient feature to use during a self or peer-review.
When an ink annotation is made, it signifies there is an
issue with that portion of code; an issue could be a negative
statement that implies a defect or positive feedback. When
reviewers locate a defect, they may want to attach a
severity rating to the issue, in terms of low, moderate or
high. The severity indicators represent to the developer the
seriousness of each issue, which can be used to decide what
issues need most attention. The indicator could also be used
to tick off resolved issues.

This severity scheme may also be useful for assignment
markers in an educational setting, where the severity of
defect correlates to the number of marks deducted. The
marker could use the ‘resolved’ severity to indicate positive
feedback for certain portions of code. In a teaching
environment, the indicators could be used to denote the
importance or relevance of certain lines of code.

Multiple Code Windows
Most software programs involve multiple source files. IDE
frameworks accommodate this by providing a separate
tabbed window for each code file, allowing developers to
iterate easily through each individual file. An annotation
tool incorporated into an IDE must also manage users’ ink

 56

annotations over these multiple files. This must be efficient
as users frequently switch between different files to follow
the path of execution.

IMPLEMENTATION
We decided to developed RCA within the Visual Studio
.NET 2005 IDE (VS) as a plug-in, because VS supports a
wide range of different languages. The languages supported
include C++, C# and VB, which are all taught in our
computer science department.

RCA was designed for use on tablet PCs; however it can
also be used on desktop computers with the aid of a tablet

USB input device. RCA is implemented in C# using both
the Microsoft .NET extensibility model and the Microsoft
Ink API. The extensibility model provides access to the
underlying information on the IDE framework, such as a
list of all the open windows and their types and content.
This content includes the text within code windows, the
text’s font and line numbers. A range of IDE event
notifications are also available (e.g. documentOpened and
documentSaved, lineChanged and windowActivated.). The
ink API supports collection, selection and manipulation of
digital ink, and notification of inking events (e.g. InkAdded
and InkDeleted, SelectionMoved and SelectionChanged).

Figure 1 RichCodeAnnotation in Visual Studio .Net

We have implemented an ‘Ink’ window in the IDE (figure
1). When a user brings up the code file, and selects ‘ink
mode’ from the ink toolbar, a new ink window is created
based on the current code window (if not already created).
The user edits the source file in the code window and
annotates over the source file in the corresponding ink
window.

Below we describe the seven main features of RCA:
extending the IDE to create an ink window; linking
annotations to a specific line; grouping ink into an
annotation; editing ink; reflowing ink as the underlying
code is modified; saving and loading ink and registering
issue severity.

Ink Window Extension
We explored three approaches to ink windows. We tried to
add a transparent overlay to hold the digital ink to each
code window. We also tried to create a new associated ink
window much like an associated ‘design’ window for a user
form in a .NET windows application. Both approaches were
difficult to implement due to the limitations of the
extensibility model. However, these approaches maybe
more successful if the IDE code is accessible and
modifiable (such as Eclipse).

The third approach was to create a distinct tool window
control that holds ink, much like the ‘Shim Control’
example in [6], was adopted. The text in the code window

 57

is copied to the ink window where it can then be annotated.
The drawback with this approach is that when the code in
the source file window is changed, then code in the ink
window must also be refreshed to maintain consistency.

Linkers
The linker concept is used to link a group of ink strokes to a
specific line. When the mouse/pen cursor resembles a hand,
the system is in ‘linker mode’. In ‘linker mode’ there are
three available actions: either a line or a circle to create a
link to a particular line of code, or ink that hits an existing
annotation. These actions automatically change the mode to
‘inking mode’ and the mouse/pen pointer resembles a pen.
Annotations in ‘inking mode’ are attached to the linker
stroke and are free-form.

If the linker is recognized as a line, the corresponding
annotations are attached to the code line closest to the start
point of the linker. A line is differentiated from a circle by
having the start point touching the left border of the
bounding box (there is usually no room in the left-hand
margin of a code window) and the last point of the stroke
touching the right border of the bounding box as shown in
figure 2.

Figure 2 Line linker

If the linker is recognized as a circle then the corresponding
annotations are attached to the line closest to the mid-point
of the circle’s bounding box. A circle is recognized by
having the distance between the first point and last point
less than the hypotenuses of 25 percent of the bounding
box’s width and height. That is the length ab must be
smaller than the length ''ba as shown in figure 3.

Figure 3 Circle Recognized

If the system is in ‘linker mode’ and the user taps on an
existing annotation, then that annotation group is selected
and the interface changes to ink mode. New strokes are
joined to the selected annotation.

Ink Grouping
The annotation strokes must be grouped and attached to a
linker to allow the system to automatically reflow the

digital ink when the underlying code changes. The grouping
of ink strokes is decided based on the spatial and temporal
properties of strokes [2, 28].

Spatially adjacent strokes are considered to be in the same
group. This idea is used in two ways:

• if the user is in ‘linker mode’, he/she can click on an
existing annotation. Then new strokes are joined to the
selected annotation.

• if the user is in ‘ink mode’ and a stroke is made outside
the annotation region, even though we are in ‘inking
mode’, the stroke is considered a linker for a new
annotation group. This is because annotations made a
significant distance away from the current annotation
generally represent a new annotation.

Temporal grouping suggests a stroke made shortly after the
previous stroke is likely to be part of the same annotation
group. Consider when a user annotates ‘Incorrect’, once the
user writes ‘I’ the ‘n’ stroke is made shortly after, and
therefore should be in the same group as ‘I’, the same idea
works for multiple words and associated diagram strokes.
Research has shown that the average time between strokes
of the same annotation is approximately 500ms [10].
However, this system uses two seconds between annotation
strokes to allow for the user’s thinking process. After this
time the mode changes from ‘inking mode’ back to ‘linker
mode’. The interface indicates the mode change to the user
by changing the pen cursor to a hand.

Ink Editing
Ink editing is an important part of any ink annotation tool:
one of the advantages of digital ink is that it is easy to alter
ink properties and modify existing ink strokes [23]. We
support moving annotations by selecting the appropriate
linker (using the ink toolbar); this selects all the strokes
attached to this linker’s annotation. When the annotation
group is moved, the group is re-attached to an appropriate
line based on the new location of the linker.

Ink strokes can be erased by selecting the eraser from the
ink annotation toolbar. If the stroke selected is not a linker
then the stroke is simply removed. If the stroke is a linker,
the entire annotation is erased. We decided that users must
confirm their decision when deleting a linker, as removing a
linker also removes its corresponding group of ink
annotations.

Ink strokes can be written in different colors as annotation
research shows annotators like to use specific color codes to
indicate different types of issues [15]. When the user wants
to change the ink color, he/she can do so using the color
dialog box provided in the toolbar.

Ink Reflow
Ink reflow is necessary in an annotation tool if the
underlying document is dynamic [23, 25]. When dealing
with text editing tools there is a definite need for reflowing
the digital ink [17, 24]. As code is line-based we have
concentrated our efforts on vertical reflow. We handle this

 58

situation by picking up the LineChanged event which fires
whenever a line of text is changed. This means the tool
must handle 4 situations.

• If no lines are added or removed then we don’t need to
reflow the existing digital ink.

• If x lines are added at line y, then all annotations below
line y must move down x lines.

• If x lines are deleted ending at line y, then all annotations
below line y must move up x lines.

• Any annotation that exists within deleted lines must also
be deleted.

Saving/Loading
When a code document is opened a search for its
corresponding ink document is made. If an ink document
exists then it is also opened. When a code document is
saved, either by the user or when the IDE closes, any
corresponding ink document is also saved.

The name assigned to an ink document is automatically
derived from the name of its corresponding code document.
For example if a code document is named ‘HelloWorld.cs’
then its corresponding ink document would contain the
same name but with an extension of type ‘ink serialized
format’, hence being ‘HelloWorld.isf’. This file is stored in
the solution’s project directory in a folder called
‘Ink_Files’.

Issue Severity
An issue’s severity is indicated using a symbol within the
gray margin bar of the ink document and looks similar to a
breakpoint or bookmark. The symbol’s color is changed
with a tap or click; iterating through green, yellow, orange
and red. The green indicator can be used to indicate either a
positive comment or that the issue has been ‘resolved’ by
the developer. The other symbols can be used to represent
low, medium and high severity respectively.

When a line is annotated in the ink window a bookmark
symbol is attached to the corresponding line in the code
window. Then when the user is in the code window a
bookmark indicates an ink annotation may be associated
with this line. This approach allows the user to keep track
of where the annotations are when working in the code
window.

EVALUATION
So far several informal user evaluations have helped inform
our work. The participants chosen were: a post graduate
student with experience in .NET hired by the university to
mark student assignments; a senior professor who teaches
both VB and C#; and a project manager from a software
development organization where the majority of staff use
.NET as their development platform.

Overall the feedback was positive; however there were a
few usability issues that caused a little difficulty. One
problem was that users made the mistake of thinking the
interface is in ‘inking mode’ when the mode had

automatically reverted to ‘linker mode’, then saying “Oops,
this should be an ink stroke”. They then had to delete the
newly created linker stroke and select the old group of
annotations and rewrite the ink stroke. To alleviate this
problem we added a red border around the current
annotation group as shown in figure 4. This is achieved by
simply finding the bounding box of the annotation. This
gives the user a better indication of the mode, as well as
showing them the set of strokes that a new stroke will be
grouped with.

Figure 4 Bounding Box

Second, users were unsure about the spatial constraints on
grouping ink. When making a new ink stroke some distance
away from the current annotation there is no visual
indication as to whether the new stroke will be included in
the current annotation or be considered a linker for a new
annotation. One user made this statement while in ‘inking
mode’, “as I make an annotation a few lines below this
annotation, I would expect this stroke to qualify as a
linker”. This comment suggested to us that he would rather
know for certain that the next stroke would be a linker and
not have to wonder whether it might be joined to the current
annotation.

To solve this problem we considered the fact that
annotators normally write from left to right, then down to
the next line. So we extended the bounding box giving extra
width and height to the right and below, as shown in figure
5. If a new stroke is within the spare space of the bounding
box, then that stroke is grouped with the current annotation
group. If a stroke is made outside this bounding box then it
is assumed that the user wants the stroke to be a linker for a
new annotation group.

Figure 5 Extended Bounding Box

DISCUSSION AND FUTURE WORK
Our tool supports paperless ink annotation within an IDE
code editor. Thus potentially it is of benefit to anyone who
reads or writes code. The tool allows developers to
comment their code, reviewers to annotate possible coding
issues/defects and teachers to explain code, all directly
within the IDE.

The advantages of digital ink annotation are clearly
documented: providing this functionality within an IDE
provides an effective and convenient way to annotate code.

 59

We plan to allow markers, teachers and industry-based
project managers and quality assurance staff to use this tool
for a period of time. Such a longitudinal study would
provide rich feedback for future enhancements. For
example, we could extend RCA with marking specific
functionality by incorporating ideas found in marking tools
[11, 20, 23], so that marking and annotating can be done
directly within an IDE. Also several universities use tablet
PC’s in classes to collaboratively share lecture notes written
during class-time [12, 18]. We could include collaboration
support so students can use this tool in a shared
environment.

This tool can also be extended to provide extra functionality
for industry based code analyzers, similar to the formal
technical review process FTRrm [13]. This would allow
individual reviewers to first conduct private reviews, then
have the system collect all annotations and make them
public for all reviewers to comment on. The issues raised
could then be discussed during a group review meeting,
where perhaps more issues would be raised. The system
could generate a review meeting report containing all
finalized issues along with their line numbers and severity.
This report would then be sent back to the developer along
with the digital ink annotation files.

CONCLUSIONS
Ink annotation is an effective way to record comments on
documents, either on paper or in a digital environment.
However program code is different from ‘normal’
documents in that it is non-linear and that code has well
defined, specific syntactic requirements. Program IDEs are
specifically designed to support these features, but do not
include ink annotation. We have created a plug-in for the
Visual Studio IDE to facilitate inking over program code.
Early feedback suggests this approach shows promise for
both academic and commercial use.

REFERENCES
1. Anderson, R., Anderson, R., Simon, B., Wolfman, S. A.,

VanDeGrift, T., Yasuhara, K. Experiences with a tablet
PC based lecture presentation system in computer
science courses. Proc. SIGCSE 2004, ACM Press
(2004), 56-60.

2. Bargeron, D. and Moscovich, T. Reflowing digital ink
annotations. Proc. SIGCSE 2003, ACM Press (2003),
385-393

3. Basics of .NET.,
http://www.microsoft.com/net/basics.mspx.

4. Bessler, S., Hagar, M., Benz, H., Mecklenburg, R., and
Fischer, S. DIANE: A multimedia annotation
system.Proc. ECMAST 1997, Springer-Verlag, 183-198.

5. Brush, A. J., Bargeron, D., Gupta, A., and Cadiz, J. J.
Robust annotation positioning in digital documents.
Proc. CHI 2001, ACM Press, 285-292.

6. Conwell, J. Blog Reader Add-In for Visual Studio
.NET.

http://www.codeproject.com/dotnet/BlogReaderArticle.a
sp.

7. Eclipse.org Home. http://www.eclipse.org/.
8. Fagan, M. Design and code inspections to reduce errors

in program development. IBM System Journal 15, 3
(1976), 182-211.

9. Francik, E. Rapid, integrated design of a multimedia
communication system. HumanComputer Interface
Design (1995), 36-69.

10. Golovchinsky, G., Denoue, L., Moving Markup:
Repositioning Freeform Annotations. Proc. UIST 2002,
ACM Press (2002), 21-30.

11. Heinrich, E. and Lawn, A. Onscreen marking support
for formative assessment. Proc. Ed-Media (2004), 1985-
1992.

12. Huang, A., Doeppner, T. W. and Cetintemel, U., Ad-hoc
Collaborative Document Annotation on a Tablet PC.
Brown University.
http://www.cs.brown.edu/publications/theses/ugrad/200
3/ashuang.pdf.

13. Johnson, P. M. An instrumented approach to improving
software quality through formal technical review. Proc.
ICSE (1994), 113-122.

14. Lowell, J. A. Improving Software Quality, Wiley
Professional Computing, 1993.

15. Marshall, C. C. Annotation: from paper books to the
digital library. Proc DL 1997, ACM Press (1997), 131-
140.

16. Marshall, C. C. Toward an ecology of hypertext
annotation. Proc. HyperText 1998, ACM Press (1998),
40-48.

17. Microsoft Word.
http://www.microsoft.com/office/word/using.htm

18. Mock, K., Teaching with Tablet PCs, Proc. Journal of
Computing Sciences in Colleges 20, 2 (2004) 17-27

19. Moran, T. P., C, P. and Van Melle, W. Pen-based
interaction techniques for organizing material on an
electronic whiteboard. In Symposium on User Interface
Software and Technology (1997), 45-54.

20. Myers, D., Hargreaves, E., Ryall, J., Thompson, S.,
Burgess, M., German, D. and Storey, M. Developing
Marking Support within Eclipse. Proc. of OOPSLA
2004, ACM Press (2004), 62-66.

21. Neuwirth, C., Kaufer, D., Chandhok, R., and Morris, J.
Computer Support for Distributed Collaborative
Writing: Defining Parameters of Interaction. Proc.
CSCW 1994, ACM Press (1994), 145-152.

22. Phelps, T., and Wilensky, R. Robust Intra-document
Locations. Proc. WWW9 2000, North-Holland
Publishing Co. (2000), 105-118.

23. Plimmer, B. and Mason, P. A Pen-based Paperless
Environment for Annotating and Marking Student

 60

Assignments. Proc.7th Australasian User Interface
Conference, CRPIT press (2006), 37-44.

24. Ramachandran, S. and Kashi, R. An architecture for ink
annotations on web documents. Proc. 17th International
Conference on Document Analysis and Recognition,
IEEE Computer Society (2003), 256-260.

25. Schilit, B. N., Golovchinsky, G. and Price, M. N.
Beyond Paper: Supporting Active Reading with Free

26. rm Digital Ink Annotations. Proc. CHI 1998, ACM
Press (1998), 249-256.

27. Simon, B., Anderson, R., Hoyer, C. and Su, J.
Preliminary Experiences with a Tablet PC Based System

to Support Active Learning in Computer Science
Courses. Proc. SIGCSE 2004, ACM Press (2004), 213-
217.

28. W3C Document Object Model.
http://www.w3.org/DOM/.

29. Wilcox, L. and Chiu, P. A Dynamic Grouping
Technique for Ink and Audio Notes. Proc. UIST 1998,
ACM Press (1998), 195-202.

